Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancer Metastasis Rev ; 38(3): 333-346, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31659564

RESUMEN

The prostate-specific antigen (PSA) blood test is the accepted biomarker of tumor recurrence. PSA levels in serum correlate with disease progression, though its diagnostic accuracy is questionable. As a result, significant progress has been made in developing modified PSA tests such as PSA velocity, PSA density, 4Kscore, PSA glycoprofiling, Prostate Health Index, and the STHLM3 test. PSA, a serine protease, is secreted from the epithelial cells of the prostate. PSA has been suggested as a molecular target for prostate cancer therapy due to the fact that it is not only active in prostate tissue but also has a pivotal role on prostate cancer signaling pathways including proliferation, invasion, metastasis, angiogenesis, apoptosis, immune response, and tumor microenvironment regulation. Here, we summarize the current standing of PSA in prostate cancer progression as well as its utility in prostate cancer therapeutic approaches with an emphasis on the role of PSA in the tumor microenvironment.


Asunto(s)
Biomarcadores de Tumor/sangre , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/patología , Animales , Humanos , Calicreínas/sangre , Masculino , Microambiente Tumoral
2.
Clin Chem ; 65(6): 771-780, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31018918

RESUMEN

BACKGROUND: MicroRNAs mediate biological processes through preferential binding to the 3' untranslated region (3' UTR) of target genes. Studies have shown their association with prostate cancer (PCa) risk through single-nucleotide polymorphisms (SNPs), known as miRSNPs. In a European cohort, 22 PCa risk-associated miRSNPs have been identified. The most significant miRSNP in the 3' UTR of Kallikrein-related peptidase 3 (KLK3) created a binding site for miR-3162-5p. Here we investigated the miR-3162-5p-KLK interaction and the clinical implication of miR-3162-5p in PCa. METHODS: We tested the role of miR-3162-5p in PCa etiology using IncuCyte live-cell imaging and anchorage-independent growth assays. The effect of miR-3162-5p on KLK and androgen receptor (AR) expression was measured by RT-quantitative (q)PCR and target pulldown assays. KLK3 proteolytic activity was determined by DELFIA® immunoassay. Mass spectrometry identified pathways affected by miR-3162-5p. miR-3162-5p expression was measured in clinical samples using RT-qPCR. RESULTS: miR-3162-5p affected proliferation, migration, and colony formation of LNCaP cells by regulating the expression of KLK2-4 and AR by direct targeting. KLK3 protein expression was regulated by miR-3162-5p consistent with lower KLK3 proteolytic activity observed in LNCaP-conditioned media. KLK/AR pulldown and mass spectrometry analysis showed a potential role of miR-3162-5p in metabolic pathways via KLK/AR and additional targets. Increased miR-3162-5p expression was observed in prostate tumor tissues with higher Gleason grade. CONCLUSIONS: Our study provides an insight into possible involvement of miR-3162-5p in PCa etiology by targeting KLKs and AR. It highlights clinical utility of miR-3162-5p and its interactive axis as a new class of biomarkers and therapeutic targets for PCa.


Asunto(s)
Calicreínas/metabolismo , MicroARNs/metabolismo , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/metabolismo , Movimiento Celular/genética , Proliferación Celular/genética , Humanos , Calicreínas/genética , Masculino , Clasificación del Tumor , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ARN Mensajero/genética , Receptores Androgénicos/genética
3.
Clin Chem ; 65(1): e1-e9, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30538125

RESUMEN

BACKGROUND: Genetic association studies have reported single-nucleotide polymorphisms (SNPs) at chromosome 19q13.3 to be associated with prostate cancer (PCa) risk. Recently, the rs61752561 SNP (Asp84Asn substitution) in exon 3 of the kallikrein-related peptidase 3 (KLK3) gene encoding prostate-specific antigen (PSA) was reported to be strongly associated with PCa risk (P = 2.3 × 10-8). However, the biological contribution of the rs61752561 SNP to PCa risk has not been elucidated. METHODS: Recombinant PSA protein variants were generated to assess the SNP-mediated biochemical changes by stability and substrate activity assays. PC3 cell-PSA overexpression models were established to evaluate the effect of the SNP on PCa pathogenesis. Genotype-specific correlation of the SNP with total PSA (tPSA) concentrations and free/total (F/T) PSA ratio were determined from serum samples. RESULTS: Functional analysis showed that the rs61752561 SNP affects PSA stability and structural conformation and creates an extra glycosylation site. This PSA variant had reduced enzymatic activity and the ability to stimulate proliferation and migration of PCa cells. Interestingly, the minor allele is associated with lower tPSA concentrations and high F/T PSA ratio in serum samples, indicating that the amino acid substitution may affect PSA immunoreactivity to the antibodies used in the clinical immunoassays. CONCLUSIONS: The rs61752561 SNP appears to have a potential role in PCa pathogenesis by changing the glycosylation, protein stability, and PSA activity and may also affect the clinically measured F/T PSA ratio. Accounting for these effects on tPSA concentration and F/T PSA ratio may help to improve the accuracy of the current PSA test.


Asunto(s)
Polimorfismo de Nucleótido Simple , Antígeno Prostático Específico/genética , Neoplasias de la Próstata/genética , Anciano , Movimiento Celular , Proliferación Celular , Predisposición Genética a la Enfermedad , Glicosilación , Humanos , Masculino , Persona de Mediana Edad , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/patología , Proteolisis
4.
Crit Rev Clin Lab Sci ; 53(1): 29-39, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26398894

RESUMEN

Single nucleotide polymorphisms (SNPs) have been classically used for dissecting various human complex disorders using candidate gene studies. During the last decade, large scale SNP analysis, i.e. genome-wide association studies (GWAS) have provided an agnostic approach to identify possible genetic loci associated with heterogeneous disease such as cancer susceptibility, prognosis of survival or drug response. Further, the advent of new technologies, including microarray-based genotyping as well as high throughput next generation sequencing has opened new avenues for SNPs to be used in clinical practice. It is speculated that the utility of SNPs to understand the mechanisms, biology of variable drug response and ultimately treatment individualization based on the individual's genome composition will be indispensable in the near future. In the current review, we discuss the advantages and disadvantages of the clinical utility of genetic variants in disease risk-prediction, prognosis, clinical outcome and pharmacogenomics. The lessons and challenges for the utility of SNP-based biomarkers are also discussed, including the need for additional functional validation studies.


Asunto(s)
Detección Precoz del Cáncer/métodos , Predisposición Genética a la Enfermedad/genética , Neoplasias/diagnóstico , Neoplasias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple/genética , Detección Precoz del Cáncer/estadística & datos numéricos , Medicina Basada en la Evidencia , Predisposición Genética a la Enfermedad/epidemiología , Humanos , Neoplasias/epidemiología , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Pronóstico , Reproducibilidad de los Resultados , Medición de Riesgo , Sensibilidad y Especificidad
5.
Biol Chem ; 397(12): 1307-1313, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27289002

RESUMEN

The kallikrein related peptidase gene family (KLKs) comprises 15 genes located between 19q13.3-13.4. KLKs have chymotrypsin and/or trypsin like activity, but the tissue/organ expression profile of each KLK varies considerably. Thus, the role of KLKs in human biology is also very diverse, and the deregulation of their function results in a wide-range of diseases. Here, we have cataloged the transcript (variants and fusions) and genetic (single nucleotide polymorphisms, small insertions/deletions, copy number variations (CNVs), and short tandem repeats) diversity at the KLK locus, providing a data set for researchers to explore the mechanisms through which KLK function may be deregulated. We reveal that the KLK locus hosts 85 fusion transcripts, and 80 variant transcripts. Interestingly, some fusion transcripts comprise up to 6 KLK genes. Our analysis of genetic variations of 2504 individuals from the 1000 Genome Project indicated that the KLK locus is rich in genetic diversity, with some fusion transcripts harboring over 1000 single nucleotide variations. We also found evidence from the literature linking 2387 KLK genetic variants with many types of diseases. Finally, genotyping data from the 131 KLK genetic variants in the NCI-60 cancer cell lines is provided as a resource for the cancer and KLK field.


Asunto(s)
Sitios Genéticos/genética , Variación Genética , Genómica , Calicreínas/genética , Análisis por Conglomerados , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
BMC Genomics ; 16: 1021, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26626734

RESUMEN

BACKGROUND: Fusion transcripts are found in many tissues and have the potential to create novel functional products. Here, we investigate the genomic sequences around fusion junctions to better understand the transcriptional mechanisms mediating fusion transcription/splicing. We analyzed data from prostate (cancer) cells as previous studies have shown extensively that these cells readily undergo fusion transcription. RESULTS: We used the FusionMap program to identify high-confidence fusion transcripts from RNAseq data. The RNAseq datasets were from our (N = 8) and other (N = 14) clinical prostate tumors with adjacent non-cancer cells, and from the LNCaP prostate cancer cell line that were mock-, androgen- (DHT), and anti-androgen- (bicalutamide, enzalutamide) treated. In total, 185 fusion transcripts were identified from all RNAseq datasets. The majority (76%) of these fusion transcripts were 'read-through chimeras' derived from adjacent genes in the genome. Characterization of sequences at fusion loci were carried out using a combination of the FusionMap program, custom Perl scripts, and the RNAfold program. Our computational analysis indicated that most fusion junctions (76%) use the consensus GT-AG intron donor-acceptor splice site, and most fusion transcripts (85%) maintained the open reading frame. We assessed whether parental genes of fusion transcripts have the potential to form complementary base pairing between parental genes which might bring them into physical proximity. Our computational analysis of sequences flanking fusion junctions at parental loci indicate that these loci have a similar propensity as non-fusion loci to hybridize. The abundance of repetitive sequences at fusion and non-fusion loci was also investigated given that SINE repeats are involved in aberrant gene transcription. We found few instances of repetitive sequences at both fusion and non-fusion junctions. Finally, RT-qPCR was performed on RNA from both clinical prostate tumors and adjacent non-cancer cells (N = 7), and LNCaP cells treated as above to validate the expression of seven fusion transcripts and their respective parental genes. We reveal that fusion transcript expression is similar to the expression of parental genes. CONCLUSIONS: Fusion transcripts maintain the open reading frame, and likely use the same transcriptional machinery as non-fusion transcripts as they share many genomic features at splice/fusion junctions.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Sitios de Carácter Cuantitativo , Empalme del ARN , Transcripción Genética , Andrógenos/farmacología , Antineoplásicos Hormonales/farmacología , Biología Computacional/métodos , Secuencia Conservada , Conjuntos de Datos como Asunto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Motivos de Nucleótidos , Sitios de Empalme de ARN , Secuencias Repetitivas de Ácidos Nucleicos
7.
Prostate Cancer Prostatic Dis ; 26(3): 614-624, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37264224

RESUMEN

BACKGROUND: Prostate cancer is a broad-spectrum disease, spanning from indolent to a highly aggressive lethal malignancy. Prostate cancer cell lines are essential tools to understanding the basic features of this malignancy, as well as in identifying novel therapeutic strategies. However, most cell lines routinely used in prostate cancer research are derived from metastatic disease and may not fully elucidate the molecular events underlying the early stages of cancer development and progression. Thus, there is a need for new cell lines derived from localised disease to better span the disease spectrum. METHODS: Prostatic tissue from the primary site, and adjacent non-cancerous tissue was obtained from four patients with localised disease undergoing radical prostatectomy. Epithelial cell outgrowths were immortalised with human papillomavirus type 16 (HPV16) E6 and E7 to establish monoclonal cell lines. Chromosomal ploidy was imaged and STR profiles were determined. Cell morphology, colony formation and cell proliferation characteristics were assessed. Androgen receptor (AR) expression and AR-responsiveness to androgen treatment were analysed by immunofluorescence and RT-qPCR, respectively. RNA-seq analysis was performed to identify prostate lineage markers and expression of prostate cancer tumorigenesis-related genes. RESULTS: Two benign cell lines derived from non-cancer cells (AQ0420 and AQ0396) and two tumour tissue derived cancer cell lines (AQ0411 and AQ0415) were immortalised from four patients with localised prostatic adenocarcinoma. The cell lines presented an epithelial morphology and a slow to moderate proliferative rate. None of the cell lines formed anchorage independent colonies or displayed AR-responsiveness. Comparative RNA-seq expression analysis confirmed the prostatic lineage of the four cell lines, with a distinct gene expression profile from that of the metastatic prostate cancer cell lines, PC-3 and LNCaP. CONCLUSIONS: Comprehensive characterization of these cell lines may provide new in vitro tools that could bridge the current knowledge gap between benign, early-stage and metastatic disease.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/patología , Próstata/patología , Línea Celular , Antígeno Prostático Específico/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/análisis , Andrógenos/metabolismo , Línea Celular Tumoral
8.
Res Sq ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-38076926

RESUMEN

Genome-wide association studies have linked Iroquois-Homeobox 4 (IRX4) as a robust expression quantitative-trait locus associated with prostate cancer (PCa) risk. However, the intricate mechanism and regulatory factors governing IRX4 expression in PCa remain poorly understood. Here, we unveil enrichment of androgen-responsive gene signatures in metastatic prostate tumors exhibiting heightened IRX4 expression. Furthermore, we uncover a novel interaction between IRX4 and the androgen receptor (AR) co-factor, FOXA1, suggesting that IRX4 modulates PCa cell behavior through AR cistrome alteration. Remarkably, we identified a distinctive short insertion-deletion polymorphism (INDEL), upstream of the IRX4 gene that differentially regulates IRX4 expression through the disruption of AR binding. This INDEL emerges as the most significant PCa risk-associated variant within the 5p15 locus, in a genetic analysis involving 82,591 PCa cases and 61,213 controls and was associated with PCa survival in patients undergoing androgen-deprivation therapy. These studies suggest the potential of this INDEL as a prognostic biomarker for androgen therapy in PCa and IRX4 as a potential therapeutic target in combination with current clinical management.

9.
Res Sq ; 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37034758

RESUMEN

Genetic variation at the 19q13.3 KLK locus is linked with prostate cancer susceptibility. The non-synonymous KLK3 SNP, rs17632542 (c.536T>C; Ile163Thr-substitution in PSA) is associated with reduced prostate cancer risk, however, the functional relevance is unknown. Here, we identify that the SNP variant-induced change in PSA biochemical activity as a previously undescribed function mediating prostate cancer pathogenesis. The 'Thr' PSA variant led to small subcutaneous tumours, supporting reduced prostate cancer risk. However, 'Thr' PSA also displayed higher metastatic potential with pronounced osteolytic activity in an experimental metastasis in-vivo model. Biochemical characterization of this PSA variant demonstrated markedly reduced proteolytic activity that correlated with differences in in-vivo tumour burden. The SNP is associated with increased risk for aggressive disease and prostate cancer-specific mortality in three independent cohorts, highlighting its critical function in mediating metastasis. Carriers of this SNP allele had reduced serum total PSA and a higher free/total PSA ratio that could contribute to late biopsy decisions and delay in diagnosis. Our results provide a molecular explanation for the prominent 19q13.3 KLK locus, rs17632542 SNP, association with a spectrum of prostate cancer clinical outcomes.

10.
Biol Chem ; 393(5): 403-12, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22505522

RESUMEN

Kallikrein 14 (KLK14) has been proposed as a useful prognostic marker in prostate cancer, with expression reported to be associated with tumour characteristics such as higher stage and Gleason score. KLK14 tumour expression has also shown the potential to predict prostate cancer patients at risk of disease recurrence after radical prostatectomy. The KLKs are a remarkably hormone-responsive family of genes, although detailed studies of androgen regulation of KLK14 in prostate cancer have not been undertaken to date. Using in vitro studies, we have demonstrated that unlike many other prostatic KLK genes that are strictly androgen responsive, KLK14 is more broadly expressed and inversely androgen regulated in prostate cancer cells. Given these results and evidence that KLK14 may play a role in prostate cancer prognosis, we also investigated whether common genetic variants in the KLK14 locus are associated with risk and/or aggressiveness of prostate cancer in approximately 1200 prostate cancer cases and 1300 male controls. Of 41 single nucleotide polymorphisms assessed, three were associated with higher Gleason score (≥7): rs17728459 and rs4802765, both located upstream of KLK14, and rs35287116, which encodes a p.Gln33Arg substitution in the KLK14 signal peptide region. Our findings provide further support for KLK14 as a marker of prognosis in prostate cancer.


Asunto(s)
Regulación hacia Abajo/genética , Calicreínas/genética , Polimorfismo de Nucleótido Simple/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Transducción de Señal , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Línea Celular Tumoral , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Persona de Mediana Edad
11.
Nat Rev Cancer ; 22(4): 223-238, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35102281

RESUMEN

Kallikrein-related peptidases (KLKs) are critical regulators of the tumour microenvironment. KLKs are proteolytic enzymes regulating multiple functions of bioactive molecules including hormones and growth factors, membrane receptors and the extracellular matrix architecture involved in cancer progression and metastasis. Perturbations of the proteolytic cascade generated by these peptidases, and their downstream signalling actions, underlie tumour emergence or blockade of tumour growth. Recent studies have also revealed their role in tumour immune suppression and resistance to cancer therapy. Here, we present an overview of the complex biology of the KLK family and its context-dependent nature in cancer, and discuss the different therapeutic strategies available to potentially target these proteases.


Asunto(s)
Calicreínas , Neoplasias , Matriz Extracelular/metabolismo , Humanos , Calicreínas/metabolismo , Transducción de Señal , Microambiente Tumoral
13.
BMC Cancer ; 11: 119, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21457553

RESUMEN

BACKGROUND: KLK15 over-expression is reported to be a significant predictor of reduced progression-free survival and overall survival in ovarian cancer. Our aim was to analyse the KLK15 gene for putative functional single nucleotide polymorphisms (SNPs) and assess the association of these and KLK15 HapMap tag SNPs with ovarian cancer survival. RESULTS: In silico analysis was performed to identify KLK15 regulatory elements and to classify potentially functional SNPs in these regions. After SNP validation and identification by DNA sequencing of ovarian cancer cell lines and aggressive ovarian cancer patients, 9 SNPs were shortlisted and genotyped using the Sequenom iPLEX Mass Array platform in a cohort of Australian ovarian cancer patients (N = 319). In the Australian dataset we observed significantly worse survival for the KLK15 rs266851 SNP in a dominant model (Hazard Ratio (HR) 1.42, 95% CI 1.02-1.96). This association was observed in the same direction in two independent datasets, with a combined HR for the three studies of 1.16 (1.00-1.34). This SNP lies 15 bp downstream of a novel exon and is predicted to be involved in mRNA splicing. The mutant allele is also predicted to abrogate an HSF-2 binding site. CONCLUSIONS: We provide evidence of association for the SNP rs266851 with ovarian cancer survival. Our results provide the impetus for downstream functional assays and additional independent validation studies to assess the role of KLK15 regulatory SNPs and KLK15 isoforms with alternative intracellular functional roles in ovarian cancer survival.


Asunto(s)
Carcinoma/genética , Calicreínas/metabolismo , Neoplasias Ováricas/genética , Australia , Carcinoma/mortalidad , Carcinoma/patología , Carcinoma/fisiopatología , Análisis Mutacional de ADN , Exones/genética , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Calicreínas/genética , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Neoplasias Ováricas/fisiopatología , Polimorfismo de Nucleótido Simple
14.
Cancer Med ; 10(5): 1791-1804, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33580750

RESUMEN

Hepatocyte nuclear factor 1 beta (HNF1 ß/B) exists as a homeobox transcription factor having a vital role in the embryonic development of organs mainly liver, kidney and pancreas. Initially described as a gene causing maturity-onset diabetes of the young (MODY), HNF1ß expression deregulation and single nucleotide polymorphisms in HNF1ß have now been associated with several tumours including endometrial, prostate, ovarian, hepatocellular, renal and colorectal cancers. Its function has been studied either as homodimer or heterodimer with HNF1α. In this review, the role of HNF1B in different cancers will be discussed along with the role of its splice variants, and its emerging role as a potential biomarker in cancer.


Asunto(s)
Factor Nuclear 1-beta del Hepatocito/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Empalme Alternativo , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Metilación de ADN , Diabetes Mellitus Tipo 2/genética , Neoplasias Endometriales/genética , Epigénesis Genética , Femenino , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/genética , Humanos , Masculino , Mieloma Múltiple/genética , Organogénesis/genética , Neoplasias Ováricas/genética , Neoplasias Pancreáticas/genética , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/genética , Isoformas de Proteínas , Factores de Transcripción , Proteínas Supresoras de Tumor/genética
15.
Sci Rep ; 11(1): 9264, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33927218

RESUMEN

Risk classification for prostate cancer (PCa) aggressiveness and underlying mechanisms remain inadequate. Interactions between single nucleotide polymorphisms (SNPs) may provide a solution to fill these gaps. To identify SNP-SNP interactions in the four pathways (the angiogenesis-, mitochondria-, miRNA-, and androgen metabolism-related pathways) associated with PCa aggressiveness, we tested 8587 SNPs for 20,729 cases from the PCa consortium. We identified 3 KLK3 SNPs, and 1083 (P < 3.5 × 10-9) and 3145 (P < 1 × 10-5) SNP-SNP interaction pairs significantly associated with PCa aggressiveness. These SNP pairs associated with PCa aggressiveness were more significant than each of their constituent SNP individual effects. The majority (98.6%) of the 3145 pairs involved KLK3. The 3 most common gene-gene interactions were KLK3-COL4A1:COL4A2, KLK3-CDH13, and KLK3-TGFBR3. Predictions from the SNP interaction-based polygenic risk score based on 24 SNP pairs are promising. The prevalence of PCa aggressiveness was 49.8%, 21.9%, and 7.0% for the PCa cases from our cohort with the top 1%, middle 50%, and bottom 1% risk profiles. Potential biological functions of the identified KLK3 SNP-SNP interactions were supported by gene expression and protein-protein interaction results. Our findings suggest KLK3 SNP interactions may play an important role in PCa aggressiveness.


Asunto(s)
Calicreínas/genética , Antígeno Prostático Específico/genética , Neoplasias de la Próstata/genética , Biomarcadores de Tumor/genética , Epistasis Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/patología
16.
Front Mol Biosci ; 7: 215, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195400

RESUMEN

An acute respiratory disorder (COVID-19) that accelerated across the globe has been found to be caused by a novel strain of coronaviruses (SARS-CoV-2). The absence of a specific antiviral drug or vaccination has promoted the development of immediate therapeutic responses against SARS-CoV-2. As increased levels of plasma chemokines and, cytokines and an uncontrolled influx of inflammatory cells were observed in lethal cases, it was concluded that the severity of the infection corresponded with the imbalanced host immunity against the virus. Tracing back the knowledge acquired from SERS and MERS infections, clinical evidence suggested similar host immune reactions and host ACE2 receptor-derived invasion by SARS-CoV-2. Further studies revealed the integral role of proteases (TMPRSS2, cathepsins, plasmin, etc.) in viral entry and the immune system. This review aims to provide a brief review on the latest research progress in identifying the potential role of proteases in SARS-CoV-2 viral spread and infection and combines it with already known information on the role of different proteases in providing an immune response. It further proposes a multidisciplinary clinical approach to target proteases specifically, through a combinatorial administration of protease inhibitors. This predictive review may help in providing a perspective to gain deeper insights of the proteolytic web involved in SARS-CoV-2 viral invasion and host immune response.

17.
Mol Oncol ; 14(1): 105-128, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31630475

RESUMEN

Kallikrein-related peptidase 14 (KLK14) is one of the several secreted KLK serine proteases involved in prostate cancer (PCa) pathogenesis. While relatively understudied, recent reports have identified KLK14 as overexpressed during PCa development. However, the modulation of KLK14 expression during PCa progression and the molecular and biological functions of this protease in the prostate tumor microenvironment remain unknown. To determine the modulation of KLK14 expression during PCa progression, we analyzed the expression levels of KLK14 in patient samples using publicly available databases and immunohistochemistry. In order to delineate the molecular mechanisms involving KLK14 in PCa progression, we integrated proteomic, transcriptomic, and in vitro assays with the goal to identify substrates, related-signaling pathways, and functional roles of this protease. We showed that KLK14 expression is elevated in advanced PCa, and particularly in metastasis. Additionally, KLK14 levels were found to be decreased in PCa tissues from patients responsive to neoadjuvant therapy compared to untreated patients. Furthermore, we also identified that KLK14 expression reoccurred in patients who developed castrate-resistant PCa. The combination of proteomic and transcriptomic analysis as well as functional assays revealed several new KLK14 substrates (agrin, desmoglein 2, vitronectin, laminins) and KLK14-regulated genes (Interleukin 32, midkine, SRY-Box 9), particularly an involvement of the mitogen-activated protein kinase 1 and interleukin 1 receptor pathways, and an involvement of KLK14 in the regulation of cellular migration, supporting its involvement in aggressive features of PCa progression. In conclusion, our work showed that KLK14 expression is associated with the development of aggressive PCa suggesting that targeting this protease could offer a novel route to limit the progression of prostate tumors. Additional work is necessary to determine the benefits and implications of targeting/cotargeting KLK14 in PCa as well as to determine the potential use of KLK14 expression as a predictor of PCa aggressiveness or response to treatment.


Asunto(s)
Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Calicreínas/metabolismo , Metástasis de la Neoplasia/genética , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Cromatografía Líquida de Alta Presión , Bases de Datos Genéticas , Regulación hacia Abajo , Humanos , Inmunohistoquímica , Calicreínas/genética , Masculino , Terapia Neoadyuvante , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteómica , Transducción de Señal/genética , Espectrometría de Masas en Tándem , Transcriptoma , Microambiente Tumoral/genética , Regulación hacia Arriba
18.
Front Oncol ; 9: 1263, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850193

RESUMEN

Prostate cancer is the second most common male cancer affecting Western society. Despite substantial advances in the exploration of prostate cancer biomarkers and treatment strategies, men are over diagnosed with inert prostate cancer, while there is also a substantial mortality from the invasive disease. Precision medicine is the management of treatment profiles across different cancers predicting therapies for individual cancer patients. With strategies including individual genomic profiling and targeting specific cancer pathways, precision medicine for prostate cancer has the potential to impose changes in clinical practices. Some of the recent advances in prostate cancer precision medicine comprise targeting gene fusions, genome editing tools, non-coding RNA biomarkers, and the promise of liquid tumor profiling. In this review, we will discuss these recent scientific advances to scale up these approaches and endeavors to overcome clinical barriers for prostate cancer precision medicine.

19.
Indian J Ophthalmol ; 66(1): 98-105, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29283132

RESUMEN

PURPOSE: The purpose of this study is to study the benefit of addition of oral fenofibrate to the current regimen of diabetic macular edema (DME) management and quantify its effect on macular thickness and visual function in DME. METHODS: Fifty-three eyes of 50 patients were randomized into treatment (Group A) (oral fenofibrate 160 mg/day) and control groups (Group B). Both groups underwent treatment of DME as per the standard treatment protocol of our hospital including intravitreal injections (anti-vascular endothelial growth factor/steroid) and grid laser. Patients were followed up every 2 months to note the visual acuity and central macular thickness (CMT) for 6 months. RESULTS: Our groups were matched with respect to age (P = 0.802), mean diabetic age (P = 0.878), serum HbA1C levels (P = 0.523), and serum triglyceride levels (P = 0.793). The mean reduction in CMT was 136 µ in Group A and 83 µ in Group B at the end of 6 months. This difference was statistically significant (P = 0.031). Visual acuity improvement was 0.15 in Group A and 0.11 in Group B at the end of 6 months (P = 0.186). On subgroup analysis in Group A, we found that there was no difference in reduction of CMT between hypertensives and normotensives (P = 0.916), in patients with normal triglyceride levels and increased triglyceride levels (P = 0.975). CONCLUSION: Addition of fenofibrate to the standard protocol of DME management seems to facilitate reduction of CMT and probably have an added benefit on the visual functions.


Asunto(s)
Retinopatía Diabética/tratamiento farmacológico , Fenofibrato/administración & dosificación , Mácula Lútea/patología , Edema Macular/tratamiento farmacológico , Tomografía de Coherencia Óptica/métodos , Anciano , Retinopatía Diabética/complicaciones , Retinopatía Diabética/diagnóstico , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Estudios de Seguimiento , Humanos , Hipolipemiantes/administración & dosificación , Mácula Lútea/efectos de los fármacos , Edema Macular/diagnóstico , Edema Macular/etiología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Tiempo , Resultado del Tratamiento , Agudeza Visual
20.
Front Genet ; 9: 428, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30337939

RESUMEN

With an estimated 1.1 million men worldwide diagnosed with prostate cancer yearly, effective and more specific biomarkers for early diagnosis could lead to better patient outcome. As such, novel genetic markers are sought for this purpose. The tribbles homologue 1 gene (TRIB1) has recently shown to have a role in prostate tumorigenesis and data-mining of prostate cancer expression data confirmed clinical significance of TRIB1 in prostate cancer. For the first time, a polymorphic microsatellite in this gene was studied for its potential association with prostate cancer risk and aggressiveness. Genomic DNA was extracted from a cohort of 1,152 prostate cancer patients and 1,196 cancer-free controls and the TTTTG-TRIB1 microsatellite was genotyped. The socio-demographic and clinical characteristics were analyzed using the non-parametric t-test and two-way ANOVA. Association of the TTTTG-TRIB1 microsatellite and prostate cancer risk and aggressiveness were analyzed by binary logistic regression and confirmed by bootstrapping. Total and prostate cancer mortality was analyzed using the Kaplan Meier test. Genotype and allele correlation with TRIB1 mRNA levels was analyzed using the non-parametric Kolmogorov-Smirnov test. To predict the effect that the TTTTG-TRIB1 polymorphisms had on the mRNA structure, the in silico RNA folding predictor tool, mfold, was used. By analyzing the publicly available data, we confirmed a significant over-expression of TRIB1 in prostate cancer compared to other cancer types, and an over-expression in prostate cancerous tissue compared to adjacent benign. Three alleles (three-five repeats) were observed for TTTTG-TRIB1. The three-repeat allele was associated with prostate cancer risk at the allele (OR = 1.16; P = 0.044) and genotypic levels (OR = 1.70; P = 0.006) and this association was age-independent. The four-repeat allele was inversely associated with prosatet cancer risk (OR = 0.57; P < 0.0001). TRIB1 expression was upregulated in tumors when compared to adjacent cancer-free tissue but was not allele specific. In silico analysis suggested that the TTTTG-TRIB1 alleles may alter TRIB1 mRNA structure. In summary, the three-repeat allele was significantly associated with prostate cancer risk, suggesting a biomarker potential for this microsatellite to predict prostate cancer. Further studies are needed to elucidate the functional role of this microsatellite in regulating TRIB1 expression, perhaps by affecting the TRIB1 mRNA structure and stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA