Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(8): e1010748, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35939517

RESUMEN

The chromatin remodeling protein alpha thalassemia/mental retardation syndrome X-linked (ATRX) is a component of promyelocytic leukemia nuclear bodies (PML-NBs) and thereby mediates intrinsic immunity against several viruses including human cytomegalovirus (HCMV). As a consequence, viruses have evolved different mechanisms to antagonize ATRX, such as displacement from PML-NBs or degradation. Here, we show that depletion of ATRX results in an overall impaired antiviral state by decreasing transcription and subsequent secretion of type I IFNs, which is followed by reduced expression of interferon-stimulated genes (ISGs). ATRX interacts with the transcription factor interferon regulatory factor 3 (IRF3) and associates with the IFN-ß promoter to facilitate transcription. Furthermore, whole transcriptome sequencing revealed that ATRX is required for efficient IFN-induced expression of a distinct set of ISGs. Mechanistically, we found that ATRX positively modulates chromatin accessibility specifically upon IFN signaling, thereby affecting promoter regions with recognition motifs for AP-1 family transcription factors. In summary, our study uncovers a novel co-activating function of the chromatin remodeling factor ATRX in innate immunity that regulates chromatin accessibility and subsequent transcription of interferons and ISGs. Consequently, ATRX antagonization by viral proteins and ATRX mutations in tumors represent important strategies to broadly compromise both intrinsic and innate immune responses.


Asunto(s)
Factor 3 Regulador del Interferón , Talasemia alfa , Antivirales , Cromatina , Ensamble y Desensamble de Cromatina , Expresión Génica , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Interferones/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismo
2.
PLoS Pathog ; 17(3): e1009460, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33770148

RESUMEN

Flap endonuclease 1 (FEN1) is a member of the family of structure-specific endonucleases implicated in regulation of DNA damage response and DNA replication. So far, knowledge on the role of FEN1 during viral infections is limited. Previous publications indicated that poxviruses encode a conserved protein that acts in a manner similar to FEN1 to stimulate homologous recombination, double-strand break (DSB) repair and full-size genome formation. Only recently, cellular FEN1 has been identified as a key component for hepatitis B virus cccDNA formation. Here, we report on a novel functional interaction between Flap endonuclease 1 (FEN1) and the human cytomegalovirus (HCMV) immediate early protein 1 (IE1). Our results provide evidence that IE1 manipulates FEN1 in an unprecedented manner: we observed that direct IE1 binding does not only enhance FEN1 protein stability but also phosphorylation at serine 187. This correlates with nucleolar exclusion of FEN1 stimulating its DSB-generating gap endonuclease activity. Depletion of FEN1 and inhibition of its enzymatic activity during HCMV infection significantly reduced nascent viral DNA synthesis demonstrating a supportive role for efficient HCMV DNA replication. Furthermore, our results indicate that FEN1 is required for the formation of DSBs during HCMV infection suggesting that IE1 acts as viral activator of FEN1 in order to re-initiate stalled replication forks. In summary, we propose a novel mechanism of viral FEN1 activation to overcome replication fork barriers at difficult-to-replicate sites in viral genomes.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Citomegalovirus/patogenicidad , Endonucleasas de ADN Solapado/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Replicación Viral/fisiología , Reparación del ADN/fisiología , Fibroblastos , Células HEK293 , Humanos
3.
PLoS Pathog ; 17(8): e1009863, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34370791

RESUMEN

Restriction factors are potent antiviral proteins that constitute a first line of intracellular defense by blocking viral replication and spread. During co-evolution, however, viruses have developed antagonistic proteins to modulate or degrade the restriction factors of their host. To ensure the success of lytic replication, the herpesvirus human cytomegalovirus (HCMV) expresses the immediate-early protein IE1, which acts as an antagonist of antiviral, subnuclear structures termed PML nuclear bodies (PML-NBs). IE1 interacts directly with PML, the key protein of PML-NBs, through its core domain and disrupts the dot-like multiprotein complexes thereby abrogating the antiviral effects. Here we present the crystal structures of the human and rat cytomegalovirus core domain (IE1CORE). We found that IE1CORE domains, also including the previously characterized IE1CORE of rhesus CMV, form a distinct class of proteins that are characterized by a highly similar and unique tertiary fold and quaternary assembly. This contrasts to a marked amino acid sequence diversity suggesting that strong positive selection evolved a conserved fold, while immune selection pressure may have fostered sequence divergence of IE1. At the same time, we detected specific differences in the helix arrangements of primate versus rodent IE1CORE structures. Functional characterization revealed a conserved mechanism of PML-NB disruption, however, primate and rodent IE1 proteins were only effective in cells of the natural host species but not during cross-species infection. Remarkably, we observed that expression of HCMV IE1 allows rat cytomegalovirus replication in human cells. We conclude that cytomegaloviruses have evolved a distinct protein tertiary structure of IE1 to effectively bind and inactivate an important cellular restriction factor. Furthermore, our data show that the IE1 fold has been adapted to maximize the efficacy of PML targeting in a species-specific manner and support the concept that the PML-NBs-based intrinsic defense constitutes a barrier to cross-species transmission of HCMV.


Asunto(s)
Adaptación Fisiológica , Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Proteínas Inmediatas-Precoces/química , Proteínas Inmediatas-Precoces/metabolismo , Cuerpos de Inclusión Intranucleares/metabolismo , Replicación Viral , Animales , Infecciones por Citomegalovirus/metabolismo , Humanos , Primates , Pliegue de Proteína , Estructura Terciaria de Proteína , Ratas , Especificidad de la Especie
4.
J Virol ; 95(6)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33328309

RESUMEN

Autophagy is a catabolic process contributing to intrinsic cellular defense by degrading viral particles or proteins; however, several viruses hijack this pathway for their own benefit. The role of autophagy during human cytomegalovirus (HCMV) replication has not been definitely clarified yet. Utilizing small interfering RNA (siRNA)-based screening, we observed that depletion of many autophagy-related proteins resulted in reduced virus release, suggesting a requirement of autophagy-related factors for efficient HCMV replication. Additionally, we could show that the autophagy-initiating serine/threonine protein kinase ULK1 as well as other constituents of the ULK1 complex were upregulated at early times of infection and stayed upregulated throughout the replication cycle. We demonstrate that indirect interference with ULK1 through inhibition of the upstream regulator AMP-activated protein kinase (AMPK) impaired virus release. Furthermore, this result was verified by direct abrogation of ULK1 kinase activity utilizing the ULK1-specific kinase inhibitors SBI-0206965 and ULK-101. Analysis of viral protein expression in the presence of ULK-101 revealed a connection between the cellular kinase ULK1 and the viral tegument protein pp28 (pUL99), and we identified pp28 as a novel viral substrate of ULK1 by in vitro kinase assays. In the absence of ULK1 kinase activity, large pp28- and pp65-positive structures could be detected in the cytoplasm at late time points of infection. Transmission electron microscopy demonstrated that these structures represent large perinuclear protein accumulations presumably representing aggresomes. Our results indicate that HCMV manipulates ULK1 and further components of the autophagic machinery to ensure the efficient release of viral particles.IMPORTANCE The catabolic program of autophagy represents a powerful immune defense against viruses that is, however, counteracted by antagonizing viral factors. Understanding the exact interplay between autophagy and HCMV infection is of major importance since autophagy-related proteins emerged as promising targets for pharmacologic intervention. Our study provides evidence for a proviral role of several autophagy-related proteins suggesting that HCMV has developed strategies to usurp components of the autophagic machinery for its own benefit. In particular, we observed strong upregulation of the autophagy-initiating protein kinase ULK1 and further components of the ULK1 complex during HCMV replication. In addition, both siRNA-mediated depletion of ULK1 and interference with ULK1 protein kinase activity by two chemically different inhibitors resulted in impaired viral particle release. Thus, we propose that ULK1 kinase activity is required for efficient HCMV replication and thus represents a promising novel target for future antiviral drug development.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Citomegalovirus/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoproteínas/metabolismo , Proteínas Virales/metabolismo , Liberación del Virus , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/antagonistas & inhibidores , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Cápside/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Fosforilación , Regulación hacia Arriba , Proteínas de la Matriz Viral/metabolismo , Replicación Viral
5.
PLoS Pathog ; 16(4): e1008426, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32282833

RESUMEN

Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-γ and five granzymes (GrA, GrB, GrH, GrK, GrM), which are believed to kill infected host cells through cleavage of intracellular death substrates. However, it has recently been demonstrated that the in vivo killing capacity of cytotoxic T cells is limited and multiple T cell hits are required to kill a single virus-infected cell. This raises the question whether cytotoxic lymphocytes can use granzymes to control HCMV infection in a noncytotoxic manner. Here, we demonstrate that (primary) cytotoxic lymphocytes can block HCMV dissemination independent of host cell death, and interferon-α/ß/γ. Prior to killing, cytotoxic lymphocytes induce the degradation of viral immediate-early (IE) proteins IE1 and IE2 in HCMV-infected cells. Intriguingly, both IE1 and/or IE2 are directly proteolyzed by all human granzymes, with GrB and GrM being most efficient. GrB and GrM cleave IE1 after Asp398 and Leu414, respectively, likely resulting in IE1 aberrant cellular localization, IE1 instability, and functional impairment of IE1 to interfere with the JAK-STAT signaling pathway. Furthermore, GrB and GrM cleave IE2 after Asp184 and Leu173, respectively, resulting in IE2 aberrant cellular localization and functional abolishment of IE2 to transactivate the HCMV UL112 early promoter. Taken together, our data indicate that cytotoxic lymphocytes can also employ noncytotoxic ways to control HCMV infection, which may be explained by granzyme-mediated targeting of indispensable viral proteins during lytic infection.


Asunto(s)
Infecciones por Citomegalovirus/enzimología , Citomegalovirus/metabolismo , Granzimas/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Células Asesinas Naturales/enzimología , Transactivadores/metabolismo , Secuencias de Aminoácidos , Citomegalovirus/genética , Infecciones por Citomegalovirus/virología , Granzimas/genética , Interacciones Huésped-Patógeno , Humanos , Proteínas Inmediatas-Precoces/genética , Proteolisis , Linfocitos T Citotóxicos/enzimología , Transactivadores/genética
6.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36233232

RESUMEN

PML nuclear bodies (PML-NBs) are dynamic macromolecular complexes that mediate intrinsic immunity against viruses of different families, including human cytomegalovirus (HCMV). Upon HCMV infection, PML-NBs target viral genomes entering the nucleus and restrict viral immediate-early gene expression by epigenetic silencing. Studies from several groups performed in human fibroblast cells have shown that the major PML-NB components PML, Daxx, Sp100 and ATRX contribute to this repression in a cooperative manner. Their role for HCMV restriction in endothelial cells, however, has not yet been characterized although infected endothelium is thought to play a crucial role for HCMV dissemination and development of vascular disease in vivo. Here, we use conditionally immortalized umbilical vein endothelial cells (HEC-LTT) as a cell culture model to elucidate the impact of PML-NB proteins on lytic HCMV infection. Depletion of individual PML-NB proteins by lentiviral transduction showed a particularly strong antiviral effect of PML in HEC-LTT, compared to human fibroblasts. A closer characterization of this antiviral function revealed that PML may not only effectively inhibit HCMV immediate-early gene expression but also act at later steps of the viral replication cycle. At contrast, we surprisingly noted an antiviral behavior of Daxx in complementary approaches: Depletion of Daxx resulted in decreased viral gene expression, while overexpression of Daxx promoted HCMV infection. In summary, our data demonstrate a cell type-specific effect of PML-NB components on lytic HCMV infection and suggest an important role of PML in the inhibition of HCMV dissemination through infected endothelial cells.


Asunto(s)
Infecciones por Citomegalovirus , Infecciones por Herpesviridae , Proteína de la Leucemia Promielocítica , Antivirales/metabolismo , Citomegalovirus , Células Endoteliales/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica/genética , Proteína de la Leucemia Promielocítica/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Replicación Viral
7.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36233116

RESUMEN

The complex host interaction network of human cytomegalovirus (HCMV) involves the regulatory protein kinase pUL97, which represents a viral cyclin-dependent kinase (CDK) ortholog. pUL97 interacts with the three human cyclin types T1, H, and B1, whereby the binding region of cyclin T1 and the pUL97 oligomerization region were both assigned to amino acids 231-280. We further addressed the question of whether HCMVs harboring mutations in ORF-UL97, i.e., short deletions or resistance-conferring point mutations, are affected in the interaction with human cyclins and viral replication. To this end, clinically relevant UL97 drug-resistance-conferring mutants were analyzed by whole-genome sequencing and used for genetic marker transfer experiments. The recombinant HCMVs indicated conservation of pUL97-cyclin interaction, since all viral UL97 point mutants continued to interact with the analyzed cyclin types and exerted wild-type-like replication fitness. In comparison, recombinant HCMVs UL97 Δ231-280 and also the smaller deletion Δ236-275, but not Δ241-270, lost interaction with cyclins T1 and H, showed impaired replication efficiency, and also exhibited reduced kinase activity. Moreover, a cellular knock-out of cyclins B1 or T1 did not alter HCMV replication phenotypes or pUL97 kinase activity, possibly indicating alternative, compensatory pUL97-cyclin interactions. In contrast, however, cyclin H knock-out, similar to virus deletion mutants in the pUL97-cyclin H binding region, exhibited strong defective phenotypes of HCMV replication, as supported by reduced pUL97 kinase activity in a cyclin H-dependent coexpression setting. Thus, cyclin H proved to be a very relevant determinant of pUL97 kinase activity and viral replication efficiency. As a conclusion, the results provide evidence for the functional importance of pUL97-cyclin interaction. High selective pressure on the formation of pUL97-cyclin complexes was identified by the use of clinically relevant mutants.


Asunto(s)
Ciclina H , Citomegalovirus , Proteínas Virales , Aminoácidos/metabolismo , Ciclina H/genética , Ciclina H/metabolismo , Ciclina T/genética , Ciclina T/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Citomegalovirus/fisiología , Marcadores Genéticos , Humanos , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Virales/genética , Replicación Viral/genética
8.
J Infect Dis ; 223(5): 796-801, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33064789

RESUMEN

Highly sensitive and specific platforms for the detection of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies are becoming increasingly important for evaluating potential SARS-CoV-2 convalescent plasma donors, studying the spread of SARS-CoV-2 infections, and identifying individuals with seroconversion. This study provides a comparative validation of 4 anti-SARS-CoV-2 platforms. A unique feature of the study is the use of a representative cohort of convalescent patients with coronavirus disease 2019 and a mild to moderate disease course. All platforms showed significant correlations with a SARS-CoV-2 plaque reduction neutralization test, with highest sensitivities for the Euroimmun and the Roche platforms, suggesting their preferential use for screening persons at increased risk of SARS-CoV-2 infections.


Asunto(s)
Prueba Serológica para COVID-19/normas , COVID-19/terapia , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Prueba Serológica para COVID-19/métodos , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Inmunización Pasiva/normas , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Valor Predictivo de las Pruebas , Sensibilidad y Especificidad , Donantes de Tejidos , Adulto Joven , Sueroterapia para COVID-19
9.
Emerg Infect Dis ; 27(12): 3009-3019, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695369

RESUMEN

Resolving the role of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in households with members from different generations is crucial for containing the current pandemic. We conducted a large-scale, multicenter, cross-sectional seroepidemiologic household transmission study in southwest Germany during May 11-August 1, 2020. We included 1,625 study participants from 405 households that each had ≥1 child and 1 reverse transcription PCR-confirmed SARS-CoV-2-infected index case-patient. The overall secondary attack rate was 31.6% and was significantly higher in exposed adults (37.5%) than in children (24.6%-29.2%; p = <0.015); the rate was also significantly higher when the index case-patient was >60 years of age (72.9%; p = 0.039). Other risk factors for infectiousness of the index case-patient were SARS-CoV-2-seropositivity (odds ratio [OR] 27.8, 95% CI 8.26-93.5), fever (OR 1.93, 95% CI 1.14-3.31), and cough (OR 2.07, 95% CI 1.21-3.53). Secondary infections in household contacts generate a substantial disease burden.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Niño , Estudios Transversales , Alemania/epidemiología , Humanos , Estudios Seroepidemiológicos
10.
J Virol ; 94(8)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-31969433

RESUMEN

Human cytomegalovirus (HCMV) encodes the viral mRNA export factor pUL69, which facilitates the cytoplasmic accumulation of mRNA via interaction with the cellular RNA helicase UAP56 or URH49. We reported previously that pUL69 is phosphorylated by cellular CDKs and the viral CDK-like kinase pUL97. Here, we set out to identify phosphorylation sites within pUL69 and to characterize their importance. Mass spectrometry-based phosphosite mapping of pUL69 identified 10 serine/threonine residues as phosphoacceptors. Surprisingly, only a few of these sites localized to the N terminus of pUL69, which could be due to the presence of additional posttranslational modifications, like arginine methylation. As an alternative approach, pUL69 mutants with substitutions of putative phosphosites were analyzed by Phos-tag SDS-PAGE. This demonstrated that serines S46 and S49 serve as targets for phosphorylation by pUL97. Furthermore, we provide evidence that phosphorylation of these serines mediates cis/trans isomerization by the prolyl isomerase Pin1, thus forming a functional Pin1 binding motif. Surprisingly, while abrogation of the Pin1 motif did not affect the replication of recombinant cytomegaloviruses, mutation of serines next to the interaction site for UAP56/URH49 strongly decreased viral replication. This was correlated with a loss of UAP56/URH49 recruitment. Intriguingly, the critical serines S13 and S15 were located within a sequence resembling the UAP56 binding motif (UBM) of cellular mRNA adaptor proteins like REF and UIF. We propose that betaherpesviral mRNA export factors have evolved an extended UAP56/URH49 recognition sequence harboring phosphorylation sites to increase their binding affinities. This may serve as a strategy to successfully compete with cellular mRNA adaptor proteins for binding to UAP56/URH49.IMPORTANCE The multifunctional regulatory protein pUL69 of human cytomegalovirus acts as a viral RNA export factor with a critical role in efficient replication. Here, we identify serine/threonine phosphorylation sites for cellular and viral kinases within pUL69. We demonstrate that the pUL97/CDK phosphosites within alpha-helix 2 of pUL69 are crucial for its cis/trans isomerization by the cellular protein Pin1. Thus, we identified pUL69 as the first HCMV-encoded protein that is phosphorylated by cellular and viral serine/threonine kinases in order to serve as a substrate for Pin1. Furthermore, our study revealed that betaherpesviral mRNA export proteins contain extended binding motifs for the cellular mRNA adaptor proteins UAP56/URH49 harboring phosphorylated serines that are critical for efficient viral replication. Knowledge of the phosphorylation sites of pUL69 and the processes regulated by these posttranslational modifications is important in order to develop antiviral strategies based on a specific interference with pUL69 phosphorylation.


Asunto(s)
Citomegalovirus/genética , ARN Helicasas DEAD-box/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , ARN Viral/genética , Serina/metabolismo , Células HEK293 , Humanos , Mutación , Fosforilación , ARN Mensajero/genética , Treonina/metabolismo , Factores de Transcripción/metabolismo , Replicación Viral
11.
J Gen Virol ; 101(3): 284-289, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31958050

RESUMEN

Infections with human herpesviruses share several molecular characteristics, but the diversified medical outcomes are distinct to viral subfamilies and species. Notably, both clinical and molecular correlates of infection are a challenging field and distinct patterns of virus-host interaction have rarely been defined; this study therefore focuses on the search for virus-specific molecular indicators. As previous studies have demonstrated the impact of herpesvirus infections on changes in host signalling pathways, we illustrate virus-modulated expression levels of individual cellular protein kinases. Current data reveal (i) α-, ß- and γ-herpesvirus-specific patterns of kinase modulation as well as (ii) differential levels of up-/downregulated kinase expression and phosphorylation, which collectively suggest (iii) defined signalling patterns specific for the various viruses (VSS) that may prove useful for defining molecular indicators. Combined, the study confirms the correlation between herpesviral replication and modulation of signalling kinases, possibly exploitable for the in vitro characterization of viral infections.


Asunto(s)
Alphaherpesvirinae/metabolismo , Betaherpesvirinae/metabolismo , Fibroblastos/metabolismo , Gammaherpesvirinae/metabolismo , Infecciones por Herpesviridae/metabolismo , Linfocitos/metabolismo , Proteínas Quinasas/metabolismo , Replicación Viral/fisiología , Células Cultivadas , Infecciones por Herpesviridae/virología , Interacciones Huésped-Patógeno , Humanos , Fosforilación , Transducción de Señal/fisiología , Regulación hacia Arriba
12.
J Virol ; 93(9)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30814291

RESUMEN

Chromatin-based modifications of herpesviral genomes play a crucial role in dictating the outcome of infection. Consistent with this, host cell multiprotein complexes, such as polycomb repressive complexes (PRCs), were proposed to act as epigenetic regulators of herpesviral latency. In particular, PRC2 has recently been shown to contribute to the silencing of human cytomegalovirus (HCMV) genomes. Here, we identify a novel proviral role of PRC1 and PRC2, the two main polycomb repressive complexes, during productive HCMV infection. Western blot analyses revealed strong HCMV-mediated upregulation of RING finger protein 1B (RING1B) and B lymphoma Moloney murine leukemia virus insertion region 1 homolog (BMI1) as well as of enhancer of zeste homolog 2 (EZH2), suppressor of zeste 12 (SUZ12), and embryonic ectoderm development (EED), which constitute the core components of PRC1 and PRC2, respectively. Furthermore, we observed a relocalization of PRC components to viral replication compartments, whereas histone modifications conferred by the respective PRCs were specifically excluded from these sites. Depletion of individual PRC1/PRC2 proteins by RNA interference resulted in a significant reduction of newly synthesized viral genomes and, in consequence, a decreased release of viral particles. Furthermore, accelerated native isolation of protein on nascent DNA (aniPOND) revealed a physical association of EZH2 and BMI1 with nascent HCMV DNA, suggesting a direct contribution of PRC proteins to viral DNA replication. Strikingly, substances solely inhibiting the enzymatic activity of PRC1/2 did not exert antiviral effects, while drugs affecting the abundance of PRC core components strongly compromised HCMV genome synthesis and particle release. Taken together, our data reveal an enzymatically independent, noncanonical function of both PRC1 and PRC2 during HCMV DNA replication, which may serve as a novel cellular target for antiviral therapy.IMPORTANCE Polycomb group (PcG) proteins are primarily known as transcriptional repressors that modify chromatin and contribute to the establishment and maintenance of cell fates. Furthermore, emerging evidence indicates that overexpression of PcG proteins in various types of cancers contributes to the dysregulation of cellular proliferation. Consequently, several inhibitors targeting PcG proteins are presently undergoing preclinical and clinical evaluation. Here, we show that infection with human cytomegalovirus also induces a strong upregulation of several PcG proteins. Our data suggest that viral DNA replication depends on a noncanonical function of polycomb repressor complexes which is independent of the so-far-described enzymatic activities of individual PcG factors. Importantly, we observe that a subclass of inhibitory drugs that affect the abundance of PcG proteins strongly interferes with viral replication. This principle may serve as a novel promising target for antiviral treatment.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Citomegalovirus/fisiología , Replicación del ADN , ADN Viral/biosíntesis , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Replicación Viral , Células Cultivadas , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/patología , Infecciones por Citomegalovirus/terapia , ADN Viral/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Humanos , Proteínas de Neoplasias , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 2/genética , Factores de Transcripción
13.
J Virol ; 92(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29743358

RESUMEN

The cellular protein SPOC1 (survival time-associated PHD [plant homeodomain] finger protein in ovarian cancer 1) acts as a regulator of chromatin structure and the DNA damage response. It binds H3K4me2/3-containing chromatin and promotes DNA condensation by recruiting corepressors such as KAP-1 and H3K9 methyltransferases. Previous studies identified SPOC1 as a restriction factor against human adenovirus (HAdV) infection that is antagonized by E1B-55K/E4-orf6-dependent proteasomal degradation. Here, we demonstrate that, in contrast to HAdV-infected cells, SPOC1 is transiently upregulated during the early phase of human cytomegalovirus (HCMV) replication. We show that the expression of immediate early protein 1 (IE1) is sufficient and necessary to induce SPOC1. Additionally, we discovered that during later stages of infection, SPOC1 is downregulated in a glycogen synthase kinase 3ß (GSK-3ß)-dependent manner. We provide evidence that SPOC1 overexpression severely impairs HCMV replication by repressing the initiation of viral immediate early (IE) gene expression. Consistently, we observed that SPOC1-depleted primary human fibroblasts displayed an augmented initiation of viral IE gene expression. This occurs in a multiplicity of infection (MOI)-dependent manner, a defining hallmark of intrinsic immunity. Interestingly, repression requires the presence of high SPOC1 levels at the start of infection, while later upregulation had no negative impact, suggesting distinct temporal roles of SPOC1 during the HCMV replicative cycle. Mechanistically, we observed a highly specific association of SPOC1 with the major immediate early promoter (MIEP), strongly suggesting that SPOC1 inhibits HCMV replication by MIEP binding and the subsequent recruitment of heterochromatin-building factors. Thus, our data add SPOC1 as a novel factor to the endowment of a host cell to restrict cytomegalovirus infections.IMPORTANCE Accumulating evidence indicates that during millennia of coevolution, host cells have developed a sophisticated compilation of cellular factors to restrict cytomegalovirus infections. Defining this equipment is important to understand cellular barriers against viral infection and to develop strategies to utilize these factors for antiviral approaches. So far, constituents of PML nuclear bodies and interferon gamma-inducible protein 16 (IFI16) were known to mediate intrinsic immunity against HCMV. In this study, we identify the chromatin modulator SPOC1 as a novel restriction factor against HCMV. We show that preexisting high SPOC1 protein levels mediate a silencing of HCMV gene expression via a specific association with an important viral cis-regulatory element, the major immediate early promoter. Since SPOC1 expression varies between cell types, this factor may play an important role in tissue-specific defense against HCMV.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Proteínas de Unión al ADN/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Interacciones Huésped-Patógeno , Proteínas Inmediatas-Precoces/metabolismo , Factores de Transcripción/metabolismo , Replicación Viral , Cromatina/química , Cromatina/genética , Infecciones por Citomegalovirus/metabolismo , Proteínas de Unión al ADN/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Células HEK293 , Humanos , Proteínas Inmediatas-Precoces/genética , Regiones Promotoras Genéticas , Factores de Transcripción/genética
14.
Med Microbiol Immunol ; 208(3-4): 447-456, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30900091

RESUMEN

Cytomegaloviruses (CMVs) have developed multiple diverse strategies to ensure their replicative success and to evade immune recognition. Given the fact that G protein-coupled receptors (GPCRs) are key regulators of numerous cellular processes and modify a variety of signaling pathways, it is not surprising that CMVs and other herpesviruses have hijacked mammalian GPCRs during their coevolution. Human cytomegalovirus (HCMV) encodes for four viral GPCR homologues (vGPCRs), termed US27, US28, UL33, and UL78. Although HCMV-encoded GPCRs were first described in 1990, the pivotal functions of these viral receptor proteins were detected only recently. Here, we summarize seminal knowledge on the functions of herpesviral vGPCRs with a focus on novel roles of cytomegalovirus-encoded vGPCRs for viral spread and the regulation of latency.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Virales/metabolismo , Latencia del Virus , Replicación Viral , Humanos
15.
BMC Infect Dis ; 19(1): 388, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068147

RESUMEN

BACKGROUND: The compound letermovir (LMV) has recently been approved for the prophylaxis of cytomegalovirus (CMV) infection and disease in adult CMV seropositive recipients of an allogeneic hematopoietic stem cell transplant. LMV inhibits CMV replication by binding to the viral terminase complex. However, first cases of clinical LMV resistance have been occurred. Here we report a fast breakthrough of resistant cytomegalovirus during secondary LMV prophylaxis in a hematopoietic-cell transplant recipient. CASE PRESENTATION: A 44-year-old male patient with acute myeloid leukemia (AML) experienced a CMV-reactivation within the first 4 weeks of allogeneic hematopoietic-cell transplantation. Administration of LMV was initiated at day + 34. Due to increasing viral loads, LMV treatment was discontinued after 8 days. The patient was then administered with valganciclovir (valGCV) until viral DNA was undetectable. Due to neutropenia, valGCV treatment was switched to LMV secondary prophylaxis. For 4 weeks, the patient maintain virologic suppression. Then, CMV viral loads increased with a fast kinetic. Genotypic testing of the viral polymerase UL54, the kinase UL97 as well as the viral terminase UL56 and UL89 revealed the mutation C325Y in UL56, which is associated with the high level LMV resistance. CONCLUSION: It is known that Letermovir is approved for prophylactic purposes. However, it may be used for some patients with CMV infection who either have failed prior therapies or are unable to tolerate other anti-CMV compounds. Particularly, the administration of LMV should be avoided in patients with detectable viral loads. When this is not possible, viral load must be routinely monitored along with UL56 genotyping. Furthermore, LMV administration at high virus loads may foster the rapid selection of resistant CMV mutants.


Asunto(s)
Acetatos/uso terapéutico , Antivirales/uso terapéutico , Infecciones por Citomegalovirus/prevención & control , Citomegalovirus/efectos de los fármacos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Quinazolinas/uso terapéutico , Adulto , Citomegalovirus/genética , Infecciones por Citomegalovirus/tratamiento farmacológico , Infecciones por Citomegalovirus/virología , ADN Polimerasa Dirigida por ADN/genética , Farmacorresistencia Viral/efectos de los fármacos , Humanos , Masculino , Mutación , Prevención Secundaria , Valganciclovir/uso terapéutico , Carga Viral/efectos de los fármacos , Proteínas Virales/genética , Proteínas Estructurales Virales/genética
16.
J Gen Virol ; 99(3): 369-378, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29458530

RESUMEN

The human cytomegalovirus (HCMV) IE2p86 protein is pivotal for coordinated regulation of viral gene expression. Besides functioning as a promiscuous transactivator, IE2p86 is also known to negatively regulate its own transcription. This occurs via direct binding of IE2p86 to a 14-bp palindromic DNA element located between the TATA box and the transcription start site of the major immediate-early promoter (MIEP), which is referred to as the cis repression signal (CRS). However, the exact mechanism of IE2p86-based autorepression is still unclear. By testing a series of IE2p86 mutants in transient expression assays, we found that not only did a DNA binding-deficient mutant of IE2p86 fail to repress the MIEP, but SUMOylation-negative mutants also failed to repress it. This finding was further supported by infection studies with primary fibroblasts harbouring a MIEP-driven transgene as a reporter. Here, we observed that a recombinant HCMV expressing SUMOylation-negative IE2p86 was defective in transgene downregulation, in contrast to wild-type HCMV. Interestingly, however, a double-mutant virus in which both the SUMO acceptor sites and the SUMO interaction motif (SIM) of IE2p86 were inactivated regained the ability to silence the MIEP. This correlated with increased expression levels of the IE2 isoforms IE2p40 and IE2p60, suggesting that these late proteins may contribute to MIEP suppression, thus compensating for the loss of IE2p86 SUMOylation. In summary, our results show that autorepression of the MIEP is not only regulated by late isoforms of IE2, but also depends on posttranslational SUMO modification, revealing a novel mechanism to fine-tune the expression of this important viral gene region.

17.
J Virol ; 91(10)2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28250117

RESUMEN

Previous studies identified the nuclear domain 10 (ND10) components promyelocytic leukemia protein (PML), hDaxx, and Sp100 as factors of an intrinsic immune response against human cytomegalovirus (HCMV). This antiviral function of ND10, however, is antagonized by viral effector proteins like IE1p72, which induces dispersal of ND10. Furthermore, we have shown that both major immediate early proteins of HCMV, IE1p72 and IE2p86, transiently colocalize with ND10 subnuclear structures and undergo modification by the covalent attachment of SUMO. Since recent reports indicate that PML acts as a SUMO E3 ligase, we asked whether the SUMOylation of IE1p72 and IE2p86 is regulated by PML. To address this, PML-depleted fibroblasts, as well as cells overexpressing individual PML isoforms, were infected with HCMV. Western blot experiments revealed a clear correlation between the degree of IE1p72 SUMO conjugation and the abundance of PML. On the other hand, the SUMOylation of IE2p86 was not affected by PML. By performing in vitro SUMOylation assays, we were able to provide direct evidence that IE1p72 is a substrate for PML-mediated SUMOylation. Interestingly, disruption of the RING finger domain of PML, which is proposed to confer SUMO E3 ligase activity, abolished PML-induced SUMOylation of IE1p72. In contrast, IE1p72 was still efficiently SUMO modified by a SUMOylation-defective PML mutant, indicating that intact ND10 bodies are not necessary for this effect. Thus, this is the first report that the E3 ligase PML is capable of stimulating the SUMOylation of a viral protein which is supposed to serve as a cellular mechanism to compromise specific functions of IE1p72.IMPORTANCE The major immediate early proteins of human cytomegalovirus, termed IE1p72 and IE2p86, have previously been shown to undergo posttranslational modification by covalent coupling to SUMO moieties at specific lysine residues. However, the enzymatic activities that are responsible for this modification have not been identified. Here, we demonstrate that the PML protein, which mediates an intrinsic immune response against HCMV, specifically serves as an E3 ligase for SUMO modification of IE1p72. Since SUMO modification of IE1p72 has previously been shown to interfere with STAT factor binding, thus compromising the interferon-antagonistic function of this viral effector protein, our finding highlights an additional mechanism through which PML is able to restrict viral infections.


Asunto(s)
Citomegalovirus/genética , Citomegalovirus/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Nucleares/química , Proteína de la Leucemia Promielocítica/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Citomegalovirus/enzimología , Fibroblastos/virología , Humanos , Proteínas Inmediatas-Precoces/genética , Mutación , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica/química , Proteína SUMO-1/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo , Replicación Viral
18.
J Virol ; 91(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27903803

RESUMEN

PML nuclear bodies (NBs) are accumulations of cellular proteins embedded in a scaffold-like structure built by SUMO-modified PML/TRIM19. PML and other NB proteins act as cellular restriction factors against human cytomegalovirus (HCMV); however, this intrinsic defense is counteracted by the immediate early protein 1 (IE1) of HCMV. IE1 directly interacts with the PML coiled-coil domain via its globular core region and disrupts NB foci by inducing a loss of PML SUMOylation. Here, we demonstrate that IE1 acts via abrogating the de novo SUMOylation of PML. In order to overcome reversible SUMOylation dynamics, we made use of a cell-based assay that combines inducible IE1 expression with a SUMO mutant resistant to SUMO proteases. Interestingly, we observed that IE1 expression did not affect preSUMOylated PML; however, it clearly prevented de novo SUMO conjugation. Consistent results were obtained by in vitro SUMOylation assays, demonstrating that IE1 alone is sufficient for this effect. Furthermore, IE1 acts in a selective manner, since K160 was identified as the main target lysine. This is strengthened by the fact that IE1 also prevents As2O3-mediated hyperSUMOylation of K160, thereby blocking PML degradation. Since IE1 did not interfere with coiled-coil-mediated PML dimerization, we propose that IE1 affects PML autoSUMOylation either by directly abrogating PML E3 ligase function or by preventing access to SUMO sites. Thus, our data suggest a novel mechanism for how a viral protein counteracts a cellular restriction factor by selectively preventing the de novo SUMOylation at specific lysine residues without affecting global protein SUMOylation. IMPORTANCE: The human cytomegalovirus IE1 protein acts as an important antagonist of a cellular restriction mechanism that is mediated by subnuclear structures termed PML nuclear bodies. This function of IE1 is required for efficient viral replication and thus constitutes a potential target for antiviral strategies. In this paper, we further elucidate the molecular mechanism for how IE1 antagonizes PML NBs. We show that tight binding of IE1 to PML interferes with the de novo SUMOylation of a distinct lysine residue that is also the target of stress-mediated hyperSUMOylation of PML. This is of importance since it represents a novel mechanism used by a viral antagonist of intrinsic immunity. Furthermore, it highlights the possibility of developing small molecules that specifically abrogate this PML-antagonistic activity of IE1 and thus inhibit viral replication.


Asunto(s)
Proteínas Inmediatas-Precoces/metabolismo , Inmunidad , Cuerpos de Inclusión Intranucleares/metabolismo , Proteína de la Leucemia Promielocítica/metabolismo , Línea Celular , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Estabilidad de Enzimas , Humanos , Mutación , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación
19.
J Virol ; 91(22)2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28878085

RESUMEN

Human cytomegalovirus (HCMV) persistently infects 40% to 100% of the human population worldwide. Experimental and clinical evidence indicates that humoral immunity to HCMV plays an important role in restricting virus dissemination and protecting the infected host from disease. Specific immunoglobulin preparations from pooled plasma of adults selected for high titers of HCMV antibodies have been used for the prevention of CMV disease in transplant recipients and pregnant women. Even though incubation of HCMV particles with these preparations leads to the neutralization of viral infectivity, it is still unclear whether the antibody-treated HCMV particles (referred to here as HCMV-Ab) enter the cells and modulate antiviral immune responses. Here we demonstrate that HCMV-Ab did enter macrophages. HCMV-Ab did not initiate the expression of immediate early antigens (IEAs) in macrophages, but they induced an antiviral state and rendered the cells less susceptible to HCMV infection upon challenge. Resistance to HCMV infection seemed to be due to the activation of intrinsic restriction factors and was independent of interferons. In contrast to actively infected cells, autologous NK cells did not degranulate against HCMV-Ab-treated macrophages, suggesting that these cells may not be eliminated by innate effector cells. Interestingly, HCMV-Ab-treated macrophages stimulated the proliferation of autologous adaptive CD4+ and CD8+ T cells. Our findings not only expand the current knowledge on virus-antibody immunity but may also be relevant for future vaccination strategies.IMPORTANCE Human cytomegalovirus (HCMV), a common herpesvirus, establishes benign but persistent infections in immunocompetent hosts. However, in subjects with an immature or dysfunctional immune system, HCMV is a major cause of morbidity and mortality. Passive immunization has been used in different clinical settings with variable clinical results. Intravenous hyperimmune globulin preparations (IVIg) are obtained from pooled adult human plasma selected for high anti-CMV antibody titers. While HCMV neutralization can be shown in vitro using different systems, data are lacking regarding the cross-influence of IVIg administration on the cellular immune responses. The aim of this study was to evaluate the effects of IVIg on distinct components of the immune response against HCMV, including antigen presentation by macrophages, degranulation of innate natural killer cells, and proliferation of adaptive CD4+ and CD8+ T cells.


Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Inmunidad Celular , Macrófagos/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/virología , Infecciones por Citomegalovirus/patología , Femenino , Humanos , Inmunidad Innata , Macrófagos/patología , Macrófagos/virología , Masculino
20.
PLoS Pathog ; 12(1): e1005415, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26809031

RESUMEN

Interferons (IFNs) are cytokines that have pleiotropic effects and play important roles in innate and adaptive immunity. IFNs have broad antiviral properties and function by different mechanisms. IFNs fail to inhibit wild-type Adenovirus (Ad) replication in established cancer cell lines. In this study, we analyzed the effects of IFNs on Ad replication in normal human cells. Our data demonstrate that both IFNα and IFNγ blocked wild-type Ad5 replication in primary human bronchial epithelial cells (NHBEC) and TERT-immortalized normal human diploid fibroblasts (HDF-TERT). IFNs inhibited the replication of divergent adenoviruses. The inhibition of Ad5 replication by IFNα and IFNγ is the consequence of repression of transcription of the E1A immediate early gene product. Both IFNα and IFNγ impede the association of the transactivator GABP with the E1A enhancer region during the early phase of infection. The repression of E1A expression by IFNs requires a conserved E2F binding site in the E1A enhancer, and IFNs increased the enrichment of the E2F-associated pocket proteins, Rb and p107, at the E1A enhancer in vivo. PD0332991 (Pabociclib), a specific CDK4/6 inhibitor, dephosphoryles pocket proteins to promote their interaction with E2Fs and inhibited wild-type Ad5 replication dependent on the conserved E2F binding site. Consistent with this result, expression of the small E1A oncoprotein, which abrogates E2F/pocket protein interactions, rescued Ad replication in the presence of IFNα or IFNγ. Finally, we established a persistent Ad infection model in vitro and demonstrated that IFNγ suppresses productive Ad replication in a manner dependent on the E2F binding site in the E1A enhancer. This is the first study that probes the molecular basis of persistent adenovirus infection and reveals a novel mechanism by which adenoviruses utilize IFN signaling to suppress lytic virus replication and to promote persistent infection.


Asunto(s)
Infecciones por Adenovirus Humanos/inmunología , Factores de Transcripción E2F/inmunología , Interferones/inmunología , Proteína de Retinoblastoma/inmunología , Replicación Viral/fisiología , Adenoviridae , Línea Celular , Inmunoprecipitación de Cromatina , Regulación Viral de la Expresión Génica/fisiología , Genes Inmediatos-Precoces , Humanos , Proteínas Inmediatas-Precoces/biosíntesis , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA