RESUMEN
Human IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) that target the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection. An IGHV1-69 ortholog gene, VH1.36, is preferentially used for bnAbs isolated from HCV Env-immunized rhesus macaques (RMs). Here, we studied the genetic, structural, and functional properties of VH1.36-encoded bnAbs generated by vaccination, in comparison to IGHV1-69-encoded bnAbs from HCV patients. Global B cell repertoire analysis confirmed the expansion of VH1.36-derived B cells in immunized animals. Most E2-specific, VH1.36-encoded antibodies cross-neutralized HCV. Crystal structures of two RM bnAbs with E2 revealed that the RM bnAbs engaged conserved E2 epitopes using similar molecular features as human bnAbs but with a different binding mode. Longitudinal analyses of the RM antibody repertoire responses during immunization indicated rapid lineage development of VH1.36-encoded bnAbs with limited somatic hypermutation. Our findings suggest functional convergence of a germline-encoded bnAb response to HCV Env with implications for vaccination in humans.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Células Germinativas/inmunología , Glicoproteínas/inmunología , Hepacivirus/inmunología , Hepatitis C/inmunología , Macaca mulatta/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Linfocitos B/inmunología , Células CHO , Línea Celular , Cricetulus , Epítopos/inmunología , Células HEK293 , Hepatitis C/virología , Humanos , Estudios Longitudinales , Macaca mulatta/virología , Receptores de Antígenos de Linfocitos B/inmunología , Vacunación/métodosRESUMEN
The generation of broadly neutralizing antibodies (bnAbs) to conserved epitopes on HIV Envelope (Env) is one of the cornerstones of HIV vaccine research. The animal models commonly used for HIV do not reliably produce a potent broadly neutralizing serum antibody response, with the exception of cows. Cows have previously produced a CD4 binding site response by homologous prime and boosting with a native-like Env trimer. In small animal models, other engineered immunogens were shown to focus antibody responses to the bnAb V2-apex region of Env. Here, we immunized two groups of cows (n = 4) with two regimens of V2-apex focusing Env immunogens to investigate whether antibody responses could be generated to the V2-apex on Env. Group 1 was immunized with chimpanzee simian immunodeficiency virus (SIV)-Env trimer that shares its V2-apex with HIV, followed by immunization with C108, a V2-apex focusing immunogen, and finally boosted with a cross-clade native-like trimer cocktail. Group 2 was immunized with HIV C108 Env trimer followed by the same HIV trimer cocktail as Group 1. Longitudinal serum analysis showed that one cow in each group developed serum neutralizing antibody responses to the V2-apex. Eight and 11 bnAbs were isolated from Group 1 and Group 2 cows, respectively, and showed moderate breadth and potency. Potent and broad responses in this study developed much later than previous cow immunizations that elicited CD4bs bnAbs responses and required several different immunogens. All isolated bnAbs were derived from the ultralong CDRH3 repertoire. The finding that cow antibodies can target more than one broadly neutralizing epitope on the HIV surface reveals the generality of elongated structures for the recognition of highly glycosylated proteins. The exclusive isolation of ultralong CDRH3 bnAbs, despite only comprising a small percent of the cow repertoire, suggests these antibodies outcompete the long and short CDRH3 antibodies during the bnAb response.
Asunto(s)
Vacunas contra el SIDA , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , VIH-1 , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Animales , Bovinos , Anticuerpos Anti-VIH/inmunología , Vacunas contra el SIDA/inmunología , VIH-1/inmunología , Anticuerpos Neutralizantes/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Epítopos/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Femenino , Inmunización , Humanos , Anticuerpos ampliamente neutralizantes/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunologíaRESUMEN
Advances in HIV-1 envelope glycoprotein (Env) design generate native-like trimers and high-resolution clade A, B, and G structures and elicit neutralizing antibodies. However, a high-resolution clade C structure is critical, as this subtype accounts for the majority of HIV infections worldwide, but well-ordered clade C Env trimers are more challenging to produce due to their instability. Based on targeted glycine substitutions in the Env fusion machinery, we defined a general approach that disfavors helical transitions leading to post-fusion conformations, thereby favoring the pre-fusion state. We generated a stabilized, soluble clade C Env (16055 NFL) and determined its crystal structure at 3.9 Å. Its overall conformation is similar to SOSIP.664 and native Env trimers but includes a covalent linker between gp120 and gp41, an engineered 201-433 disulfide bond, and density corresponding to 22 N-glycans. Env-structure-guided design strategies resulted in multiple homogeneous cross-clade immunogens with the potential to advance HIV vaccine development.
Asunto(s)
Sustitución de Aminoácidos , Glicina/química , VIH-1/inmunología , Conformación Proteica en Hélice alfa , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Sitios de Unión , Genotipo , Glicina/genética , Glicosilación , Anticuerpos Anti-VIH/química , Anticuerpos Anti-VIH/inmunología , Anticuerpos Anti-VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/inmunología , VIH-1/clasificación , VIH-1/genética , Humanos , Modelos Moleculares , Mutación , Unión Proteica/inmunología , Ingeniería de Proteínas , Multimerización de Proteína , Estabilidad Proteica , Proteolisis , Solubilidad , Relación Estructura-Actividad , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
Nanobodies bind a target antigen with a kinetic profile similar to a conventional antibody, but exist as a single heavy chain domain that can be readily multimerized to engage antigen via multiple interactions. Presently, most nanobodies are produced by immunizing camelids; however, platforms for animal-free production are growing in popularity. Here, we describe the development of a fully synthetic nanobody library based on an engineered human VH3-23 variable gene and a multispecific antibody-like format designed for biparatopic target engagement. To validate our library, we selected nanobodies against the SARS-CoV-2 receptor-binding domain and employed an on-yeast epitope binning strategy to rapidly map the specificities of the selected nanobodies. We then generated antibody-like molecules by replacing the VH and VL domains of a conventional antibody with two different nanobodies, designed as a molecular clamp to engage the receptor-binding domain biparatopically. The resulting bispecific tetra-nanobody immunoglobulins neutralized diverse SARS-CoV-2 variants with potencies similar to antibodies isolated from convalescent donors. Subsequent biochemical analyses confirmed the accuracy of the on-yeast epitope binning and structures of both individual nanobodies, and a tetra-nanobody immunoglobulin revealed that the intended mode of interaction had been achieved. This overall workflow is applicable to nearly any protein target and provides a blueprint for a modular workflow for the development of multispecific molecules.
Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Humanos , Anticuerpos de Dominio Único/química , Saccharomyces cerevisiae/metabolismo , SARS-CoV-2 , Anticuerpos , EpítoposRESUMEN
Cows produce antibodies with a disulfide-bonded antigen-binding domain embedded within ultralong heavy chain third complementarity determining regions. This "knob" domain is analogous to natural cysteine-rich peptides such as knottins in that it is small and stable but can accommodate diverse loops and disulfide bonding patterns. We immunized cattle with SARS-CoV-2 spike and found ultralong CDR H3 antibodies that could neutralize several viral variants at picomolar IC50 potencies in vitro and could protect from disease in vivo. The independent CDR H3 peptide knobs were expressed and maintained the properties of the parent antibodies. The knob interaction with SARS-CoV-2 spike was revealed by electron microscopy, X-ray crystallography, NMR spectroscopy, and mass spectrometry and established ultralong CDR H3-derived knobs as the smallest known recombinant independent antigen-binding fragment. Unlike other vertebrate antibody fragments, these knobs are not reliant on the immunoglobulin domain and have potential as a new class of therapeutics.
Asunto(s)
COVID-19 , SARS-CoV-2 , Femenino , Animales , Bovinos , Anticuerpos , Fragmentos Fab de Inmunoglobulinas/genética , DisulfurosRESUMEN
Numerous studies of the anti-HIV-1 envelope glycoprotein 41 (gp41) broadly neutralizing antibody 4E10 suggest that 4E10 also interacts with membrane lipids, but the antibody regions contacting lipids and its orientation with respect to the viral membrane are unknown. Vaccine immunogens capable of re-eliciting these membrane proximal external region (MPER)-like antibodies may require a lipid component to be successful. We performed a systematic crystallographic study of lipid binding to 4E10 to identify lipids bound by the antibody and the lipid-interacting regions. We identified phosphatidic acid, phosphatidylglycerol, and glycerol phosphate as specific ligands for 4E10 in the crystal structures. 4E10 used its CDRH1 loop to bind the lipid head groups, while its CDRH3 interacted with the hydrophobic lipid tails. Identification of the lipid binding sites on 4E10 may aid design of immunogens for vaccines that include a lipid component in addition to the MPER on gp41 for generation of broadly neutralizing antibodies.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Sitios de Unión de Anticuerpos/inmunología , Epítopos de Linfocito B/inmunología , Anticuerpos Anti-VIH/inmunología , Lípidos de la Membrana/inmunología , Anticuerpos ampliamente neutralizantes , Línea Celular , Cristalografía por Rayos X , Epítopos de Linfocito B/química , Humanos , Unión Proteica/inmunología , Conformación ProteicaRESUMEN
Broadly neutralizing antibodies (bnAbs) against the N332 supersite of the HIV envelope (Env) trimer are the most common bnAbs induced during infection, making them promising leads for vaccine design. Wild-type Env glycoproteins lack detectable affinity for supersite-bnAb germline precursors and are therefore unsuitable immunogens to prime supersite-bnAb responses. We employed mammalian cell surface display to design stabilized Env trimers with affinity for germline-reverted precursors of PGT121-class supersite bnAbs. The trimers maintained native-like antigenicity and structure, activated PGT121 inferred-germline B cells ex vivo when multimerized on liposomes, and primed PGT121-like responses in PGT121 inferred-germline knockin mice. Design intermediates have levels of epitope modification between wild-type and germline-targeting trimers; their mutation gradient suggests sequential immunization to induce bnAbs, in which the germline-targeting prime is followed by progressively less-mutated design intermediates and, lastly, with native trimers. The vaccine design strategies described could be utilized to target other epitopes on HIV or other pathogens.
Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Polisacáridos/inmunología , Secuencia de Aminoácidos , Animales , Linfocitos B/inmunología , Epítopos/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Inmunización/métodos , Ratones , Ratones Noqueados , Mutación/inmunología , Alineación de Secuencia , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunologíaRESUMEN
Gnathostome adaptive immunity is defined by the Ag receptors, Igs and TCRs, and the MHC. Cartilaginous fish are the oldest vertebrates with these adaptive hallmarks. We and others have unearthed nonrearranging Ag receptor-like genes in several vertebrates, some of which are encoded in the MHC or in MHC paralogous regions. One of these genes, named UrIg, was detected in the class III region of the shark MHC that encodes a protein with typical V and C domains such as those found in conventional Igs and TCRs. As no transmembrane region was detected in gene models or cDNAs, the protein does not appear to act as a receptor. Unlike some other shark Ig genes, the UrIg V region shows no evidence of RAG-mediated rearrangement, and thus it is likely related to other V genes that predated the invasion of the RAG transposon. The UrIg gene is present in all elasmobranchs and evolves conservatively, unlike Igs and TCRs. Also, unlike Ig/TCR, the gene is not expressed in secondary lymphoid tissues, but mainly in the liver. Recombinant forms of the molecule form disulfide-linked homodimers, which is the form also detected in many shark tissues by Western blotting. mAbs specific for UrIg identify the protein in the extracellular matrix of several shark tissues by immunohistochemistry. We propose that UrIg is related to the V gene invaded by the RAG transposon, consistent with the speculation of emergence of Ig/TCR within the MHC or proto-MHC.
Asunto(s)
Anticuerpos , Complejo Mayor de Histocompatibilidad , Tiburones , Tiburones/genética , Tiburones/metabolismo , Anticuerpos/química , Anticuerpos/genética , Anticuerpos/metabolismo , Inmunoglobulina G/genética , Filogenia , Evolución Molecular , Secuencia de Aminoácidos , Alineación de Secuencia , Hígado/metabolismo , Expresión Génica , Mamíferos/genética , Especificidad de ÓrganosRESUMEN
Aggregation of transthyretin (TTR) is associated with devastating amyloid diseases. Amyloidosis begins with the dissociation of the native homotetramer (a dimer of dimers) to form a monomeric intermediate that assembles into pathogenic aggregates. This process is accelerated in vitro at low pH, but the process by which TTR dissociates and reassembles at neutral pH remains poorly characterized due to the low population of intermediates. Here, we use 19F-nuclear magnetic resonance (NMR) and a highly sensitive trifluoromethyl probe to determine the relative populations of the species formed by the dissociation of a destabilized variant, A25T. The A25T mutation perturbs both the strong dimer and weak dimer-dimer interfaces. A tetramerâ¯ââ¯dimerâ¯ââ¯monomer (TDM) equilibrium model is proposed to account for concentration- and temperature-dependent population changes. Thermodynamic and kinetic parameters and activation energetics for dissociation of the native A25T tetramer, as well as a destabilized alternative tetramer (T*) with a mispacked F87 side chain, were extracted by van't Hoff and 19F-NMR line shape analysis, saturation transfer, and transition state theory. Chemical shifts for the dimer and T* species are degenerate for 19F and methyl probes close to the strong dimer interface, implicating interfacial perturbation as a common structural feature of these destabilized species. All-atom molecular dynamics simulations further suggest more frequent F87 ring flipping on the nanosecond time scale in the A25T dimer than in the native A25T tetramer. Our integrated approach offers quantitative insights into the energy landscape of the dissociation pathway of TTR at neutral pH.
Asunto(s)
Prealbúmina , Prealbúmina/genética , Prealbúmina/química , Prealbúmina/metabolismo , Mutación , Espectroscopía de Resonancia MagnéticaRESUMEN
Broadly neutralizing antibodies (bNAbs) have remarkable breadth and potency against most HIV-1 subtypes and are able to prevent HIV-1 infection in animal models. However, bNAbs are extremely difficult to induce by vaccination. Defining the developmental pathways towards neutralization breadth can assist in the design of strategies to elicit protective bNAb responses by vaccination. Here, HIV-1 envelope glycoproteins (Env)-specific IgG+ B cells were isolated at various time points post infection from an HIV-1 infected elite neutralizer to obtain monoclonal antibodies (mAbs). Multiple antibody lineages were isolated targeting distinct epitopes on Env, including the gp120-gp41 interface, CD4-binding site, silent face and V3 region. The mAbs each neutralized a diverse set of HIV-1 strains from different clades indicating that the patient's remarkable serum breadth and potency might have been the result of a polyclonal mixture rather than a single bNAb lineage. High-resolution cryo-electron microscopy structures of the neutralizing mAbs (NAbs) in complex with an Env trimer generated from the same individual revealed that the NAbs used multiple strategies to neutralize the virus; blocking the receptor binding site, binding to HIV-1 Env N-linked glycans, and disassembly of the trimer. These results show that diverse NAbs can complement each other to achieve a broad and potent neutralizing serum response in HIV-1 infected individuals. Hence, the induction of combinations of moderately broad NAbs might be a viable vaccine strategy to protect against a wide range of circulating HIV-1 viruses.
Asunto(s)
Seropositividad para VIH , VIH-1 , Animales , Anticuerpos ampliamente neutralizantes , Microscopía por Crioelectrón , Anticuerpos Monoclonales , Proteína gp120 de Envoltorio del VIHRESUMEN
The high-mannose patch on the HIV-1 envelope (Env) glycoprotein is the epicenter for binding of the potent broadly neutralizing PGT121 family of antibodies, but strategies for generating such antibodies by vaccination have not been defined. We generated structures of inferred antibody intermediates by X-ray crystallography and electron microscopy to elucidate the molecular events that occurred during evolution of this family. Binding analyses revealed that affinity maturation was primarily focused on avoiding, accommodating, or binding the N137 glycan. The overall antibody approach angle to Env was defined very early in the maturation process, yet some variation evolved in the PGT121 family branches that led to differences in glycan specificities in their respective epitopes. Furthermore, we determined a crystal structure of the recombinant BG505 SOSIP.664 HIV-1 trimer with a PGT121 family member at 3.0 Å that, in concert with these antibody intermediate structures, provides insights to advance design of HIV vaccine candidates.
Asunto(s)
Afinidad de Anticuerpos/inmunología , Epítopos/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Afinidad de Anticuerpos/genética , Antígenos Virales/química , Antígenos Virales/inmunología , Rastreo Diferencial de Calorimetría , Cristalografía por Rayos X , Epítopos/química , Células HEK293 , Anticuerpos Anti-VIH/química , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica de Transmisión , Mutagénesis Sitio-Dirigida , Polisacáridos/inmunología , Hipermutación Somática de Inmunoglobulina , Proteínas del Envoltorio Viral/inmunología , Difracción de Rayos X , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunologíaRESUMEN
In 2015, monoclonal antibodies (mAbs) that selectively recognize the 1-pHis or 3-pHis isoforms of phosphohistidine were developed by immunizing rabbits with degenerate Ala/Gly peptides containing the nonhydrolyzable phosphohistidine (pHis) analog- phosphotriazolylalanine (pTza). Here, we report structures of five rabbit mAbs bound to cognate pTza peptides: SC1-1 and SC50-3 that recognize 1-pHis, and their 3-pHis-specific counterparts, SC39-4, SC44-8, and SC56-2. These cocrystal structures provide insights into the binding modes of the pTza phosphate group that are distinct for the 1- and 3-pHis mAbs with the selectivity arising from specific contacts with the phosphate group and triazolyl ring. The mode of phosphate recognition in the 3-pHis mAbs recapitulates the Walker A motif, as present in kinases. The complementarity-determining regions (CDRs) of four of the Fabs interact with the peptide backbone rather than peptide side chains, thus conferring sequence independence, whereas SC44-8 shows a proclivity for binding a GpHAGA motif mediated by a sterically complementary CDRL3 loop. Specific hydrogen bonding with the triazolyl ring precludes recognition of pTyr and other phosphoamino acids by these mAbs. Kinetic binding experiments reveal that the affinity of pHis mAbs for pHis and pTza peptides is submicromolar. Bound pHis mAbs also shield the pHis peptides from rapid dephosphorylation. The epitope-paratope interactions illustrate how these anti-pHis antibodies are useful for a wide range of research techniques and this structural information can be utilized to improve the specificity and affinity of these antibodies toward a variety of pHis substrates to understand the role of histidine phosphorylation in healthy and diseased states.
Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Histidina/análogos & derivados , Péptidos/química , Péptidos/inmunología , Secuencia de Aminoácidos , Animales , Reacciones Cruzadas/inmunología , Histidina/química , Histidina/inmunología , Fragmentos Fab de Inmunoglobulinas/química , Isomerismo , Cinética , Fosfatos/metabolismo , Conejos , Relación Estructura-ActividadRESUMEN
A new streamlined and scaled divergent total synthesis of pocket-modified vancomycin analogs is detailed that provides a common late-stage intermediate [Ψ[C(âS)NH]Tpg4]vancomycin (LLS = 18 steps, 12% overall yield, >5 g prepared) to access both existing and future pocket modifications. Highlights of the approach include an atroposelective synthesis of [Ψ[C(âS)NH]Tpg4]vancomycin aglycon (11), a one-pot enzymatic glycosylation for direct conversion to [Ψ[C(âS)NH]Tpg4]vancomycin (12), and new powerful methods for the late-stage conversion of the embedded thioamide to amidine/aminomethylene pocket modifications. Incorporation of two peripheral modifications provides a scalable total synthesis of the maxamycins, all prepared from aglycon 11 without use of protecting groups. Thus, both existing and presently unexplored pocket-modified analogues paired with a range of peripheral modifications are accessible from this common thioamide intermediate. In addition to providing an improved synthesis of the initial member of the maxamycins, this is illustrated herein with the first synthesis and examination of maxamycins that contain the most effective of the pocket modifications (amidine) described to date combined with two additional peripheral modifications. These new amidine-based maxamycins proved to be potent, durable, and efficacious antimicrobial agents that display equipotent activity against vancomycin-sensitive and vancomycin-resistant Gram-positive organisms and act by three independent synergistic mechanisms of action. In the first such study conducted to date, one new maxamycin (21, MX-4) exhibited efficacious in vivo activity against a feared and especially challenging multidrug-resistant (MRSA) and vancomycin-resistant (VRSA) S. aureus bacterial strain (VanA VRS-2) for which vancomycin is inactive.
Asunto(s)
Antibacterianos , Vancomicina , Staphylococcus aureus/metabolismo , Bacterias/metabolismo , Pruebas de Sensibilidad MicrobianaRESUMEN
For many enveloped viruses, binding to a receptor(s) on a host cell acts as the first step in a series of events culminating in fusion with the host cell membrane and transfer of genetic material for replication. The envelope glycoprotein (Env) trimer on the surface of HIV is responsible for receptor binding and fusion. Although Env can tolerate a high degree of mutation in five variable regions (V1-V5), and also at N-linked glycosylation sites that contribute roughly half the mass of Env, the functional sites for recognition of receptor CD4 and co-receptor CXCR4/CCR5 are conserved and essential for viral fitness. Soluble SOSIP Env trimers are structural and antigenic mimics of the pre-fusion native, surface-presented Env, and are targets of broadly neutralizing antibodies. Thus, they are attractive immunogens for vaccine development. Here we present high-resolution cryo-electron microscopy structures of subtype B B41 SOSIP Env trimers in complex with CD4 and antibody 17b, or with antibody b12, at resolutions of 3.7 Å and 3.6 Å, respectively. We compare these to cryo-electron microscopy reconstructions of B41 SOSIP Env trimers with no ligand or in complex with either CD4 or the CD4-binding-site antibody PGV04 at 5.6 Å, 5.2 Å and 7.4 Å resolution, respectively. Consequently, we present the most complete description yet, to our knowledge, of the CD4-17b-induced intermediate and provide the molecular basis of the receptor-binding-induced conformational change required for HIV-1 entry into host cells. Both CD4 and b12 induce large, previously uncharacterized conformational rearrangements in the gp41 subunits, and the fusion peptide becomes buried in a newly formed pocket. These structures provide key details on the biological function of the type I viral fusion machine from HIV-1 as well as new templates for inhibitor design.
Asunto(s)
Regulación Alostérica , Microscopía por Crioelectrón , VIH-1/química , VIH-1/ultraestructura , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/ultraestructura , Regulación Alostérica/efectos de los fármacos , Secuencia de Aminoácidos , Anticuerpos/química , Anticuerpos/inmunología , Anticuerpos/farmacología , Anticuerpos/ultraestructura , Sitios de Unión/efectos de los fármacos , Antígenos CD4/química , Antígenos CD4/metabolismo , Antígenos CD4/ultraestructura , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/metabolismo , Proteína gp41 de Envoltorio del VIH/ultraestructura , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/farmacología , Fragmentos Fab de Inmunoglobulinas/ultraestructura , Ligandos , Modelos Moleculares , Receptores CCR5/química , Receptores CCR5/metabolismo , Receptores del VIH/química , Receptores del VIH/metabolismo , Receptores del VIH/ultraestructura , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
No immunogen to date has reliably elicited broadly neutralizing antibodies to HIV in humans or animal models. Advances in the design of immunogens that antigenically mimic the HIV envelope glycoprotein (Env), such as the soluble cleaved trimer BG505 SOSIP, have improved the elicitation of potent isolate-specific antibody responses in rabbits and macaques, but so far failed to induce broadly neutralizing antibodies. One possible reason for this failure is that the relevant antibody repertoires are poorly suited to target the conserved epitope regions on Env, which are somewhat occluded relative to the exposed variable epitopes. Here, to test this hypothesis, we immunized four cows with BG505 SOSIP. The antibody repertoire of cows contains long third heavy chain complementary determining regions (HCDR3) with an ultralong subset that can reach more than 70 amino acids in length. Remarkably, BG505 SOSIP immunization resulted in rapid elicitation of broad and potent serum antibody responses in all four cows. Longitudinal serum analysis for one cow showed the development of neutralization breadth (20%, n = 117 cross-clade isolates) in 42 days and 96% breadth (n = 117) at 381 days. A monoclonal antibody isolated from this cow harboured an ultralong HCDR3 of 60 amino acids and neutralized 72% of cross-clade isolates (n = 117) with a potent median IC50 of 0.028 µg ml-1. Breadth was elicited with a single trimer immunogen and did not require additional envelope diversity. Immunization of cows may provide an avenue to rapidly generate antibody prophylactics and therapeutics to address disease agents that have evolved to avoid human antibody responses.
Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/aislamiento & purificación , Bovinos/inmunología , VIH/inmunología , Inmunización , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Células HEK293 , Proteínas gp160 de Envoltorio del VIH/inmunología , HumanosRESUMEN
Fifty years ago, the first landmark structures of antibodies heralded the dawn of structural immunology. Momentum then started to build toward understanding how antibodies could recognize the vast universe of potential antigens and how antibody-combining sites could be tailored to engage antigens with high specificity and affinity through recombination of germline genes (V, D, J) and somatic mutation. Equivalent groundbreaking structures in the cellular immune system appeared some 15 to 20 years later and illustrated how processed protein antigens in the form of peptides are presented by MHC molecules to T cell receptors. Structures of antigen receptors in the innate immune system then explained their inherent specificity for particular microbial antigens including lipids, carbohydrates, nucleic acids, small molecules, and specific proteins. These two sides of the immune system act immediately (innate) to particular microbial antigens or evolve (adaptive) to attain high specificity and affinity to a much wider range of antigens. We also include examples of other key receptors in the immune system (cytokine receptors) that regulate immunity and inflammation. Furthermore, these antigen receptors use a limited set of protein folds to accomplish their various immunological roles. The other main players are the antigens themselves. We focus on surface glycoproteins in enveloped viruses including SARS-CoV-2 that enable entry and egress into host cells and are targets for the antibody response. This review covers what we have learned over the past half century about the structural basis of the immune response to microbial pathogens and how that information can be utilized to design vaccines and therapeutics.
Asunto(s)
Inmunidad Adaptativa , Anticuerpos Antivirales/química , Antígenos Virales/química , Inmunidad Innata , Receptores de Antígenos de Linfocitos T/química , Receptores de Citocinas/química , SARS-CoV-2/inmunología , Alergia e Inmunología/historia , Animales , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos , Presentación de Antígeno , Antígenos Virales/genética , Antígenos Virales/inmunología , COVID-19/inmunología , COVID-19/virología , Cristalografía/historia , Cristalografía/métodos , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Citocinas/genética , Receptores de Citocinas/inmunología , SARS-CoV-2/patogenicidad , Recombinación V(D)JRESUMEN
In Ig light-chain (LC) amyloidosis (AL), the unique antibody LC protein that is secreted by monoclonal plasma cells in each patient misfolds and/or aggregates, a process leading to organ degeneration. As a step toward developing treatments for AL patients with substantial cardiac involvement who have difficulty tolerating existing chemotherapy regimens, we introduce small-molecule kinetic stabilizers of the native dimeric structure of full-length LCs, which can slow or stop the amyloidogenicity cascade at its origin. A protease-coupled fluorescence polarization-based high-throughput screen was employed to identify small molecules that kinetically stabilize LCs. NMR and X-ray crystallographic data demonstrate that at least one structural family of hits bind at the LC-LC dimerization interface within full-length LCs, utilizing variable-domain residues that are highly conserved in most AL patients. Stopping the amyloidogenesis cascade at the beginning is a proven strategy to ameliorate postmitotic tissue degeneration.
Asunto(s)
Amiloide , Cadenas Ligeras de Inmunoglobulina , Estabilidad Proteica , Amiloide/química , Amiloide/metabolismo , Amiloidosis , Ensayos Analíticos de Alto Rendimiento , Humanos , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/metabolismo , Cinética , Multimerización de ProteínaRESUMEN
The human T cell leukemia virus I basic leucine zipper protein (HTLV-1 HBZ) maintains chronic viral infection and promotes leukemogenesis through poorly understood mechanisms involving interactions with the KIX domain of the transcriptional coactivator CBP and its paralog p300. The KIX domain binds regulatory proteins at the distinct MLL and c-Myb/pKID sites to form binary or ternary complexes. The intrinsically disordered N-terminal activation domain of HBZ (HBZ AD) deregulates cellular signaling pathways by competing directly with cellular and viral transcription factors for binding to the MLL site and by allosterically perturbing binding of the transactivation domain of the hematopoietic transcription factor c-Myb. Crystal structures of the ternary KIX:c-Myb:HBZ complex show that the HBZ AD recruits two KIX:c-Myb entities through tandem amphipathic motifs (L/V)(V/L)DGLL and folds into a long α-helix upon binding. Isothermal titration calorimetry reveals strong cooperativity in binding of the c-Myb activation domain to the KIX:HBZ complex and in binding of HBZ to the KIX:c-Myb complex. In addition, binding of KIX to the two HBZ (V/L)DGLL motifs is cooperative; the structures suggest that this cooperativity is achieved through propagation of the HBZ α-helix beyond the first binding motif. Our study suggests that the unique structural flexibility and the multiple interaction motifs of the intrinsically disordered HBZ AD are responsible for its potency in hijacking KIX-mediated transcription pathways. The KIX:c-Myb:HBZ complex provides an example of cooperative stabilization in a transcription factor:coactivator network and gives insights into potential mechanisms through which HBZ dysregulates hematopoietic transcriptional programs and promotes T cell proliferation.
Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Virus Linfotrópico T Tipo 1 Humano/química , Proteínas Proto-Oncogénicas c-myb/química , Proteínas de los Retroviridae/química , Transcripción Genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Dominios Proteicos , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas c-myb/metabolismo , Proteínas de los Retroviridae/metabolismoRESUMEN
Recognition of the epigenetic mark 5-methylcytosine (mC) at CpG sites in DNA has emerged as a novel function of many eukaryotic transcription factors (TFs). It remains unclear why the sequence specificity of these TFs differs for CpG-methylated motifs and consensus motifs. Here, we dissect the structural and dynamic basis for this differential DNA binding specificity in the human zinc finger TF Kaiso, which exhibits high affinity for two consecutive mCpG sites in variable contexts and also for a longer, sequence-specific Kaiso binding site (KBS). By integrating structural analysis and DNA binding studies with targeted protein mutagenesis and nucleotide substitutions, we identify distinct mechanisms for readout of methylated and KBS motifs by Kaiso. We show that a key glutamate residue (E535), critical for mCpG site recognition, adopts different conformations in complexes with specific and methylated DNA. These conformational differences, together with intrinsic variations in DNA flexibility and/or solvation at TpG versus mCpG sites, contribute to the different DNA affinity and sequence specificity. With methylated DNA, multiple direct contacts between E535 and the 5' mCpG site dominate the binding affinity, allowing for tolerance of different flanking DNA sequences. With KBS, Kaiso employs E535 as part of an indirect screen of the 5' flanking sequence, relying on key tyrosine-DNA interactions to stabilize an optimal DNA conformation and select against noncognate sites. These findings demonstrate how TFs use conformational adaptation and exploit variations in DNA flexibility to achieve distinct DNA readout outcomes and target a greater variety of regulatory and epigenetic sites than previously appreciated.
Asunto(s)
Metilación de ADN , ADN/metabolismo , Factores de Transcripción/metabolismo , Dedos de Zinc , Secuencia de Bases , ADN/química , ADN/genética , Metilación de ADN/genética , Humanos , Conformación Proteica , Análisis de Secuencia de ADN , Factores de Transcripción/química , Factores de Transcripción/genéticaRESUMEN
The histone acetyl transferases CREB-binding protein (CBP) and its paralog p300 play a critical role in numerous cellular processes. Dysregulation of their catalytic activity is associated with several human diseases. Previous work has elucidated the regulatory mechanisms of p300 acetyltransferase activity, but it is not known whether CBP activity is controlled similarly. Here, we present the crystal structure of the CBP catalytic core encompassing the bromodomain (BRD), CH2 (comprising PHD and RING), HAT, and ZZ domains at 2.4-Å resolution. The BRD, PHD, and HAT domains form an integral structural unit to which the RING and ZZ domains are flexibly attached. The structure of the apo-CBP HAT domain is similar to that of acyl-CoA-bound p300 HAT complexes and shows that the acetyl-CoA binding site is stably formed in the absence of cofactor. The BRD, PHD, and ZZ domains interact with small ubiquitin-like modifier 1 (SUMO-1) and Ubc9, and function as an intramolecular E3 ligase for SUMOylation of the cell cycle regulatory domain 1 (CRD1) of CBP, which is located adjacent to the BRD. In vitro HAT assays suggest that the RING domain, the autoregulatory loop (AL) within the HAT domain, and the ZZ domain do not directly influence catalytic activity, whereas the BRD is essential for histone H3 acetylation in nucleosomal substrates. Several lysine residues in the intrinsically disordered AL are autoacetylated by the HAT domain. Upon autoacetylation, acetyl-K1596 (Ac-K1596) binds intramolecularly to the BRD, competing with histones for binding to the BRD and acting as a negative regulator that inhibits histone H3 acetylation.