Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Bioprocess Biosyst Eng ; 47(5): 713-724, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627303

RESUMEN

The concept of modular synthetic co-cultures holds considerable potential for biomanufacturing, primarily to reduce the metabolic burden of individual strains by sharing tasks among consortium members. However, current consortia often show unilateral relationships solely, without stabilizing feedback control mechanisms, and are grown in a shared cultivation setting. Such 'one pot' approaches hardly install optimum growth and production conditions for the individual partners. Hence, novel mutualistic, self-coordinating consortia are needed that are cultured under optimal growth and production conditions for each member. The heterologous production of the antibiotic violacein (VIO) in the mutually interacting E. coli-E. coli consortium serves as an example of this new principle. Interdependencies for growth control were implemented via auxotrophies for L-tryptophan and anthranilate (ANT) that were satisfied by the respective partner. Furthermore, VIO production was installed in the ANT auxotrophic strain. VIO production, however, requires low temperatures of 20-30 °C which conflicts with the optimum growth temperature of E. coli at 37 °C. Consequently, a two-compartment, two-temperature level setup was used, retaining the mutual interaction of the cells via the filter membrane-based exchange of medium. This configuration also provided the flexibility to perform individualized batch and fed-batch strategies for each co-culture member. We achieved maximum biomass-specific productivities of around 6 mg (g h)-1 at 25 °C which holds great promise for future applications.


Asunto(s)
Reactores Biológicos , Técnicas de Cocultivo , Escherichia coli , Indoles , Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Indoles/metabolismo
2.
Microb Cell Fact ; 21(1): 201, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195869

RESUMEN

BACKGROUND: Although efficient L-tryptophan production using engineered Escherichia coli is established from glucose, the use of alternative carbon sources is still very limited. Through the application of glycerol as an alternate, a more sustainable substrate (by-product of biodiesel preparation), the well-studied intracellular glycolytic pathways are rerouted, resulting in the activity of different intracellular control sites and regulations, which are not fully understood in detail. Metabolic analysis was applied to well-known engineered E. coli cells with 10 genetic modifications. Cells were withdrawn from a fed-batch production process with glycerol as a carbon source, followed by metabolic control analysis (MCA). This resulted in the identification of several additional enzymes controlling the carbon flux to L-tryptophan. RESULTS: These controlling enzyme activities were addressed stepwise by the targeted overexpression of 4 additional enzymes (trpC, trpB, serB, aroB). Their efficacy regarding L-tryptophan productivity was evaluated under consistent fed-batch cultivation conditions. Although process comparability was impeded by process variances related to a temporal, unpredictable break-off in L-tryptophan production, process improvements of up to 28% with respect to the L-tryptophan produced were observed using the new producer strains. The intracellular effects of these targeted genetic modifications were revealed by metabolic analysis in combination with MCA and expression analysis. Furthermore, it was discovered that the E. coli cells produced the highly toxic metabolite methylglyoxal (MGO) during the fed-batch process. A closer look at the MGO production and detoxification on the metabolome, fluxome, and transcriptome level of the engineered E. coli indicated that the highly toxic metabolite plays a critical role in the production of aromatic amino acids with glycerol as a carbon source. CONCLUSIONS: A detailed process analysis of a new L-tryptophan producer strain revealed that several of the 4 targeted genetic modifications of the E. coli L-tryptophan producer strain proved to be effective, and, for others, new engineering approaches could be derived from the results. As a starting point for further strain and process optimization, the up-regulation of MGO detoxifying enzymes and a lowering of the feeding rate during the last third of the cultivation seems reasonable.


Asunto(s)
Escherichia coli , Glicerol , Biocombustibles , Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosa/metabolismo , Glicerol/metabolismo , Óxido de Magnesio/metabolismo , Ingeniería Metabólica/métodos , Piruvaldehído/metabolismo , Triptófano/metabolismo
3.
Appl Microbiol Biotechnol ; 106(19-20): 6505-6517, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36109385

RESUMEN

The shikimate pathway delivers aromatic amino acids (AAAs) in prokaryotes, fungi, and plants and is highly utilized in the industrial synthesis of bioactive compounds. Carbon flow into this pathway is controlled by the initial enzyme 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS). AAAs produced further downstream, phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp), regulate DAHPS by feedback inhibition. Corynebacterium glutamicum, the industrial workhorse for amino acid production, has two isoenzymes of DAHPS, AroF (Tyr sensitive) and AroG (Phe and Tyr sensitive). Here, we introduce feedback resistance against Tyr in the class I DAHPS AroF (AroFcg). We pursued a consensus approach by drawing on structural modeling, sequence and structural comparisons, knowledge of feedback-resistant variants in E. coli homologs, and computed folding free energy changes. Two types of variants were predicted: Those where substitutions putatively either destabilize the inhibitor binding site or directly interfere with inhibitor binding. The recombinant variants were purified and assessed in enzyme activity assays in the presence or absence of Tyr. Of eight AroFcg variants, two yielded > 80% (E154N) and > 50% (P155L) residual activity at 5 mM Tyr and showed > 50% specific activity of the wt AroFcg in the absence of Tyr. Evaluation of two and four further variants at positions 154 and 155 yielded E154S, completely resistant to 5 mM Tyr, and P155I, which behaves similarly to P155L. Hence, feedback-resistant variants were found that are unlikely to evolve by point mutations from the parental gene and, thus, would be missed by classical strain engineering. KEY POINTS: • We introduce feedback resistance against Tyr in the class I DAHPS AroF • Variants at position 154 (155) yield > 80% (> 50%) residual activity at 5 mM Tyr • The variants found are unlikely to evolve by point mutations from the parental gene.


Asunto(s)
3-Desoxi-7-Fosfoheptulonato Sintasa , Escherichia coli , 3-Desoxi-7-Fosfoheptulonato Sintasa/química , 3-Desoxi-7-Fosfoheptulonato Sintasa/genética , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Aminoácidos Aromáticos , Carbono , Escherichia coli/metabolismo , Retroalimentación , Isoenzimas/genética , Fenilalanina/metabolismo , Fosfatos , Ingeniería de Proteínas , Triptófano/genética , Tirosina/metabolismo
4.
Bioprocess Biosyst Eng ; 44(12): 2591-2613, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34519841

RESUMEN

L-tryptophan production from glycerol with Escherichia coli was analysed by perturbation studies and metabolic control analysis. The insertion of a non-natural shikimate transporter into the genome of an Escherichia coli L-tryptophan production strain enabled targeted perturbation within the product pathway with shikimate during parallelised short-term perturbation experiments with cells withdrawn from a 15 L fed-batch production process. Expression of the shikimate/H+-symporter gene (shiA) from Corynebacterium glutamicum did not alter process performance within the estimation error. Metabolic analyses and subsequent extensive data evaluation were performed based on the data of the parallel analysis reactors and the production process. Extracellular rates and intracellular metabolite concentrations displayed evident deflections in cell metabolism and particularly in chorismate biosynthesis due to the perturbations with shikimate. Intracellular flux distributions were estimated using a thermodynamics-based flux analysis method, which integrates thermodynamic constraints and intracellular metabolite concentrations to restrain the solution space. Feasible flux distributions, Gibbs reaction energies and concentration ranges were computed simultaneously for the genome-wide metabolic model, with minimum bias in relation to the direction of metabolic reactions. Metabolic control analysis was applied to estimate elasticities and flux control coefficients, predicting controlling sites for L-tryptophan biosynthesis. The addition of shikimate led to enhanced deviations in chorismate biosynthesis, revealing a so far not observed control of 3-dehydroquinate synthase on L-tryptophan formation. The relative expression of the identified target genes was analysed with RT-qPCR. Transcriptome analysis revealed disparities in gene expression and the localisation of target genes to further improve the microbial L-tryptophan producer by metabolic engineering.


Asunto(s)
Escherichia coli/metabolismo , Ácido Shikímico/metabolismo , Triptófano/biosíntesis , Corynebacterium glutamicum/genética , Genes Bacterianos , Genes Reporteros
5.
Appl Microbiol Biotechnol ; 104(8): 3433-3444, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32078019

RESUMEN

L-phenylglycine (L-Phg) is a rare non-proteinogenic amino acid, which only occurs in some natural compounds, such as the streptogramin antibiotics pristinamycin I and virginiamycin S or the bicyclic peptide antibiotic dityromycin. Industrially, more interesting than L-Phg is the enantiomeric D-Phg as it plays an important role in the fine chemical industry, where it is used as a precursor for the production of semisynthetic ß-lactam antibiotics. Based on the natural L-Phg operon from Streptomyces pristinaespiralis and the stereo-inverting aminotransferase gene hpgAT from Pseudomonas putida, an artificial D-Phg operon was constructed. The natural L-Phg operon, as well as the artificial D-Phg operon, was heterologously expressed in different actinomycetal host strains, which led to the successful production of Phg. By rational genetic engineering of the optimal producer strains S. pristinaespiralis and Streptomyces lividans, Phg production could be improved significantly. Here, we report on the development of a synthetic biology-derived D-Phg pathway and the optimization of fermentative Phg production in actinomycetes by genetic engineering approaches. Our data illustrate a promising alternative for the production of Phgs.


Asunto(s)
Fermentación , Ingeniería Genética/métodos , Glicina/análogos & derivados , Operón , Streptomyces lividans/genética , Streptomyces/genética , Antibacterianos/biosíntesis , Genes Bacterianos , Glicina/biosíntesis , Pseudomonas putida/enzimología , Pseudomonas putida/genética , Estereoisomerismo , Biología Sintética/métodos
6.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348713

RESUMEN

Phosphofructokinase (PFK) plays a pivotal role in glycolysis. By deletion of the genes pfkA, pfkB (encoding the two PFK isoenzymes), and zwf (glucose 6-phosphate dehydrogenase) in Escherichia coli K-12, a mutant strain (GL3) with a complete block in glucose catabolism was created. Introduction of plasmid-borne copies of the fsaA wild type gene (encoding E. coli fructose 6-phosphate aldolase, FSAA) did not allow a bypass by splitting fructose 6-phosphate (F6P) into dihydroxyacetone (DHA) and glyceraldehyde 3-phosphate (G3P). Although FSAA enzyme activity was detected, growth on glucose was not reestablished. A mutant allele encoding for FSAA with an amino acid exchange (Ala129Ser) which showed increased catalytic efficiency for F6P, allowed growth on glucose with a µ of about 0.12 h-1. A GL3 derivative with a chromosomally integrated copy of fsaAA129S (GL4) grew with 0.05 h-1 on glucose. A mutant strain from GL4 where dhaKLM genes were deleted (GL5) excreted DHA. By deletion of the gene glpK (glycerol kinase) and overexpression of gldA (of glycerol dehydrogenase), a strain (GL7) was created which showed glycerol formation (21.8 mM; yield approximately 70% of the theoretically maximal value) as main end product when grown on glucose. A new-to-nature pathway from glucose to glycerol was created.


Asunto(s)
Aldehído-Liasas/genética , Vías Biosintéticas/genética , Dihidroxiacetona/biosíntesis , Escherichia coli K12/enzimología , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Expresión Génica , Genes Bacterianos , Glicerol/metabolismo , Alelos , Fructosafosfatos/metabolismo , Eliminación de Gen , Glucosa/metabolismo , Glucosafosfato Deshidrogenasa/genética , Glicerol Quinasa/genética , Isoenzimas/genética , Vía de Pentosa Fosfato/genética , Fosfofructoquinasas/química , Fosfofructoquinasas/genética , Deshidrogenasas del Alcohol de Azúcar/genética
7.
Chembiochem ; 20(13): 1672-1677, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30866142

RESUMEN

Chorismate and isochorismate constitute branch-point intermediates in the biosynthesis of many aromatic metabolites in microorganisms and plants. To obtain unnatural compounds, we modified the route to menaquinone in Escherichia coli. We propose a model for the binding of isochorismate to the active site of MenD ((1R,2S, 5S,6S)-2-succinyl-5-enolpyruvyl-6-hydroxycyclohex-3-ene-1-carboxylate (SEPHCHC) synthase) that explains the outcome of the native reaction with α-ketoglutarate. We have rationally designed variants of MenD for the conversion of several isochorismate analogues. The double-variant Asn117Arg-Leu478Thr preferentially converts (5S,6S)-5,6-dihydroxycyclohexa-1,3-diene-1-carboxylate (2,3-trans-CHD), the hydrolysis product of isochorismate, with a >70-fold higher ratio than that for the wild type. The single-variant Arg107Ile uses (5S,6S)-6-amino-5-hydroxycyclohexa-1,3-diene-1-carboxylate (2,3-trans-CHA) as substrate with >6-fold conversion compared to wild-type MenD. The novel compounds have been made accessible in vivo (up to 5.3 g L-1 ). Unexpectedly, as the identified residues such as Arg107 are highly conserved (>94 %), some of the designed variations can be found in wild-type SEPHCHC synthases from other bacteria (Arg107Lys, 0.3 %). This raises the question for the possible natural occurrence of as yet unexplored branches of the shikimate pathway.


Asunto(s)
Ácidos Ciclohexanocarboxílicos/metabolismo , Proteínas de Escherichia coli/metabolismo , Piruvato Oxidasa/metabolismo , Dominio Catalítico , Ácido Corísmico/química , Ácido Corísmico/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Ingeniería de Proteínas , Piruvato Oxidasa/química , Piruvato Oxidasa/genética , Especificidad por Sustrato
8.
Molecules ; 24(13)2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261738

RESUMEN

We have cloned, overexpressed, purified, and characterized a 2-ketogluconate kinase (2-dehydrogluconokinase, EC 2.7.1.13) from Cupriavidus necator (Ralstonia eutropha) H16. Exploration of its substrate specificity revealed that three ketoacids (2-keto-3-deoxy-d-gluconate, 2-keto-d-gulonate, and 2-keto-3-deoxy-d-gulonate) with structures close to the natural substrate (2-keto-d-gluconate) were successfully phosphorylated at an efficiency lower than or comparable to 2-ketogluconate, as depicted by the measured kinetic constant values. Eleven aldo and keto monosaccharides of different chain lengths and stereochemistries were also assayed but not found to be substrates. 2-ketogluconate-6-phosphate was synthesized at a preparative scale and was fully characterized for the first time.


Asunto(s)
Cupriavidus necator/enzimología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Gluconatos/metabolismo , Fosforilación , Proteínas Quinasas/química , Estabilidad Proteica , Especificidad por Sustrato
9.
Biotechnol Bioeng ; 115(12): 2881-2892, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30199091

RESUMEN

l-tryptophan is an essential amino acid of high industrial interest that is routinely produced by microbial processes from glucose as carbon source. Glycerol is an alternative substrate providing a variety of economic and metabolic advantages. Process performance of the recombinant l-tryptophan producer Escherichia coli NT367 was studied in controlled fed-batch processes. The chromosome of the recombinant l-tryptophan producer was equipped with additional genes coding for enzymes of the aromatic amino acids biosynthetic pathway and l-serine biosynthesis, including genes for feedback-resistant enzyme variants ( trpE fbr , aroFBL, and serA fbr ), deletions of enzymatic steps for the degradation of precursors or the product l-tryptophan ( sdaB and tnaA), and alterations in the regulation of l-tryptophan metabolism (deletion of trpL and trpR). The impact of glycerol supply rates as well as the application of a multicopy plasmid (pF112- aroFBL -kan) were investigated in fully controlled stirred-tank bioreactors on a 15 L scale. The combination of E. coli NT367 carrying pF112- aroFBL -kan and an appropriate biomass-specific glycerol supply-rate resulted in the highest final product concentration of 12.5 g L -1 l-tryptophan with the lowest concentrations of other aromatic amino acids. Fed-batch production of l-tryptophan from glycerol was shown for the first time with recombinant E. coli.


Asunto(s)
Reactores Biológicos/microbiología , Escherichia coli/genética , Glicerol/metabolismo , Triptófano/metabolismo , Escherichia coli/metabolismo , Redes y Vías Metabólicas , Plásmidos/genética , Triptófano/análisis
10.
Microb Cell Fact ; 17(1): 149, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30241531

RESUMEN

BACKGROUND: The non-proteinogenic aromatic amino acid, p-amino-L-phenylalanine (L-PAPA) is a high-value product with a broad field of applications. In nature, L-PAPA occurs as an intermediate of the chloramphenicol biosynthesis pathway in Streptomyces venezuelae. Here we demonstrate that the model organism Escherichia coli can be transformed with metabolic grafting approaches to result in an improved L-PAPA producing strain. RESULTS: Escherichia coli K-12 cells were genetically engineered for the production of L-PAPA from glycerol as main carbon source. To do so, genes for a 4-amino-4-deoxychorismate synthase (pabAB from Corynebacterium glutamicum), and genes encoding a 4-amino-4-deoxychorismate mutase and a 4-amino-4-deoxyprephenate dehydrogenase (papB and papC, both from Streptomyces venezuelae) were cloned and expressed in E. coli W3110 (lab strain LJ110). In shake flask cultures with minimal medium this led to the formation of ca. 43 ± 2 mg l-1 of L-PAPA from 5 g l-1 glycerol. By expression of additional chromosomal copies of the tktA and glpX genes, and of plasmid-borne aroFBL genes in a tyrR deletion strain, an improved L-PAPA producer was obtained which gave a titer of 5.47 ± 0.4 g l-1 L-PAPA from 33.3 g l-1 glycerol (0.16 g L-PAPA/g of glycerol) in fed-batch cultivation (shake flasks). Finally, in a fed-batch fermenter cultivation, a titer of 16.7 g l-1 L-PAPA was obtained which is the highest so far reported value for this non-proteinogenic amino acid. CONCLUSION: Here we show that E. coli is a suitable chassis strain for L-PAPA production. Modifying the flux to the product and improved supply of precursor, by additional gene copies of glpX, tkt and aroFBL together with the deletion of the tyrR gene, increased the yield and titer.


Asunto(s)
Escherichia coli K12/metabolismo , Glicerol/metabolismo , Ingeniería Metabólica/métodos , Fenilalanina/análogos & derivados , Técnicas de Cultivo Celular por Lotes , Vías Biosintéticas , Escherichia coli K12/genética , Fenilalanina/metabolismo , Transformación Genética
11.
Appl Microbiol Biotechnol ; 102(19): 8359-8372, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30062480

RESUMEN

Carboligations catalyzed by aldolases or thiamine diphosphate (ThDP)-dependent enzymes are well-known in biocatalysis to deliver enantioselective chain elongation reactions. A pyruvate-dependent aldolase (2-oxo-3-deoxy-6-phosphogluconate aldolase [EDA]) introduces a chiral center when reacting with the electrophile, glyoxylic acid, delivering the (S)-enantiomer of (4S)-4-hydroxy-2-oxoglutarate [(S)-HOG]. The ThDP-dependent enzyme MenD (2-succinyl-5-enol-pyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase (SEPHCHC synthase)) enables access to highly functionalized substances by forming intermolecular C-C bonds with Michael acceptor compounds by a Stetter-like 1,4- or a benzoin-condensation 1,2-addition of activated succinyl semialdehyde (ThDP adduct formed by decarboxylation of 2-oxoglutarate). MenD-catalyzed reactions are characterized by high chemo- and regioselectivity. Here, we report (S)-HOG, in situ formed by EDA, to serve as new donor substrate for MenD in 1,4-addition reactions with 2,3-trans-CHD (2,3-trans-dihydroxy-cyclohexadiene carboxylate) and acrylic acid. Likewise, (S)-HOG serves as donor in 1,2-additions with aromatic (benzaldehyde) and aliphatic (hexanal) aldehydes. This enzyme cascade of two subsequent C-C bond formations (EDA aldolase and a ThDP-dependent carboligase, MenD) generates two new stereocenters.


Asunto(s)
Ácidos Ciclohexanocarboxílicos/metabolismo , Cetoácidos/metabolismo , Tiamina Pirofosfato/metabolismo , Biocatálisis , Ciclohexenos/metabolismo , Descarboxilación/fisiología , Especificidad por Sustrato
12.
Biotechnol Lett ; 39(2): 219-226, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27738779

RESUMEN

OBJECTIVES: To investigate the translocation of nucleotide-activated sugars from the cytosol across a membrane into the endoplasmatic reticulum or the Golgi apparatus which is an important step in the synthesis of glycoproteins and glycolipids in eukaryotes. RESULTS: The heterologous expression of the recombinant and codon-adapted human GDP-L-fucose antiporter gene SLC35C1 (encoding an N-terminal OmpA-signal sequence) led to a functional transporter protein located in the cytoplasmic membrane of Escherichia coli. The in vitro transport was investigated using inverted membrane vesicles. SLC35C1 is an antiporter specific for GDP-L-fucose and depending on the concomitant reverse transport of GMP. The recombinant transporter FucT1 exhibited an activity for the transport of 3H-GDP-L-fucose with a Vmax of 8 pmol/min mg with a Km of 4 µM. The functional expression of SLC35C1 in GDP-L-fucose overproducing E. coli led to the export of GDP-L-fucose to the culture supernatant. CONCLUSIONS: The export of GDP-L-fucose by E. coli provides the opportunity for the engineering of a periplasmatic fucosylation reaction in recombinant bacterial cells.


Asunto(s)
Escherichia coli/metabolismo , Fucosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Escherichia coli/genética , Glicosilación , Guanosina Difosfato Fucosa/metabolismo , Humanos , Proteínas de Transporte de Monosacáridos/genética
13.
Anal Biochem ; 478: 134-40, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25772305

RESUMEN

The need for quantitative intracellular metabolome information is central to modern applied biotechnology and systems biology. In most cases, sample preparation and metabolite analysis result in degradation of metabolites and signal suppression due to metabolite instability and matrix effects during LC-MS analysis. Therefore the application of uniformly (U) (13)C-labeled cell extract as an internal standard has gained interest in recent years. In this study a multiple-step protocol has been developed for efficient preparation of U-(13)C-labeled Escherichia coli cell extracts in stirred-tank bioreactors on a milliliter scale with a minimal supply of costly (13)C-labeled substrate. Significant reduction of fermentation medium salt concentration in the U-(13)C-labeled cell extract was achieved to reduce ion-suppression effects during mass-spectrometric analysis. Additionally, variation of reaction conditions in parallel-operated stirred-tank bioreactors on a milliliter scale enables the simultaneous preparation of U-(13)C-labeled cell extracts with varying metabolite concentrations, which is shown by an example of the labeled phosphoenolpyruvate level in E. coli.


Asunto(s)
Reactores Biológicos/microbiología , Extractos Celulares/química , Escherichia coli/metabolismo , Metaboloma , Metabolómica/métodos , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Cromatografía Liquida/métodos , Escherichia coli/química , Escherichia coli/citología , Fermentación , Marcaje Isotópico/métodos , Espectrometría de Masas/métodos
14.
Bioorg Med Chem ; 23(21): 6799-806, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26481658

RESUMEN

Fucosylated oligosaccharides present a predominant group of free oligosaccharides found in human milk. Here, a microbial conversion of lactose, D-glucose and L-fucose to fucosylated lacto-N-tetraose by growing Escherichia coli cultures is presented. The recombinant expression of genes encoding for the ß1,3-N-acetylglucosaminyltransferase (LgtA) and the ß1,3-galactosyltransferase (WbgO) enables the whole-cell biotransformation of lactose to lacto-N-tetraose. By the additional expression of a recombinant GDP-L-fucose salvage pathway together with a bacterial fucosyltransferase, lacto-N-tetraose is further converted into the respective fucosylated compounds. The expression of a gene encoding the α1,2-fucosyltransferase (FutC) in the lacto-N-tetraose producing E. coli strain led to the formation of lacto-N-fucopentaose I, whereas the expression of a gene encoding the α1,4-fucosyltransferase (FucT14) mainly led to the conversion of lacto-N-tetraose to lacto-N-difucohexaose II.


Asunto(s)
Oligosacáridos/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Fucosiltransferasas/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Glicosilación , Humanos , Lactosa/metabolismo , Espectroscopía de Resonancia Magnética , Leche Humana/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Oligosacáridos/química
15.
Chembiochem ; 15(13): 1896-900, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25044565

RESUMEN

Human milk oligosaccharides (HMOs) constitute the third most abundant solid component of human milk. HMOs have been demonstrated to show positive effects on the infant's well-being. Despite numerous studies, more physiological analyses of single compounds are needed to fully elucidate these effects. Although being one of the most abundant core structures in human milk, the HMO lacto-N-tetraose (LNT) is not available at reasonable prices. In this study, we demonstrate the construction of the first E. coli strain capable of producing LNT in vivo. The strain was constructed by chromosomally integrating the genes lgtA and wbgO, encoding ß-1,3-N-acetylglucosaminyltransferase and ß-1,3-galactosyltransferase. In shake-flask cultivations, the strain yielded a total concentration of 219.1±3.5 mg L(-1) LNT (LNT in culture broth and the cell pellet). After recovery of LNT, structural analysis by NMR spectroscopy confirmed the molecule structure.


Asunto(s)
Escherichia coli/metabolismo , Oligosacáridos/síntesis química , Secuencia de Carbohidratos , Escherichia coli/genética , Humanos , Leche Humana/química , Datos de Secuencia Molecular , Plásmidos/genética
16.
Biotechnol Bioeng ; 111(7): 1406-16, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24449451

RESUMEN

Fed-batch production of the aromatic amino acid L-phenylalanine was studied with recombinant Escherichia coli strains on a 15 L-scale using glycerol as carbon source. Flux Variability Analysis (FVA) was applied for intracellular flux estimation to obtain an insight into intracellular flux distribution during L-phenylalanine production. Variability analysis revealed great flux uncertainties in the central carbon metabolism, especially concerning malate consumption. Due to these results two recombinant strains were genetically engineered differing in the ability of malate degradation and anaplerotic reactions (E. coli FUS4.11 ΔmaeA pF81kan and E. coli FUS4.11 ΔmaeA ΔmaeB pF81kan). Applying these malic enzyme knock-out mutants in the standardized L-phenylalanine production process resulted in almost identical process performances (e.g., L-phenylalanine concentration, production rate and byproduct formation). This clearly highlighted great redundancies in central metabolism in E. coli. Uncertainties of intracellular flux estimations by constraint-based analyses during fed-batch production of L-phenylalanine were drastically reduced by application of the malic enzyme knock-out mutants.


Asunto(s)
Escherichia coli/metabolismo , Técnicas de Inactivación de Genes , Análisis de Flujos Metabólicos , Redes y Vías Metabólicas/genética , Fenilalanina/biosíntesis , Carbono/metabolismo , Escherichia coli/genética , Ingeniería Metabólica
17.
Biotechnol Bioeng ; 111(12): 2508-19, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24902947

RESUMEN

A fed-batch process was studied with lactate and glycerol supply in the growth phase and glycerol supply during L-phenylalanine production with recombinant E. coli K-12. Lactic acid feeding was necessary for growth because the genes encoding the PEP-consuming pyruvate kinase isoenzymes (pykA, pykF) have been deleted. An unexpected glucose efflux (67.6 ± 2.3 mgGlucose gCDW (-1) ) was measured after the cells were harvested and resuspended in a mineral medium for metabolic perturbation experiments. As the efflux prohibited the application of these experiments, characterization of intracellular carbon storage was necessary. Therefore, two genetically engineered strains (one lacking glycogen metabolism and another additionally lacking trehalose synthesis) were applied in the fed-batch process. Trehalose synthesis and accumulation from lactate was clearly identified as the source for glucose efflux after cell harvest and resuspension. Cultivations of strains with active pyruvate kinase successfully identified lactate as the carbon source causing intracellular trehalose storage. The usage of glycerol as sole carbon source during the whole process enabled an improved process performance and inhibited trehalose accumulation. Overall, this setup allows the application of perturbation experiments.


Asunto(s)
Carbono/metabolismo , Escherichia coli/metabolismo , Glicerol/metabolismo , Ácido Láctico/metabolismo , Técnicas de Cultivo Celular por Lotes , Biomasa , Escherichia coli/fisiología , Glucógeno/metabolismo
18.
Microb Cell Fact ; 13(1): 96, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-25012491

RESUMEN

BACKGROUND: For the production of L-phenylalanine (L-Phe), two molecules of phosphoenolpyruvate (PEP) and one molecule erythrose-4-phosphate (E4P) are necessary. PEP stems from glycolysis whereas E4P is formed in the pentose phosphate pathway (PPP). Glucose, commonly used for L-Phe production with recombinant E. coli, is taken up via the PEP-dependent phosphotransferase system which delivers glucose-6-phosphate (G6P). G6P enters either glycolysis or the PPP. In contrast, glycerol is phosphorylated by an ATP-dependent glycerol kinase (GlpK) thus saving one PEP. However, two gluconeogenic reactions (fructose-1,6-bisphosphate aldolase, fructose-1,6-bisphosphatase, FBPase) are necessary for growth and provision of E4P. Glycerol has become an important carbon source for biotechnology and reports on production of L-Phe from glycerol are available. However, the influence of FBPase and transketolase reactions on L-Phe production has not been reported. RESULTS: L-Phe productivity of parent strain FUS4/pF81 (plasmid-encoded genes for aroF, aroB, aroL, pheA) was compared on glucose and glycerol as C sources. On glucose, a maximal carbon recovery of 0.19 mM C(Phe)/C(Glucose) and a maximal space-time-yield (STY) of 0.13 g l(-1) h(-1) was found. With glycerol, the maximal carbon recovery was nearly the same (0.18 mM C(Phe)/C(Glycerol)), but the maximal STY was higher (0.21 g l(-1) h(-1)). We raised the chromosomal gene copy number of the genes glpK (encoding glycerol kinase), tktA (encoding transketolase), and glpX (encoding fructose-1,6-bisphosphatase) individually. Overexpression of glpK (or its feedback-resistant variant, glpK(G232D)) had little effect on growth rate; L-Phe production was about 30% lower than in FUS4/pF81. Whereas the overexpression of either glpX or tktA had minor effects on productivity (0.20 mM C(Phe)/C(Glycerol); 0.25 g l(-1) h(-1) and 0.21 mM C(Phe)/C(Glycerol); 0.23 g l(-1) h(-1), respectively), the combination of extra genes of glpX and tktA together led to an increase in maximal STY of about 80% (0.37 g l(-1) h(-1)) and a carbon recovery of 0.26 mM C(Phe)/C(Glycerol). CONCLUSIONS: Enhancing the gene copy numbers for glpX and tktA increased L-Phe productivity from glycerol without affecting growth rate. Engineering of glycerol metabolism towards L-Phe production in E. coli has to balance the pathways of gluconeogenesis, glycolysis, and PPP to improve the supply of the precursors, PEP and E4P.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Fructosa-Bifosfatasa/genética , Dosificación de Gen , Glicerol Quinasa/genética , Glicerol/metabolismo , Fenilalanina/biosíntesis , Transcetolasa/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fructosa-Bifosfatasa/metabolismo , Glicerol Quinasa/metabolismo , Ingeniería Metabólica , Vía de Pentosa Fosfato , Transcetolasa/metabolismo
19.
Metab Eng ; 20: 29-41, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23994489

RESUMEN

Violacein and deoxyviolacein are interesting therapeutics against pathogenic bacteria and viruses as well as tumor cells. In the present work, systems-wide metabolic engineering was applied to target Escherichia coli, a widely accepted recombinant host in pharmaceutical biotechnology, for production of these high-value products. The basic producer, E. coli dVio-1, that expressed the vioABCE cluster from Chromobacterium violaceum under control of the inducible araC system, accumulated 180 mg L(-1) of deoxyviolacein. Targeted intracellular metabolite analysis then identified bottlenecks in tryptophan supporting pathways, the major product building block. This was used for comprehensive engineering of serine, chorismate and tryptophan biosynthesis and the non-oxidative pentose-phosphate pathway. The final strain, E. coli dVio-6, accumulated 320 mg L(-1) deoxyviolacein in shake flask cultures. The created chassis of a high-flux tryptophan pathway was complemented by genomic integration of the vioD gene of Janthinobacterium lividum, which enabled exclusive production of violacein. In a fed-batch process, the resulting producer E. coli Vio-4 accumulated 710 mg L(-1) of the desired product. With straightforward broth extraction and subsequent crystallization, violacein could be obtained with 99.8% purity. This demonstrates the potential of E. coli as a platform for production of tryptophan based therapeutics.


Asunto(s)
Antineoplásicos/metabolismo , Chromobacterium/genética , Escherichia coli , Genes Bacterianos , Indoles/metabolismo , Ingeniería Metabólica , Familia de Multigenes , Chromobacterium/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
20.
Microb Cell Fact ; 12: 40, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23635327

RESUMEN

BACKGROUND: The trisaccharide 2'-fucosyllactose (2'-FL) is one of the most abundant oligosaccharides found in human milk. Due to its prebiotic and anti-infective properties, 2'-FL is discussed as nutritional additive for infant formula. Besides chemical synthesis and extraction from human milk, 2'-FL can be produced enzymatically in vitro and in vivo. The most promising approach for a large-scale formation of 2'-FL is the whole cell biosynthesis in Escherichia coli by intracellular synthesis of GDP-L-fucose and subsequent fucosylation of lactose with an appropriate α1,2-fucosyltransferase. Even though whole cell approaches have been demonstrated for the synthesis of 2'-FL, further improvements of the engineered E. coli host are required to increase product yields. Furthermore, an antibiotic-free method of whole cell synthesis of 2'-FL is desirable to simplify product purification and to avoid traces of antibiotics in a product with nutritional purpose. RESULTS: Here we report the construction of the first selection marker-free E. coli strain that produces 2'-FL from lactose and glycerol. To construct this strain, recombinant genes of the de novo synthesis pathway for GDP-L-fucose as well as the gene for the H. pylori fucosyltransferase futC were integrated into the chromosome of E. coli JM109 by using the λ-Red recombineering technique. Strains carrying additional copies of the futC gene and/or the gene fkp (from Bacteroides fragilis) for an additional salvage pathway for GDP-L-fucose production were used and shown to further improve production of 2'-FL in shake flask experiments. An increase of the intracellular GDP-L-fucose concentration by expression of fkp gene as well as an additional copy of the futC gene lead to an enhanced formation of 2'-FL. Using an improved production strain, feasibility of large scale 2'-FL production was demonstrated in an antibiotic-free fed-batch fermentation (13 l) with a final 2'-FL concentration of 20.28 ± 0.83 g l(-1) and a space-time-yield of 0.57 g l(-1) h(-1). CONCLUSIONS: By chromosomal integration of recombinant genes, altering the copy number of these genes and analysis of 2'-FL and intracellular GDP-L-fucose levels, we were able to construct and improve the first selection marker-free E. coli strain which is capable to produce 2'-FL without the use of expression plasmids. Analysis of intracellular GDP-L-fucose levels identified the de novo synthesis pathway of GDP-L-fucose as one bottleneck in 2'-FL production. In antibiotic-free fed-batch fermentation with an improved strain, scale-up of 2'-FL could be demonstrated.


Asunto(s)
Cromosomas Bacterianos/metabolismo , Escherichia coli/metabolismo , Trisacáridos/biosíntesis , Técnicas de Cultivo Celular por Lotes , Cromosomas Bacterianos/genética , Escherichia coli/genética , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Ingeniería Genética , Glicerol/metabolismo , Guanosina Difosfato Fucosa/metabolismo , Helicobacter pylori/enzimología , Humanos , Lactosa/metabolismo , Leche Humana/química , Plásmidos/genética , Plásmidos/metabolismo , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA