Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Stem Cells ; 37(8): 1042-1056, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31042329

RESUMEN

The transition to pluripotency invokes profound metabolic restructuring; however, reprogramming is accompanied by the retention of somatic cell metabolic and epigenetic memory. Modulation of metabolism during reprogramming has been shown to improve reprogramming efficiency, yet it is not known how metabolite availability during reprogramming affects the physiology of resultant induced pluripotent stem cells (iPSCs). Metabolic analyses of iPSCs generated under either physiological (5%; P-iPSC) or atmospheric (20%; A-iPSC) oxygen conditions revealed that they retained aspects of somatic cell metabolic memory and failed to regulate carbohydrate metabolism with A-iPSC acquiring different metabolic characteristics. A-iPSC exhibited a higher mitochondrial membrane potential and were unable to modulate oxidative metabolism in response to oxygen challenge, contrasting with P-iPSC. RNA-seq analysis highlighted that A-iPSC displayed transcriptomic instability and a reduction in telomere length. Consequently, inappropriate modulation of metabolism by atmospheric oxygen during reprogramming significantly impacts the resultant A-iPSC metabolic and transcriptional landscape. Furthermore, retention of partial somatic metabolic memory in P-iPSC derived under physiological oxygen suggests that metabolic reprogramming remains incomplete. As the metabolome is a regulator of the epigenome, these observed perturbations of iPSC metabolism will plausibly have downstream effects on cellular function and physiology, both during and following differentiation, and highlight the need to optimize nutrient availability during the reprogramming process. Stem Cells 2019;37:1042-1056.


Asunto(s)
Técnicas de Reprogramación Celular , Reprogramación Celular , Perfilación de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Metabolómica , Oxígeno/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología
2.
Front Pharmacol ; 14: 1159527, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234718

RESUMEN

Changes in Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) channel function have been linked to depressive-like traits, making them potential drug targets. However, there is currently no peer-reviewed data supporting the use of a small molecule modulator of HCN channels in depression treatment. Org 34167, a benzisoxazole derivative, has been patented for the treatment of depression and progressed to Phase I trials. In the current study, we analysed the biophysical effects of Org 34167 on HCN channels in stably transfected human embryonic kidney 293 (HEK293) cells and mouse layer V neurons using patch-clamp electrophysiology, and we utilised three high-throughput screens for depressive-like behaviour to assess the activity of Org 34167 in mice. The impact of Org 34167 on locomotion and coordination were measured by performing rotarod and ledged beam tests. Org 34167 is a broad-spectrum inhibitor of HCN channels, slowing activation and causing a hyperpolarising shift in voltage-dependence of activation. It also reduced I h-mediated sag in mouse neurons. Org 34167 (0.5 mg/kg) reduced marble burying and increased the time spent mobile in the Porsolt swim and tail suspension tests in both male and female BALB/c mice, suggesting reduced depressive-like behaviour. Although no adverse effects were seen at 0.5 mg/kg, an increase in dose to 1 mg/kg resulted in visible tremors and impaired locomotion and coordination. These data support the premise that HCN channels are valid targets for anti-depressive drugs albeit with a narrow therapeutic index. Drugs with higher HCN subtype selectivity are needed to establish if a wider therapeutic window can be obtained.

3.
Stem Cells Int ; 2019: 7360121, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191682

RESUMEN

Reprogramming to pluripotency involves drastic restructuring of both metabolism and the epigenome. However, induced pluripotent stem cells (iPSC) retain transcriptional memory, epigenetic memory, and metabolic memory from their somatic cells of origin and acquire aberrant characteristics distinct from either other pluripotent cells or parental cells, reflecting incomplete reprogramming. As a critical link between the microenvironment and regulation of the epigenome, nutrient availability likely plays a significant role in the retention of somatic cell memory by iPSC. Significantly, relative nutrient availability impacts iPSC reprogramming efficiency, epigenetic regulation and cell fate, and differentially alters their ability to respond to physiological stimuli. The significance of metabolites during the reprogramming process is central to further elucidating how iPSC retain somatic cell characteristics and optimising culture conditions to generate iPSC with physiological phenotypes to ensure their reliable use in basic research and clinical applications. This review serves to integrate studies on iPSC reprogramming, memory retention and metabolism, and identifies areas in which current knowledge is limited.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA