Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
NMR Biomed ; 36(1): e4781, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35654608

RESUMEN

Evidence mounts that the steady-state cellular water efflux (unidirectional) first-order rate constant (kio [s-1 ]) magnitude reflects the ongoing, cellular metabolic rate of the cytolemmal Na+ , K+ -ATPase (NKA), c MRNKA (pmol [ATP consumed by NKA]/s/cell), perhaps biology's most vital enzyme. Optimal 1 H2 O MR kio determinations require paramagnetic contrast agents (CAs) in model systems. However, results suggest that the homeostatic metabolic kio biomarker magnitude in vivo is often too large to be reached with allowable or possible CA living tissue distributions. Thus, we seek a noninvasive (CA-free) method to determine kio in vivo. Because membrane water permeability has long been considered important in tissue water diffusion, we turn to the well-known diffusion-weighted MRI (DWI) modality. To analyze the diffusion tensor magnitude, we use a parsimoniously primitive model featuring Monte Carlo simulations of water diffusion in virtual ensembles comprising water-filled and -immersed randomly sized/shaped contracted Voronoi cells. We find this requires two additional, cytometric properties: the mean cell volume (V [pL]) and the cell number density (ρ [cells/µL]), important biomarkers in their own right. We call this approach metabolic activity diffusion imaging (MADI). We simulate water molecule displacements and transverse MR signal decays covering the entirety of b-space from pure water (ρ = V = 0; kio undefined; diffusion coefficient, D0 ) to zero diffusion. The MADI model confirms that, in compartmented spaces with semipermeable boundaries, diffusion cannot be described as Gaussian: the nanoscopic D (Dn ) is diffusion time-dependent, a manifestation of the "diffusion dispersion". When the "well-mixed" (steady-state) condition is reached, diffusion becomes limited, mainly by the probabilities of (1) encountering (ρ, V), and (2) permeating (kio ) cytoplasmic membranes, and less so by Dn magnitudes. Importantly, for spaces with large area/volume (A/V; claustrophobia) ratios, this can happen in less than a millisecond. The model matches literature experimental data well, with implications for DWI interpretations.


Asunto(s)
Diagnóstico por Imagen , Agua , Activación Metabólica
2.
NMR Biomed ; 36(1): e4782, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35654761

RESUMEN

We introduce a new 1 H2 O magnetic resonance approach: metabolic activity diffusion imaging (MADI). Numerical diffusion-weighted imaging decay simulations characterized by the mean cellular water efflux (unidirectional) rate constant (kio ), mean cell volume (V), and cell number density (ρ) are produced from Monte Carlo random walks in virtual stochastically sized/shaped cell ensembles. Because of active steady-state trans-membrane water cycling (AWC), kio reflects the cytolemmal Na+ , K+ ATPase (NKA) homeostatic cellular metabolic rate (c MRNKA ). A digital 3D "library" contains thousands of simulated single diffusion-encoded (SDE) decays. Library entries match well with disparate, animal, and human experimental SDE decays. The V and ρ values are consistent with estimates from pertinent in vitro cytometric and ex vivo histopathological literature: in vivo V and ρ values were previously unavailable. The library allows noniterative pixel-by-pixel experimental SDE decay library matchings that can be used to advantage. They yield proof-of-concept MADI parametric mappings of the awake, resting human brain. These reflect the tissue morphology seen in conventional MRI. While V is larger in gray matter (GM) than in white matter (WM), the reverse is true for ρ. Many brain structures have kio values too large for current, invasive methods. For example, the median WM kio is 22s-1 ; likely reflecting mostly exchange within myelin. The kio •V product map displays brain tissue c MRNKA variation. The GM activity correlates, quantitatively and qualitatively, with the analogous resting-state brain 18 FDG-PET tissue glucose consumption rate (t MRglucose ) map; but noninvasively, with higher spatial resolution, and no pharmacokinetic requirement. The cortex, thalamus, putamen, and caudate exhibit elevated metabolic activity. MADI accuracy and precision are assessed. The results are contextualized with literature overall homeostatic brain glucose consumption and ATP production/consumption measures. The MADI/PET results suggest different GM and WM metabolic pathways. Preliminary human prostate results are also presented.


Asunto(s)
Descanso , ATPasa Intercambiadora de Sodio-Potasio , Humanos , Mapeo Encefálico , Glucosa , Agua
3.
J Magn Reson Imaging ; 52(3): 850-863, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32167637

RESUMEN

BACKGROUND: The shutter-speed model dynamic contrast-enhanced (SSM-DCE) MRI pharmacokinetic analysis adds a metabolic dimension to DCE-MRI. This is of particular interest in cancers, since abnormal metabolic activity might happen. PURPOSE: To develop a DCE-MRI SSM analysis framework for glioblastoma multiforme (GBM) cases considering the heterogeneous tissue found in GBM. STUDY TYPE: Prospective. SUBJECTS: Ten GBM patients. FIELD STRENGTH/SEQUENCE: 3T MRI with DCE-MRI. ASSESSMENTS: The corrected Akaike information criterion (AICc ) was used to automatically separate DCE-MRI data into proper SSM versions based on the contrast agent (CA) extravasation in each pixel. The supra-intensive parameters, including the vascular water efflux rate constant (kbo ), the cellular efflux rate constant (kio ), and the CA vascular efflux rate constant (kpe ), together with intravascular and extravascular-extracellular water mole fractions (pb and po , respectively) were determined. Further error analyses were also performed to eliminate unreliable estimations on kio and kbo . STATISTICAL TESTS: Student's t-test. RESULTS: For tumor pixels of all subjects, 88% show lower AICc with SSM than with the Tofts model. Compared to normal-appearing white matter (NAWM), tumor tissue showed significantly larger pb (0.045 vs. 0.011, P < 0.001) and higher kpe (3.0 × 10-2 s-1 vs. 6.1 × 10-4 s-1 , P < 0.001). In the contrast, significant kbo reduction was observed from NAWM to GBM tumor tissue (2.8 s-1 vs. 1.0 s-1 , P < 0.001). In addition, kbo is four orders and two orders of magnitude greater than kpe in the NAWM and GBM tumor, respectively. These results indicate that CA and water molecule have different transmembrane pathways. The mean tumor kio of all subjects was 0.57 s-1 . DATA CONCLUSION: We demonstrate the feasibility of applying SSM models in GBM cases. Within the proposed SSM analysis framework, kio and kbo could be estimated, which might be useful biomarkers for GBM diagnosis and survival prediction in future. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 1 J. Magn. Reson. Imaging 2020;52:850-863.


Asunto(s)
Glioblastoma , Medios de Contraste , Glioblastoma/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Estudios Prospectivos
4.
Magn Reson Med ; 82(1): 411-424, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30903632

RESUMEN

PURPOSE: The desire to quantitatively discriminate the extra- and intracellular tissue 1 H2 O MR signals has gone hand-in-hand with the continual, historic increase in MRI instrument magnetic field strength [B0 ]. However, recent studies have indicated extremely valuable, novel metabolic information can be readily accessible at ultra-low B0 . The two signals can be distinguished, and the homeostatic activity of the cell membrane sodium/potassium pump (Na+ ,K+ ,ATPase) detected. The mechanism allowing 1 H2 O MRI to do this is the newly discovered active transmembrane water cycling (AWC) phenomenon, which we found using paramagnetic extracellular contrast agents at clinical B0 values. AWC is important because Na+ ,K+ ,ATPase can be considered biology's most vital enzyme, and its in vivo steady-state activity has not before been measurable, let alone amenable to mapping with high spatial resolution. Recent reports indicate AWC correlates with neuronal firing rate, with malignant tumor metastatic potential, and inversely with cellular reducing equivalent fraction. We wish to systematize the ways AWC can be precisely measured. METHODS: We present a theoretical longitudinal relaxation analysis of considerable scope: it spans the low- and high-field situations. RESULTS: We show the NMR shutter-speed organizing principle is pivotal in understanding how trans-membrane steady-state water exchange kinetics are manifest throughout the range. Our findings illuminate an aspect, apparent population inversion, which is crucial in understanding ultra-low field results. CONCLUSIONS: Without an appreciation of apparent population inversion, significant misinterpretations of future data are likely. These could have unfortunate diagnostic consequences.


Asunto(s)
Membrana Celular/química , Espectroscopía de Resonancia Magnética/métodos , Agua/química , Agua/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Procesamiento de Señales Asistido por Computador , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
5.
Magn Reson Med ; 81(2): 1280-1295, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30194797

RESUMEN

PURPOSE: fMRI is widely used to study brain activity. Unfortunately, conventional fMRI methods assess neuronal activity only indirectly, through hemodynamic coupling. Here, we show that active, steady-state transmembrane water cycling (AWC) could serve as a basis for a potential fMRI mechanism for direct neuronal activity detection. METHODS: AWC and neuronal actitivity in rat organotypic cortical cultures were simultaneously measured with a hybrid MR-fluorescence system. Perfusion with a paramagnetic MRI contrast agent, Gadoteridol, allows NMR determination of the kinetics of transcytolemmal water exchange. Changes in intracellular calcium concentration, [Cai2+ ] were used as a proxy of neuronal activity and were monitored by fluorescence imaging. RESULTS: When we alter neuronal activity by titrating with extracellular [K+ ] near the normal value, we see an AWC response resembling Na+ -K+ -ATPase (NKA) Michaelis-Menten behavior. When we treat with the voltage-gated sodium channel inhibitor, or with an excitatory postsynaptic inhibitor cocktail, we see AWC decrease by up to 71%. AWC was found also to be positively correlated with the basal level of spontaneous activity, which varies in different cultures. CONCLUSIONS: These results suggest that AWC is associated with neuronal activity and NKA activity is a major contributor in coupling AWC to neuronal activity. Although AWC comprises steady-state, homeostatic transmembrane water exchange, our analysis also yields a simultaneous measure of the average cell volume, which reports any slower net transmembrane water transport.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Compuestos Heterocíclicos/química , Neuronas/química , Compuestos Organometálicos/química , Agua/química , Animales , Calcio/química , Células Cultivadas , Medios de Contraste , Gadolinio/química , Humanos , Ácido Kaínico/química , Cinética , Imagen por Resonancia Magnética , Picrotoxina/química , Ratas , Ratas Sprague-Dawley , Procesamiento de Señales Asistido por Computador , ATPasa Intercambiadora de Sodio-Potasio/química , Corteza Somatosensorial/diagnóstico por imagen
6.
Magn Reson Med ; 79(6): 3207-3217, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29106751

RESUMEN

PURPOSE: Water homeostasis and transport play important roles in brain function (e.g., ion homeostasis, neuronal excitability, cell volume regulation, etc.). However, specific mechanisms of water transport across cell membranes in neuronal tissue have not been completely elaborated. METHODS: The kinetics of transcytolemmal water exchange were measured in neuronal tissue using simultaneous, real-time fluorescence and nuclear magnetic resonance (NMR) measurements of perfused, active brain organotypic cortical cultures. Perfusion with a paramagnetic MRI contrast agent, gadoteridol, allows NMR determination of the unidirectional rate constant for steady-state cellular water efflux (kio ), and the mole fraction of intracellular water ( pi), related to the average cell volume (V). Changes in intracellular calcium concentration [Cai2+] were used as a proxy for neuronal activity and were monitored by fluorescence imaging. RESULTS: The kio value, averaged over all cultures (N = 99) at baseline, was 2.02 (±1.72) s-1 , indicating that on average, the equivalent of the entire intracellular water volume turns over twice each second. To probe possible molecular pathways, the specific Na+ -K+ -ATPase (NKA) inhibitor, ouabain (1 mM), was transiently introduced into the perfusate. This caused significant transient changes (N = 8): [Cai2+] rose ∼250%, V rose ∼89%, and kio fell ∼45%, with a metabolically active kio contribution probably eliminated by ouabain saturation. CONCLUSIONS: These results suggest that transcytolemmal water exchange in neuronal tissue involves mechanisms affected by NKA activity as well as passive pathways. The active pathway may account for half of the basal homeostatic water flux. Magn Reson Med 79:3207-3217, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Agua Corporal/metabolismo , Membrana Celular/metabolismo , Corteza Cerebral/citología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Transporte Biológico Activo/efectos de los fármacos , Transporte Biológico Activo/fisiología , Células Cultivadas , Corteza Cerebral/metabolismo , Modelos Biológicos , Neuronas/metabolismo , Ouabaína/farmacología , Ratas , Ratas Sprague-Dawley
7.
Magn Reson Med ; 77(5): 2015-2027, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27297589

RESUMEN

PURPOSE: To characterize transverse relaxation in oxygenated whole blood with extracellular gadolinium-based contrast reagents by experiment and simulation. METHODS: Experimental measurements of transverse 1 H2 O relaxation from oxygenated whole human blood and plasma were made at 1.5 and 3.0 Tesla. Spin-echo refocused and free-induction decays are reported for blood and plasma samples containing four different contrast reagents (gadobenate, gadoteridol, gadofosveset, and gadobutrol), each present at concentrations ranging from 1 to 18 mM (i.e., mmol (contrast reagent (CR))/L (blood)). Monte Carlo simulations were conducted to ascertain the molecular mechanisms underlying relaxation. These consisted of random walks of water molecules in a large ensemble of randomly oriented erythrocytes. Bulk magnetic susceptibility (BMS) differences between the extra- and intracellular compartments were taken into account. All key parameters for these simulations were taken from independent published measurements: they include no adjustable variables. RESULTS: Transverse relaxation is much more rapid in whole blood than in plasma, and the large majority of this dephasing is reversible by spin echo. Agreement between the experimental data and simulated results is remarkably good. CONCLUSION: Extracellular field inhomogeneities alone make very small contributions, whereas the orientation-dependent BMS intracellular resonance frequencies lead to the majority of transverse dephasing. Equilibrium exchange of water molecules between the intra- and extracellular compartments plays a significant role in transverse dephasing. Magn Reson Med 77:2015-2027, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Análisis Químico de la Sangre , Medios de Contraste/química , Gadolinio/química , Oxígeno/química , Agua/química , Simulación por Computador , Compuestos Heterocíclicos/química , Humanos , Concentración de Iones de Hidrógeno , Magnetismo , Meglumina/análogos & derivados , Meglumina/química , Método de Montecarlo , Compuestos Organometálicos/química , Plasma/química
8.
MAGMA ; 29(3): 617-39, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27194154

RESUMEN

An initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm. Twelve neuroscience opportunities are presented as well as an analysis of the biophysical and physiological effects to be investigated before exposing human subjects to the high fields of 14 T and beyond.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Anisotropía , Axones/patología , Encéfalo/patología , Mapeo Encefálico/métodos , Simulación por Computador , Metabolismo Energético , Glucosa/análisis , Calor , Humanos , Movimiento (Física) , Neuronas/patología , Permeabilidad , Reproducibilidad de los Resultados , ATPasa Intercambiadora de Sodio-Potasio/química , Espectrofotometría , Imagen de Cuerpo Entero
9.
NMR Biomed ; 28(6): 607-23, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25914365

RESUMEN

Shutter-speed analysis of dynamic-contrast-agent (CA)-enhanced normal, multiple sclerosis (MS), and glioblastoma (GBM) human brain data gives the mean capillary water molecule lifetime (τ(b)) and blood volume fraction (v(b); capillary density-volume product (ρ(†)V)) in a high-resolution (1)H2O MRI voxel (40 µL) or ROI. The equilibrium water extravasation rate constant, k(po) (τ(b)(-1)), averages 3.2 and 2.9 s(-1) in resting-state normal white matter (NWM) and gray matter (NGM), respectively (n = 6). The results (italicized) lead to three major conclusions. (A) k(po) differences are dominated by capillary water permeability (P(W)(†)), not size, differences. NWM and NGM voxel k(po) and v(b) values are independent. Quantitative analyses of concomitant population-averaged k(po), v(b) variations in normal and normal-appearing MS brain ROIs confirm P(W)(†) dominance. (B) P(W)(†) is dominated (>95%) by a trans(endothelial)cellular pathway, not the P(CA)(†) paracellular route. In MS lesions and GBM tumors, P(CA)(†) increases but P(W)(†) decreases. (C) k(po) tracks steady-state ATP production/consumption flux per capillary. In normal, MS, and GBM brain, regional k(po) correlates with literature MRSI ATP (positively) and Na(+) (negatively) tissue concentrations. This suggests that the P(W)(†) pathway is metabolically active. Excellent agreement of the relative NGM/NWM k(po)v(b) product ratio with the literature (31)PMRSI-MT CMR(oxphos) ratio confirms the flux property. We have previously shown that the cellular water molecule efflux rate constant (k(io)) is proportional to plasma membrane P-type ATPase turnover, likely due to active trans-membrane water cycling. With synaptic proximities and synergistic metabolic cooperativities, polar brain endothelial, neuroglial, and neuronal cells form "gliovascular units." We hypothesize that a chain of water cycling processes transmits brain metabolic activity to k(po), letting it report neurogliovascular unit Na(+),K(+)-ATPase activity. Cerebral k(po) maps represent metabolic (functional) neuroimages. The NGM 2.9 s(-1) k(po) means an equilibrium unidirectional water efflux of ~10(15) H2O molecules s(-1) per capillary (in 1 µL tissue): consistent with the known ATP consumption rate and water co-transporting membrane symporter stoichiometries.


Asunto(s)
Agua Corporal/metabolismo , Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Capilares/metabolismo , Glioblastoma/metabolismo , Neuroimagen/métodos , Adulto , Encéfalo/irrigación sanguínea , Neoplasias Encefálicas/irrigación sanguínea , Permeabilidad Capilar , Femenino , Glioblastoma/irrigación sanguínea , Humanos , Aumento de la Imagen/métodos , Masculino , Tasa de Depuración Metabólica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA