Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 28(2): 279-289, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30289454

RESUMEN

Like other single-gene disorders, muscular dystrophy displays a range of phenotypic heterogeneity even with the same primary mutation. Identifying genetic modifiers capable of altering the course of muscular dystrophy is one approach to deciphering gene-gene interactions that can be exploited for therapy development. To this end, we used an intercross strategy in mice to map modifiers of muscular dystrophy. We interrogated genes of interest in an interval on mouse chromosome 10 associated with body mass in muscular dystrophy as skeletal muscle contributes significantly to total body mass. Using whole-genome sequencing of the two parental mouse strains combined with deep RNA sequencing, we identified the Met62Ile substitution in the dual-specificity phosphatase 6 (Dusp6) gene from the DBA/2 J (D2) mouse strain. DUSP6 is a broadly expressed dual-specificity phosphatase protein, which binds and dephosphorylates extracellular-signal-regulated kinase (ERK), leading to decreased ERK activity. We found that the Met62Ile substitution reduced the interaction between DUSP6 and ERK resulting in increased ERK phosphorylation and ERK activity. In dystrophic muscle, DUSP6 Met62Ile is strongly upregulated to counteract its reduced activity. We found that myoblasts from the D2 background were insensitive to a specific small molecule inhibitor of DUSP6, while myoblasts expressing the canonical DUSP6 displayed enhanced proliferation after exposure to DUSP6 inhibition. These data identify DUSP6 as an important regulator of ERK activity in the setting of muscle growth and muscular dystrophy.


Asunto(s)
Fosfatasa 6 de Especificidad Dual/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Desarrollo de Músculos/genética , Distrofia Muscular Animal/genética , Animales , Línea Celular , Mapeo Cromosómico , Fosfatasa 6 de Especificidad Dual/antagonistas & inhibidores , Femenino , Masculino , Ratones Endogámicos DBA , Distrofia Muscular Animal/enzimología , Mutación Missense , Sitios de Carácter Cuantitativo
2.
PLoS Genet ; 12(3): e1005851, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26943675

RESUMEN

Controlling for background demographic effects is important for accurately identifying loci that have recently undergone positive selection. To date, the effects of demography have not yet been explicitly considered when identifying loci under selection during dog domestication. To investigate positive selection on the dog lineage early in the domestication, we examined patterns of polymorphism in six canid genomes that were previously used to infer a demographic model of dog domestication. Using an inferred demographic model, we computed false discovery rates (FDR) and identified 349 outlier regions consistent with positive selection at a low FDR. The signals in the top 100 regions were frequently centered on candidate genes related to brain function and behavior, including LHFPL3, CADM2, GRIK3, SH3GL2, MBP, PDE7B, NTAN1, and GLRA1. These regions contained significant enrichments in behavioral ontology categories. The 3rd top hit, CCRN4L, plays a major role in lipid metabolism, that is supported by additional metabolism related candidates revealed in our scan, including SCP2D1 and PDXC1. Comparing our method to an empirical outlier approach that does not directly account for demography, we found only modest overlaps between the two methods, with 60% of empirical outliers having no overlap with our demography-based outlier detection approach. Demography-aware approaches have lower-rates of false discovery. Our top candidates for selection, in addition to expanding the set of neurobehavioral candidate genes, include genes related to lipid metabolism, suggesting a dietary target of selection that was important during the period when proto-dogs hunted and fed alongside hunter-gatherers.


Asunto(s)
Genética de Población , Genómica , Metabolismo de los Lípidos/genética , Selección Genética , Animales , Demografía , Perros , Genoma , Polimorfismo de Nucleótido Simple
3.
Proc Natl Acad Sci U S A ; 111(16): 6004-9, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24717843

RESUMEN

Many monogenic disorders, including the muscular dystrophies, display phenotypic variability despite the same disease-causing mutation. To identify genetic modifiers of muscular dystrophy and its associated cardiomyopathy, we used quantitative trait locus mapping and whole genome sequencing in a mouse model. This approach uncovered a modifier locus on chromosome 11 associated with sarcolemmal membrane damage and heart mass. Whole genome and RNA sequencing identified Anxa6, encoding annexin A6, as a modifier gene. A synonymous variant in exon 11 creates a cryptic splice donor, resulting in a truncated annexin A6 protein called ANXA6N32. Live cell imaging showed that annexin A6 orchestrates a repair zone and cap at the site of membrane disruption. In contrast, ANXA6N32 dramatically disrupted the annexin A6-rich cap and the associated repair zone, permitting membrane leak. Anxa6 is a modifier of muscular dystrophy and membrane repair after injury.


Asunto(s)
Anexina A6/metabolismo , Distrofia Muscular Animal/patología , Sarcolema/metabolismo , Sarcolema/patología , Cicatrización de Heridas , Músculos Abdominales/patología , Empalme Alternativo/genética , Animales , Anexina A6/genética , Cromosomas de los Mamíferos/genética , Susceptibilidad a Enfermedades , Genes Modificadores , Variación Genética , Ventrículos Cardíacos/patología , Espacio Intracelular/metabolismo , Membranas/patología , Ratones , Ratones Endogámicos C57BL , Distrofia Muscular Animal/genética , Tamaño de los Órganos , Transporte de Proteínas , Sitios de Carácter Cuantitativo/genética , Cicatrización de Heridas/genética
4.
PLoS Genet ; 10(1): e1004016, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24453982

RESUMEN

To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11-16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B) in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog origins is necessary.


Asunto(s)
Amilasas/genética , Animales Domésticos/genética , Variaciones en el Número de Copia de ADN/genética , Evolución Molecular , Animales , ADN Mitocondrial/genética , Dieta , Perros , Variación Genética , Filogenia , Densidad de Población , Lobos/clasificación , Lobos/genética
5.
Am J Bot ; 103(1): 33-46, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26744482

RESUMEN

PREMISE OF THE STUDY: The ability of California tree populations to survive anthropogenic climate change will be shaped by the geographic structure of adaptive genetic variation. Our goal is to test whether climate-associated candidate genes show evidence of spatially divergent selection in natural populations of valley oak, Quercus lobata, as preliminary indication of local adaptation. METHODS: Using DNA from 45 individuals from 13 localities across the species' range, we sequenced portions of 40 candidate genes related to budburst/flowering, growth, osmotic stress, and temperature stress. Using 195 single nucleotide polymorphisms (SNPs), we estimated genetic differentiation across populations and correlated allele frequencies with climate gradients using single-locus and multivariate models. RESULTS: The top 5% of FST estimates ranged from 0.25 to 0.68, yielding loci potentially under spatially divergent selection. Environmental analyses of SNP frequencies with climate gradients revealed three significantly correlated SNPs within budburst/flowering genes and two SNPs within temperature stress genes with mean annual precipitation, after controlling for multiple testing. A redundancy model showed a significant association between SNPs and climate variables and revealed a similar set of SNPs with high loadings on the first axis. In the RDA, climate accounted for 67% of the explained variation, when holding climate constant, in contrast to a putatively neutral SSR data set where climate accounted for only 33%. CONCLUSIONS: Population differentiation and geographic gradients of allele frequencies in climate-associated functional genes in Q. lobata provide initial evidence of adaptive genetic variation and background for predicting population response to climate change.


Asunto(s)
Clima , Genes de Plantas , Polimorfismo de Nucleótido Simple , Quercus/genética , Selección Genética , Adaptación Biológica , California , Cambio Climático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA