Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 757: 110025, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740275

RESUMEN

Drug metabolism by human gut microbes is often exemplified by azo bond reduction in the anticolitic prodrug sulfasalazine. Azoreductase activity is often found in incubations with cell cultures or ex vivo gut microbiome samples and contributes to the xenobiotic metabolism of drugs and food additives. Applying metagenomic studies to personalized medicine requires knowledge of the genes responsible for sulfasalazine and other drug metabolism, and candidate genes and proteins for drug modifications are understudied. A representative gut-abundant azoreductase from Anaerotignum lactatifermentan DSM 14214 efficiently reduces sulfasalazine and another drug, phenazopyridine, but could not reduce all azo-bonded drugs in this class. We used enzyme kinetics to characterize this enzyme for its NADH-dependent reduction of these drugs and food additives and performed computational docking to provide the groundwork for understanding substrate specificity in this family. We performed an analysis of the Flavodoxin-like fold InterPro family (IPR003680) by computing a sequence similarity network to classify distinct subgroups of the family and then performed chemically-guided functional profiling to identify proteins that are abundant in the NIH Human Microbiome Project dataset. This strategy aims to reduce the number of unique azoreductases needed to characterize one protein family in the diverse set of potential drug- and dye-modifying activities found in the human gut microbiome.


Asunto(s)
Microbioma Gastrointestinal , NADH NADPH Oxidorreductasas , Nitrorreductasas , Humanos , Nitrorreductasas/metabolismo , Nitrorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/química , Colorantes/metabolismo , Simulación del Acoplamiento Molecular , Especificidad por Sustrato , Sulfasalazina , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Cinética , Clostridiales/enzimología , Clostridiales/genética , Compuestos Azo/metabolismo , Compuestos Azo/química
2.
J Am Chem Soc ; 142(4): 1657-1661, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31917558

RESUMEN

l-Ascorbate (vitamin C) is ubiquitous in both our diet and the environment. Here we report that Ralstonia eutropha H16 (Cupriavidus necator ATCC 17699) uses l-ascorbate as sole carbon source via a novel catabolic pathway. RNaseq identified eight candidate catabolic genes, sequence similarity networks, and genome neighborhood networks guided predictions for function of the encoded proteins, and the predictions were confirmed by in vitro assays and in vivo growth phenotypes of gene deletion mutants. l-Ascorbate, a lactone, is oxidized and ring-opened by enzymes in the cytochrome b561 and gluconolactonase families, respectively, to form 2,3-diketo-l-gulonate. A protein predicted to have a WD40-like fold catalyzes an unprecedented benzilic acid rearrangement involving migration of a carboxylate group to form 2-carboxy-l-lyxonolactone; the lactone is hydrolyzed by a member of the amidohydrolase superfamily to yield 2-carboxy-l-lyxonate. A member of the PdxA family of oxidative decarboxylases catalyzes a novel decarboxylation that uses NAD+ catalytically. The product, l-lyxonate, is catabolized to α-ketoglutarate by a previously characterized pathway. The pathway is found in hundreds of bacteria, including the pathogens Pseudomonas aeruginosa and Acinetobacter baumannii.


Asunto(s)
Ácido Ascórbico/metabolismo , Enzimas/metabolismo , Proteínas Bacterianas/metabolismo , Cupriavidus necator/enzimología , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Genes Bacterianos , Oxidación-Reducción
3.
Biochemistry ; 57(6): 1012-1021, 2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29303557

RESUMEN

5-Halo-2-hydroxy-2,4-pentadienoates (5-halo-HPDs) are reportedly generated in the bacterial catabolism of halogenated aromatic hydrocarbons by the meta-fission pathway. The 5-halo-HPDs, where the halogen can be bromide, chloride, or fluoride, result in the irreversible inactivation of 4-oxalocrotonate tautomerase (4-OT), which precedes the enzyme that generates them. The loss of activity is due to the covalent modification of the nucleophilic amino-terminal proline. Mass spectral and crystallographic analysis of the modified enzymes indicates that inactivation of 4-OT by 5-chloro- and 5-bromo-2-hydroxy-2,4-pentadienoate follows a mechanism different from that for the inactivation of 4-OT by 5-fluoro-2-hydroxy-2,4-pentadienoate. The 5-chloro and 5-bromo derivatives undergo 4-OT-catalyzed tautomerization to their respective α,ß-unsaturated ketones followed by attack at C5 (by the prolyl nitrogen) with concomitant loss of the halide. For the 5-fluoro species, the presence of a small amount of the α,ß-unsaturated ketone could result in a Michael addition of the prolyl nitrogen to C4 followed by protonation at C3. The fluoride is not eliminated. These observations suggest that the inactivation of 4-OT by a downstream metabolite could hamper the efficacy of the pathway, which is the first time that such a bottleneck has been reported for the meta-fission pathway.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Isomerasas/metabolismo , Pseudomonas putida/enzimología , Cristalografía por Rayos X , Activación Enzimática , Ácidos Grasos Insaturados/química , Halogenación , Isomerasas/química , Cinética , Modelos Moleculares , Pseudomonas putida/química , Pseudomonas putida/metabolismo
4.
Beilstein J Org Chem ; 13: 1022-1031, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28684981

RESUMEN

5-Halo-2-hydroxymuconates and 5-halo-2-hydroxy-2,4-pentadienoates are stable dienols that are proposed intermediates in bacterial meta-fission pathways for the degradation of halogenated aromatic compounds. The presence of the halogen raises questions about how the bulk and/or electronegativity of these substrates would affect enzyme catalysis or whether some pathway enzymes have evolved to accommodate it. To address these questions, 5-halo-2-hydroxymuconates and 5-halo-2-hydroxy-2,4-pentadienoates (5-halo = Cl, Br, F) were synthesized and a preliminary analysis of their enzymatic properties carried out. In aqueous buffer, 5-halo-2-hydroxy-2,4-pentadienoates rapidly equilibrate with the ß,γ-unsaturated ketones. For the 5-chloro and 5-bromo derivatives, a slower conversion to the α,ß-isomers follows. There is no detectable formation of the α,ß-isomer for the 5-fluoro derivative. Kinetic parameters were also obtained for both sets of compounds in the presence of 4-oxalocrotonate tautomerase (4-OT) from Pseudomonas putida mt-2 and Leptothrix cholodnii SP-6. For 5-halo-2-hydroxymuconates, there are no major differences in the kinetic parameters for the two enzymes (following the formation of the ß,γ-unsaturated ketones). In contrast, the L. cholodnii SP-6 4-OT is ≈10-fold less efficient than the P. putida mt-2 4-OT in the formation of the ß,γ-unsaturated ketones and the α,ß-isomers from the 5-halo-2-hydroxy-2,4-pentadienoates. The implications of these findings are discussed. The availability of these compounds will facilitate future studies of the haloaromatic catabolic pathways.

5.
Biochemistry ; 55(29): 4055-64, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27362840

RESUMEN

A stereochemical analysis has been carried out on two vinylpyruvate hydratases (VPH), which convert 2-hydroxy-2,4-pentadienoate to 2-keto-4S-hydroxypentanoate in meta-fission pathways. Bacterial strains with this pathway can use aromatic compounds as sole sources of energy and carbon. The analysis was carried out using the 5-methyl and 5-chloro derivatives of 2-hydroxy-2,4-pentadienoate with the enzymes from Pseudomonas putida mt-2 (Pp) and Leptothrix cholodnii SP-6 (Lc). In both organisms, VPH is in a complex with the preceding enzyme in the pathway, 4-oxalocrotonate decarboxylase (4-OD). In D2O, a deuteron is incorporated stereospecifically at the C-3 and C-5 positions of product by both Pp and Lc enzymes. Accordingly, the complexes generate (3S,5S)-3,5-[di-D]-2-keto-4S-hydroxyhexanoate and (3S,5R)-3,5-[di-D]-2-keto-4R-hydroxy-5-chloropentanoate (4R and 5R due to a priority numbering change). The substitution at C-5 (CH3 or Cl) or the source of the enzyme (Pp or Lc) does not change the stereochemical outcome. One mechanism that can account for the results is the ketonization of the 5-substituted dienol to the α,ß-unsaturated ketone (placing a deuteron at C-5 in D2O), followed by the conjugate addition of water (placing a deuteron at C-3). The stereochemical outcome for VPH (from Pp and Lc) is the same as that reported for a related enzyme, 2-oxo-hept-4-ene-1,7-dioate hydratase, from Escherichia coli C. The combined observations suggest similar mechanisms for these three enzymes that could possibly be common to this group of enzymes.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hidroliasas/química , Hidroliasas/metabolismo , Proteínas Bacterianas/genética , Biocatálisis , Carboxiliasas/química , Carboxiliasas/genética , Carboxiliasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/metabolismo , Hidroliasas/genética , Leptothrix/enzimología , Leptothrix/genética , Resonancia Magnética Nuclear Biomolecular , Pseudomonas putida/enzimología , Pseudomonas putida/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidad por Sustrato
6.
Essays Biochem ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721782

RESUMEN

Malate dehydrogenase (MDH) is a ubiquitous and central enzyme in cellular metabolism, found in all kingdoms of life, where it plays vital roles in the cytoplasm and various organelles. It catalyzes the reversible NAD+-dependent reduction of L-malate to oxaloacetate. This review describes the reaction mechanism for MDH and the effects of mutations in and around the active site on catalytic activity and substrate specificity, with a particular focus on the loop that encloses the active site after the substrates have bound. While MDH exhibits selectivity for its preferred substrates, mutations can alter the specificity of MDH for each cosubstrate. The kinetic characteristics and similarities of a variety of MDH isozymes are summarized, and they illustrate that the KM values are consistent with the relative concentrations of the substrates in cells. As a result of its existence in different cellular environments, MDH properties vary, making it an attractive model enzyme for studying enzyme activity and structure under different conditions.

7.
Curr Opin Chem Biol ; 61: 63-70, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33197748

RESUMEN

Closing the gap between the increasing availability of complete genome sequences and the discovery of novel enzymes in novel metabolic pathways is a significant challenge. Here, we review recent examples of assignment of in vitro enzymatic activities and in vivo metabolic functions to uncharacterized proteins, with a focus on enzymes and metabolic pathways involved in the catabolism and biosynthesis of monosaccharides and polysaccharides. The most effective approaches are based on analyses of sequence-function space in protein families that provide clues for the predictions of the functions of the uncharacterized enzymes. As summarized in this Opinion, this approach allows the discovery of the catabolism of new molecules, new pathways for common molecules, and new enzymatic chemistries.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Redes y Vías Metabólicas , Polisacáridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA