Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 167(5): 1281-1295.e18, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863244

RESUMEN

Glioblastoma stem cells (GSCs) are implicated in tumor neovascularization, invasiveness, and therapeutic resistance. To illuminate mechanisms governing these hallmark features, we developed a de novo glioblastoma multiforme (GBM) model derived from immortalized human neural stem/progenitor cells (hNSCs) to enable precise system-level comparisons of pre-malignant and oncogene-induced malignant states of NSCs. Integrated transcriptomic and epigenomic analyses uncovered a PAX6/DLX5 transcriptional program driving WNT5A-mediated GSC differentiation into endothelial-like cells (GdECs). GdECs recruit existing endothelial cells to promote peritumoral satellite lesions, which serve as a niche supporting the growth of invasive glioma cells away from the primary tumor. Clinical data reveal higher WNT5A and GdECs expression in peritumoral and recurrent GBMs relative to matched intratumoral and primary GBMs, respectively, supporting WNT5A-mediated GSC differentiation and invasive growth in disease recurrence. Thus, the PAX6/DLX5-WNT5A axis governs the diffuse spread of glioma cells throughout the brain parenchyma, contributing to the lethality of GBM.


Asunto(s)
Glioblastoma/genética , Glioblastoma/patología , Invasividad Neoplásica/genética , Proteína Wnt-5a/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Epigenómica , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Células-Madre Neurales/metabolismo , Factor de Transcripción PAX6/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/metabolismo
2.
Genes Dev ; 37(17-18): 818-828, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37775182

RESUMEN

Activating KRAS mutations (KRAS*) in pancreatic ductal adenocarcinoma (PDAC) drive anabolic metabolism and support tumor maintenance. KRAS* inhibitors show initial antitumor activity followed by recurrence due to cancer cell-intrinsic and immune-mediated paracrine mechanisms. Here, we explored the potential role of cancer-associated fibroblasts (CAFs) in enabling KRAS* bypass and identified CAF-derived NRG1 activation of cancer cell ERBB2 and ERBB3 receptor tyrosine kinases as a mechanism by which KRAS*-independent growth is supported. Genetic extinction or pharmacological inhibition of KRAS* resulted in up-regulation of ERBB2 and ERBB3 expression in human and murine models, which prompted cancer cell utilization of CAF-derived NRG1 as a survival factor. Genetic depletion or pharmacological inhibition of ERBB2/3 or NRG1 abolished KRAS* bypass and synergized with KRASG12D inhibitors in combination treatments in mouse and human PDAC models. Thus, we found that CAFs can contribute to KRAS* inhibitor therapy resistance via paracrine mechanisms, providing an actionable therapeutic strategy to improve the effectiveness of KRAS* inhibitors in PDAC patients.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proliferación Celular , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Neurregulina-1/genética , Neurregulina-1/metabolismo
3.
Nature ; 619(7970): 632-639, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37344599

RESUMEN

Sex exerts a profound impact on cancer incidence, spectrum and outcomes, yet the molecular and genetic bases of such sex differences are ill-defined and presumptively ascribed to X-chromosome genes and sex hormones1. Such sex differences are particularly prominent in colorectal cancer (CRC) in which men experience higher metastases and mortality. A murine CRC model, engineered with an inducible transgene encoding oncogenic mutant KRASG12D and conditional null alleles of Apc and Trp53 tumour suppressors (designated iKAP)2, revealed higher metastases and worse outcomes specifically in males with oncogenic mutant KRAS (KRAS*) CRC. Integrated cross-species molecular and transcriptomic analyses identified Y-chromosome gene histone demethylase KDM5D as a transcriptionally upregulated gene driven by KRAS*-mediated activation of the STAT4 transcription factor. KDM5D-dependent chromatin mark and transcriptome changes showed repression of regulators of the epithelial cell tight junction and major histocompatibility complex class I complex components. Deletion of Kdm5d in iKAP cancer cells increased tight junction integrity, decreased cell invasiveness and enhanced cancer cell killing by CD8+ T cells. Conversely, iAP mice engineered with a Kdm5d transgene to provide constitutive Kdm5d expression specifically in iAP cancer cells showed an increased propensity for more invasive tumours in vivo. Thus, KRAS*-STAT4-mediated upregulation of Y chromosome KDM5D contributes substantially to the sex differences in KRAS* CRC by means of its disruption of cancer cell adhesion properties and tumour immunity, providing an actionable therapeutic strategy for metastasis risk reduction for men afflicted with KRAS* CRC.


Asunto(s)
Neoplasias Colorrectales , Histona Demetilasas , Antígenos de Histocompatibilidad Menor , Caracteres Sexuales , Animales , Femenino , Humanos , Masculino , Ratones , Linfocitos T CD8-positivos/inmunología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Ratones Transgénicos , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Regulación hacia Arriba
4.
Genes Dev ; 33(19-20): 1361-1366, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31488580

RESUMEN

The ubiquitin-specific protease (USP) family is the largest group of cysteine proteases. Cancer genomic analysis identified frequent amplification of USP21 (22%) in human pancreatic ductal adenocarcinoma (PDAC). USP21 overexpression correlates with human PDAC progression, and enforced expression of USP21 accelerates murine PDAC tumor growth and drives PanIN to PDAC progression in immortalized human pancreatic ductal cells. Conversely, depletion of USP21 impairs PDAC tumor growth. Mechanistically, USP21 deubiquitinates and stabilizes the TCF/LEF transcription factor TCF7, which promotes cancer cell stemness. Our work identifies and validates USP21 as a PDAC oncogene, providing a potential druggable target for this intractable disease.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pancreáticas/enzimología , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Vía de Señalización Wnt/genética , Animales , Línea Celular Tumoral , Humanos , Ratones , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/fisiopatología , Factor 1 de Transcripción de Linfocitos T , Ubiquitinación , Neoplasias Pancreáticas
5.
Genes Dev ; 32(17-18): 1105-1140, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30181359

RESUMEN

Despite the high long-term survival in localized prostate cancer, metastatic prostate cancer remains largely incurable even after intensive multimodal therapy. The lethality of advanced disease is driven by the lack of therapeutic regimens capable of generating durable responses in the setting of extreme tumor heterogeneity on the genetic and cell biological levels. Here, we review available prostate cancer model systems, the prostate cancer genome atlas, cellular and functional heterogeneity in the tumor microenvironment, tumor-intrinsic and tumor-extrinsic mechanisms underlying therapeutic resistance, and technological advances focused on disease detection and management. These advances, along with an improved understanding of the adaptive responses to conventional cancer therapies, anti-androgen therapy, and immunotherapy, are catalyzing development of more effective therapeutic strategies for advanced disease. In particular, knowledge of the heterotypic interactions between and coevolution of cancer and host cells in the tumor microenvironment has illuminated novel therapeutic combinations with a strong potential for more durable therapeutic responses and eventual cures for advanced disease. Improved disease management will also benefit from artificial intelligence-based expert decision support systems for proper standard of care, prognostic determinant biomarkers to minimize overtreatment of localized disease, and new standards of care accelerated by next-generation adaptive clinical trials.


Asunto(s)
Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia , Animales , Resistencia a Antineoplásicos , Fusión Génica , Humanos , Masculino , Ratones , Metástasis de la Neoplasia , Pronóstico , Próstata/anatomía & histología , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/patología , Microambiente Tumoral
6.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34475205

RESUMEN

Prostate cancer is a leading cause of cancer-related mortality in men. The widespread use of androgen receptor (AR) inhibitors has generated an increased incidence of AR-negative prostate cancer, triggering the need for effective therapies for such patients. Here, analysis of public genome-wide CRISPR screens in human prostate cancer cell lines identified histone demethylase JMJD1C (KDM3C) as an AR-negative context-specific vulnerability. Secondary validation studies in multiple cell lines and organoids, including isogenic models, confirmed that small hairpin RNA (shRNA)-mediated depletion of JMJD1C potently inhibited growth specifically in AR-negative prostate cancer cells. To explore the cooperative interactions of AR and JMJD1C, we performed comparative transcriptomics of 1) isogenic AR-positive versus AR-negative prostate cancer cells, 2) AR-positive versus AR-negative prostate cancer tumors, and 3) isogenic JMJD1C-expressing versus JMJD1C-depleted AR-negative prostate cancer cells. Loss of AR or JMJD1C generates a modest tumor necrosis factor alpha (TNFα) signature, whereas combined loss of AR and JMJD1C strongly up-regulates the TNFα signature in human prostate cancer, suggesting TNFα signaling as a point of convergence for the combined actions of AR and JMJD1C. Correspondingly, AR-negative prostate cancer cells showed exquisite sensitivity to TNFα treatment and, conversely, TNFα pathway inhibition via inhibition of its downstream effector MAP4K4 partially reversed the growth defect of JMJD1C-depleted AR-negative prostate cancer cells. Given the deleterious systemic side effects of TNFα therapy in humans and the viability of JMJD1C-knockout mice, the identification of JMJD1C inhibition as a specific vulnerability in AR-negative prostate cancer may provide an alternative drug target for prostate cancer patients progressing on AR inhibitor therapy.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/genética , Oxidorreductasas N-Desmetilantes/genética , Neoplasias de la Próstata/genética , Receptores Androgénicos/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Bases de Datos Genéticas , Histona Demetilasas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Masculino , Oxidorreductasas N-Desmetilantes/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Próstata/patología , Proteínas Serina-Treonina Quinasas/genética , Receptores Androgénicos/genética , Transducción de Señal/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34253611

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory condition driven by diverse genetic and nongenetic programs that converge to disrupt immune homeostasis in the intestine. We have reported that, in murine intestinal epithelium with telomere dysfunction, DNA damage-induced activation of ataxia-telangiectasia mutated (ATM) results in ATM-mediated phosphorylation and activation of the YAP1 transcriptional coactivator, which in turn up-regulates pro-IL-18, a pivotal immune regulator in IBD pathogenesis. Moreover, individuals with germline defects in telomere maintenance genes experience increased occurrence of intestinal inflammation and show activation of the ATM/YAP1/pro-IL-18 pathway in the intestinal epithelium. Here, we sought to determine the relevance of the ATM/YAP1/pro-IL-18 pathway as a potential driver of IBD, particularly older-onset IBD. Analysis of intestinal biopsy specimens and organoids from older-onset IBD patients documented the presence of telomere dysfunction and activation of the ATM/YAP1/precursor of interleukin 18 (pro-IL-18) pathway in the intestinal epithelium. Employing intestinal organoids from healthy individuals, we demonstrated that experimental induction of telomere dysfunction activates this inflammatory pathway. In organoid models from ulcerative colitis and Crohn's disease patients, pharmacological interventions of telomerase reactivation, suppression of DNA damage signaling, or YAP1 inhibition reduced pro-IL-18 production. Together, these findings support a model wherein telomere dysfunction in the intestinal epithelium can initiate the inflammatory process in IBD, pointing to therapeutic interventions for this disease.


Asunto(s)
Enfermedades Inflamatorias del Intestino/inmunología , Telómero/inmunología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/inmunología , Humanos , Enfermedades Inflamatorias del Intestino/genética , Interleucina-18/genética , Interleucina-18/inmunología , Mucosa Intestinal/inmunología , Ratones , Telomerasa/genética , Telomerasa/inmunología , Telómero/genética , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/inmunología
8.
Nature ; 543(7647): 728-732, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28321130

RESUMEN

A significant fraction of patients with advanced prostate cancer treated with androgen deprivation therapy experience relapse with relentless progression to lethal metastatic castration-resistant prostate cancer (mCRPC). Immune checkpoint blockade using antibodies against cytotoxic-T-lymphocyte-associated protein 4 (CTLA4) or programmed cell death 1/programmed cell death 1 ligand 1 (PD1/PD-L1) generates durable therapeutic responses in a significant subset of patients across a variety of cancer types. However, mCRPC showed overwhelming de novo resistance to immune checkpoint blockade, motivating a search for targeted therapies that overcome this resistance. Myeloid-derived suppressor cells (MDSCs) are known to play important roles in tumour immune evasion. The abundance of circulating MDSCs correlates with prostate-specific antigen levels and metastasis in patients with prostate cancer. Mouse models of prostate cancer show that MDSCs (CD11b+Gr1+) promote tumour initiation and progression. These observations prompted us to hypothesize that robust immunotherapy responses in mCRPC may be elicited by the combined actions of immune checkpoint blockade agents together with targeted agents that neutralize MDSCs yet preserve T-cell function. Here we develop a novel chimaeric mouse model of mCRPC to efficiently test combination therapies in an autochthonous setting. Combination of anti-CTLA4 and anti-PD1 engendered only modest efficacy. Targeted therapy against mCRPC-infiltrating MDSCs, using multikinase inhibitors such as cabozantinib and BEZ235, also showed minimal anti-tumour activities. Strikingly, primary and metastatic CRPC showed robust synergistic responses when immune checkpoint blockade was combined with MDSC-targeted therapy. Mechanistically, combination therapy efficacy stemmed from the upregulation of interleukin-1 receptor antagonist and suppression of MDSC-promoting cytokines secreted by prostate cancer cells. These observations illuminate a clinical path hypothesis for combining immune checkpoint blockade with MDSC-targeted therapies in the treatment of mCRPC.


Asunto(s)
Inmunoterapia/métodos , Neoplasias de la Próstata Resistentes a la Castración/inmunología , Neoplasias de la Próstata Resistentes a la Castración/terapia , Anilidas/farmacología , Anilidas/uso terapéutico , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Quimera , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Femenino , Humanos , Imidazoles/farmacología , Imidazoles/uso terapéutico , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Ratones , Terapia Molecular Dirigida , Células Supresoras de Origen Mieloide/citología , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Neoplasias de la Próstata Resistentes a la Castración/patología , Piridinas/farmacología , Piridinas/uso terapéutico , Quinolinas/farmacología , Quinolinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
9.
Nature ; 542(7642): 484-488, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28166537

RESUMEN

Synthetic lethality and collateral lethality are two well-validated conceptual strategies for identifying therapeutic targets in cancers with tumour-suppressor gene deletions. Here, we explore an approach to identify potential synthetic-lethal interactions by screening mutually exclusive deletion patterns in cancer genomes. We sought to identify 'synthetic-essential' genes: those that are occasionally deleted in some cancers but are almost always retained in the context of a specific tumour-suppressor deficiency. We also posited that such synthetic-essential genes would be therapeutic targets in cancers that harbour specific tumour-suppressor deficiencies. In addition to known synthetic-lethal interactions, this approach uncovered the chromatin helicase DNA-binding factor CHD1 as a putative synthetic-essential gene in PTEN-deficient cancers. In PTEN-deficient prostate and breast cancers, CHD1 depletion profoundly and specifically suppressed cell proliferation, cell survival and tumorigenic potential. Mechanistically, functional PTEN stimulates the GSK3ß-mediated phosphorylation of CHD1 degron domains, which promotes CHD1 degradation via the ß-TrCP-mediated ubiquitination-proteasome pathway. Conversely, PTEN deficiency results in stabilization of CHD1, which in turn engages the trimethyl lysine-4 histone H3 modification to activate transcription of the pro-tumorigenic TNF-NF-κB gene network. This study identifies a novel PTEN pathway in cancer and provides a framework for the discovery of 'trackable' targets in cancers that harbour specific tumour-suppressor deficiencies.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Genes Esenciales/genética , Neoplasias/metabolismo , Neoplasias/patología , Fosfohidrolasa PTEN/deficiencia , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina/genética , ADN Helicasas/química , ADN Helicasas/deficiencia , ADN Helicasas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Metilación , Terapia Molecular Dirigida , FN-kappa B/metabolismo , Neoplasias/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosforilación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Proteolisis , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitinación , Proteínas con Repetición de beta-Transducina/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(43): E9086-E9095, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29073105

RESUMEN

An integrated genomic and functional analysis to elucidate DNA damage signaling factors promoting self-renewal of glioma stem cells (GSCs) identified proliferating cell nuclear antigen (PCNA)-associated factor (PAF) up-regulation in glioblastoma. PAF is preferentially overexpressed in GSCs. Its depletion impairs maintenance of self-renewal without promoting differentiation and reduces tumor-initiating cell frequency. Combined transcriptomic and metabolomic analyses revealed that PAF supports GSC maintenance, in part, by influencing DNA replication and pyrimidine metabolism pathways. PAF interacts with PCNA and regulates PCNA-associated DNA translesion synthesis (TLS); consequently, PAF depletion in combination with radiation generated fewer tumorspheres compared with radiation alone. Correspondingly, pharmacological impairment of DNA replication and TLS phenocopied the effect of PAF depletion in compromising GSC self-renewal and radioresistance, providing preclinical proof of principle that combined TLS inhibition and radiation therapy may be a viable therapeutic option in the treatment of glioblastoma multiforme (GBM).


Asunto(s)
Neoplasias Encefálicas/radioterapia , Proteínas Portadoras/genética , Glioblastoma/radioterapia , Células Madre Neoplásicas/efectos de la radiación , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Proteínas Portadoras/metabolismo , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Glioblastoma/genética , Glioblastoma/mortalidad , Glioblastoma/patología , Proteínas Fluorescentes Verdes/genética , Humanos , Ratones SCID , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Pirimidinas/biosíntesis , Tolerancia a Radiación , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Dev Cell ; 59(11): 1475-1486.e5, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38574731

RESUMEN

Telomere dynamics are linked to aging hallmarks, and age-associated telomere loss fuels the development of epithelial cancers. In Apc-mutant mice, the onset of DNA damage associated with telomere dysfunction has been shown to accelerate adenoma initiation via unknown mechanisms. Here, we observed that Apc-mutant mice engineered to experience telomere dysfunction show accelerated adenoma formation resulting from augmented cell competition and clonal expansion. Mechanistically, telomere dysfunction induces the repression of EZH2, resulting in the derepression of Wnt antagonists, which causes the differentiation of adjacent stem cells and a relative growth advantage to Apc-deficient telomere dysfunctional cells. Correspondingly, in this mouse model, GSK3ß inhibition countered the actions of Wnt antagonists on intestinal stem cells, resulting in impaired adenoma formation of telomere dysfunctional Apc-mutant cells. Thus, telomere dysfunction contributes to cancer initiation through altered stem cell dynamics, identifying an interception strategy for human APC-mutant cancers with shortened telomeres.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon , Células Madre , Telómero , Animales , Ratones , Telómero/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Células Madre/metabolismo , Células Madre/patología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Adenoma/patología , Adenoma/genética , Adenoma/metabolismo , Intestinos/patología , Diferenciación Celular , Humanos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Daño del ADN , Ratones Endogámicos C57BL , Vía de Señalización Wnt
13.
Cancer Discov ; 13(12): 2652-2673, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37768068

RESUMEN

Oncogenic KRAS (KRAS*) contributes to many cancer hallmarks. In colorectal cancer, KRAS* suppresses antitumor immunity to promote tumor invasion and metastasis. Here, we uncovered that KRAS* transforms the phenotype of carcinoma-associated fibroblasts (CAF) into lipid-laden CAFs, promoting angiogenesis and tumor progression. Mechanistically, KRAS* activates the transcription factor CP2 (TFCP2) that upregulates the expression of the proadipogenic factors BMP4 and WNT5B, triggering the transformation of CAFs into lipid-rich CAFs. These lipid-rich CAFs, in turn, produce VEGFA to spur angiogenesis. In KRAS*-driven colorectal cancer mouse models, genetic or pharmacologic neutralization of TFCP2 reduced lipid-rich CAFs, lessened tumor angiogenesis, and improved overall survival. Correspondingly, in human colorectal cancer, lipid-rich CAF and TFCP2 signatures correlate with worse prognosis. This work unveils a new role for KRAS* in transforming CAFs, driving tumor angiogenesis and disease progression, providing an actionable therapeutic intervention for KRAS*-driven colorectal cancer. SIGNIFICANCE: This study identified a molecular mechanism contributing to KRAS*-driven colorectal cancer progression via fibroblast transformation in the tumor microenvironment to produce VEGFA driving tumor angiogenesis. In preclinical models, targeting the KRAS*-TFCP2-VEGFA axis impaired tumor progression, revealing a potential novel therapeutic option for patients with KRAS*-driven colorectal cancer. This article is featured in Selected Articles from This Issue, p. 2489.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias del Colon , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Ratones , Angiogénesis , Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias Colorrectales/metabolismo , Proteínas de Unión al ADN/metabolismo , Fibroblastos/metabolismo , Lípidos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factores de Transcripción/metabolismo , Microambiente Tumoral/genética
14.
Nat Cancer ; 4(1): 62-80, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36585453

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is considered non-immunogenic, with trials showing its recalcitrance to PD1 and CTLA4 immune checkpoint therapies (ICTs). Here, we sought to systematically characterize the mechanisms underlying de novo ICT resistance and to identify effective therapeutic options for PDAC. We report that agonist 41BB and antagonist LAG3 ICT alone and in combination, increased survival and antitumor immunity, characterized by modulating T cell subsets with antitumor activity, increased T cell clonality and diversification, decreased immunosuppressive myeloid cells and increased antigen presentation/decreased immunosuppressive capability of myeloid cells. Translational analyses confirmed the expression of 41BB and LAG3 in human PDAC. Since single and dual ICTs were not curative, T cell-activating ICTs were combined with a CXCR1/2 inhibitor targeting immunosuppressive myeloid cells. Triple therapy resulted in durable complete responses. Given similar profiles in human PDAC and the availability of these agents for clinical testing, our findings provide a testable hypothesis for this lethal disease.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Células Mieloides/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología , Receptores de Interleucina-8A/inmunología , Neoplasias Pancreáticas
15.
Cancer Discov ; 12(7): 1702-1717, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35537038

RESUMEN

Inactivation of adenomatous polyposis coli (APC) is common across many cancer types and serves as a critical initiating event in most sporadic colorectal cancers. APC deficiency activates WNT signaling, which remains an elusive target for cancer therapy, prompting us to apply the synthetic essentiality framework to identify druggable vulnerabilities for APC-deficient cancers. Tryptophan 2,3-dioxygenase 2 (TDO2) was identified as a synthetic essential effector of APC-deficient colorectal cancer. Mechanistically, APC deficiency results in the TCF4/ß-catenin-mediated upregulation of TDO2 gene transcription. TDO2 in turn activates the Kyn-AhR pathway, which increases glycolysis to drive anabolic cancer cell growth and CXCL5 secretion to recruit macrophages into the tumor microenvironment. Therapeutically, APC-deficient colorectal cancer models were susceptible to TDO2 depletion or pharmacologic inhibition, which impaired cancer cell proliferation and enhanced antitumor immune profiles. Thus, APC deficiency activates a TCF4-TDO2-AhR-CXCL5 circuit that affects multiple cancer hallmarks via autonomous and nonautonomous mechanisms and illuminates a genotype-specific vulnerability in colorectal cancer. SIGNIFICANCE: This study identifies critical effectors in the maintenance of APC-deficient colorectal cancer and demonstrates the relationship between APC/WNT pathway and kynurenine pathway signaling. It further determines the tumor-associated macrophage biology in APC-deficient colorectal cancer, informing genotype-specific therapeutic targets and the use of TDO2 inhibitors. This article is highlighted in the In This Issue feature, p. 1599.


Asunto(s)
Poliposis Adenomatosa del Colon , Neoplasias Colorrectales , Dioxigenasas , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/metabolismo , Poliposis Adenomatosa del Colon/patología , Neoplasias Colorrectales/metabolismo , Dioxigenasas/metabolismo , Humanos , Triptófano , Triptófano Oxigenasa/metabolismo , Microambiente Tumoral , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
16.
Cancer Discov ; 10(3): 371-381, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31919052

RESUMEN

Glioblastoma (GBM) is a lethal brain tumor containing a subpopulation of glioma stem cells (GSC). Pan-cancer analyses have revealed that stemness of cancer cells correlates positively with immunosuppressive pathways in many solid tumors, including GBM, prompting us to conduct a gain-of-function screen of epigenetic regulators that may influence GSC self-renewal and tumor immunity. The circadian regulator CLOCK emerged as a top hit in enhancing stem-cell self-renewal, which was amplified in about 5% of human GBM cases. CLOCK and its heterodimeric partner BMAL1 enhanced GSC self-renewal and triggered protumor immunity via transcriptional upregulation of OLFML3, a novel chemokine recruiting immune-suppressive microglia into the tumor microenvironment. In GBM models, CLOCK or OLFML3 depletion reduced intratumoral microglia density and extended overall survival. We conclude that the CLOCK-BMAL1 complex contributes to key GBM hallmarks of GSC maintenance and immunosuppression and, together with its downstream target OLFML3, represents new therapeutic targets for this disease. SIGNIFICANCE: Circadian regulator CLOCK drives GSC self-renewal and metabolism and promotes microglia infiltration through direct regulation of a novel microglia-attracting chemokine, OLFML3. CLOCK and/or OLFML3 may represent novel therapeutic targets for GBM.This article is highlighted in the In This Issue feature, p. 327.


Asunto(s)
Factores de Transcripción ARNTL/genética , Proteínas CLOCK/genética , Glioblastoma/genética , Glicoproteínas/genética , Animales , Línea Celular Tumoral , Autorrenovación de las Células/genética , Autorrenovación de las Células/inmunología , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/inmunología , Glioblastoma/patología , Glioblastoma/terapia , Xenoinjertos , Humanos , Inmunidad Celular/inmunología , Ratones , Microglía/inmunología , Microglía/metabolismo , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
17.
Cancer Discov ; 10(7): 1058-1077, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32341020

RESUMEN

Oncogenic KRAS (KRAS*) is a key tumor maintenance gene in pancreatic ductal adenocarcinoma (PDAC), motivating pharmacologic targeting of KRAS* and its effectors. Here, we explored mechanisms involving the tumor microenvironment (TME) as a potential basis for resistance to targeting KRAS*. Using the inducible Kras G12D;Trp53 -/- PDAC mouse model, gain-of-function screens of epigenetic regulators identified HDAC5 as the top hit enabling KRAS* independent tumor growth. HDAC5-driven escaper tumors showed a prominent neutrophil-to-macrophage switch relative to KRAS*-driven tumors. Mechanistically, HDAC5 represses Socs3, a negative regulator of chemokine CCL2, resulting in increased CCL2, which recruits CCR2+ macrophages. Correspondingly, enforced Ccl2 promotes macrophage recruitment into the TME and enables tumor recurrence following KRAS* extinction. These tumor-associated macrophages in turn provide cancer cells with trophic support including TGFß to enable KRAS* bypass in a SMAD4-dependent manner. Our work uncovers a KRAS* resistance mechanism involving immune cell remodeling of the PDAC TME. SIGNIFICANCE: Although KRAS* is required for PDAC tumor maintenance, tumors can recur following KRAS* extinction. The capacity of PDAC cancer cells to alter the TME myeloid cell composition to support KRAS*-independent tumor growth illuminates novel therapeutic targets that may enhance the effectiveness of therapies targeting KRAS* and its pathway components.See related commentary by Carr and Fernandez-Zapico, p. 910.This article is highlighted in the In This Issue feature, p. 890.


Asunto(s)
Oncogenes/fisiología , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Humanos , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Neoplasias Pancreáticas
18.
Cancer Discov ; 10(9): 1374-1387, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32385075

RESUMEN

Genetic inactivation of PTEN is common in prostate cancer and correlates with poorer prognosis. We previously identified CHD1 as an essential gene in PTEN-deficient cancer cells. Here, we sought definitive in vivo genetic evidence for, and mechanistic understanding of, the essential role of CHD1 in PTEN-deficient prostate cancer. In Pten and Pten/Smad4 genetically engineered mouse models, prostate-specific deletion of Chd1 resulted in markedly delayed tumor progression and prolonged survival. Chd1 deletion was associated with profound tumor microenvironment (TME) remodeling characterized by reduced myeloid-derived suppressor cells (MDSC) and increased CD8+ T cells. Further analysis identified IL6 as a key transcriptional target of CHD1, which plays a major role in recruitment of immunosuppressive MDSCs. Given the prominent role of MDSCs in suppressing responsiveness to immune checkpoint inhibitors (ICI), our genetic and tumor biological findings support combined testing of anti-IL6 and ICI therapies, specifically in PTEN-deficient prostate cancer. SIGNIFICANCE: We demonstrate a critical role of CHD1 in MDSC recruitment and discover CHD1/IL6 as a major regulator of the immunosuppressive TME of PTEN-deficient prostate cancer. Pharmacologic inhibition of IL6 in combination with immune checkpoint blockade elicits robust antitumor responses in prostate cancer.This article is highlighted in the In This Issue feature, p. 1241.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/genética , Escape del Tumor/genética , Microambiente Tumoral/inmunología , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Masculino , Ratones Transgénicos , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/patología , Proteína Smad4/genética , Microambiente Tumoral/genética
19.
Cancer Discov ; 10(4): 608-625, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32046984

RESUMEN

A hallmark of pancreatic ductal adenocarcinoma (PDAC) is an exuberant stroma comprised of diverse cell types that enable or suppress tumor progression. Here, we explored the role of oncogenic KRAS in protumorigenic signaling interactions between cancer cells and host cells. We show that KRAS mutation (KRAS*) drives cell-autonomous expression of type I cytokine receptor complexes (IL2rγ-IL4rα and IL2rγ-IL13rα1) in cancer cells that in turn are capable of receiving cytokine growth signals (IL4 or IL13) provided by invading Th2 cells in the microenvironment. Early neoplastic lesions show close proximity of cancer cells harboring KRAS* and Th2 cells producing IL4 and IL13. Activated IL2rγ-IL4rα and IL2rγ-IL13rα1 receptors signal primarily via JAK1-STAT6. Integrated transcriptomic, chromatin occupancy, and metabolomic studies identified MYC as a direct target of activated STAT6 and that MYC drives glycolysis. Thus, paracrine signaling in the tumor microenvironment plays a key role in the KRAS*-driven metabolic reprogramming of PDAC. SIGNIFICANCE: Type II cytokines, secreted by Th2 cells in the tumor microenvironment, can stimulate cancer cell-intrinsic MYC transcriptional upregulation to drive glycolysis. This KRAS*-driven heterotypic signaling circuit in the early and advanced tumor microenvironment enables cooperative protumorigenic interactions, providing candidate therapeutic targets in the KRAS* pathway for this intractable disease.


Asunto(s)
Citocinas/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Reprogramación Celular/genética , Humanos , Ratones , Oncogenes , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transfección , Microambiente Tumoral
20.
Nat Commun ; 11(1): 4766, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958778

RESUMEN

Germline telomere maintenance defects are associated with an increased incidence of inflammatory diseases in humans, yet whether and how telomere dysfunction causes inflammation are not known. Here, we show that telomere dysfunction drives pATM/c-ABL-mediated activation of the YAP1 transcription factor, up-regulating the major pro-inflammatory factor, pro-IL-18. The colonic microbiome stimulates cytosolic receptors activating caspase-1 which cleaves pro-IL-18 into mature IL-18, leading to recruitment of interferon (IFN)-γ-secreting T cells and intestinal inflammation. Correspondingly, patients with germline telomere maintenance defects exhibit DNA damage (γH2AX) signaling together with elevated YAP1 and IL-18 expression. In mice with telomere dysfunction, telomerase reactivation in the intestinal epithelium or pharmacological inhibition of ATM, YAP1, or caspase-1 as well as antibiotic treatment, dramatically reduces IL-18 and intestinal inflammation. Thus, telomere dysfunction-induced activation of the ATM-YAP1-pro-IL-18 pathway in epithelium is a key instigator of tissue inflammation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Inflamación/patología , Telómero/patología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antibacterianos/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Caspasa 1/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Niño , Colon/metabolismo , Colon/microbiología , Colon/patología , Enfermedades Gastrointestinales/patología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/microbiología , Interleucina-18/genética , Interleucina-18/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Mutantes , Fosforilación , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Transducción de Señal , Telomerasa/genética , Telomerasa/metabolismo , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA