Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780377

RESUMEN

OBJECTIVE: To evaluate: (1) the distribution of gray matter (GM) atrophy in myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4+NMOSD), and relapsing-remitting multiple sclerosis (RRMS); and (2) the relationship between GM volumes and white matter lesions in various brain regions within each disease. METHODS: A retrospective, multicenter analysis of magnetic resonance imaging data included patients with MOGAD/AQP4+NMOSD/RRMS in non-acute disease stage. Voxel-wise analyses and general linear models were used to evaluate the relevance of regional GM atrophy. For significant results (p < 0.05), volumes of atrophic areas are reported. RESULTS: We studied 135 MOGAD patients, 135 AQP4+NMOSD, 175 RRMS, and 144 healthy controls (HC). Compared with HC, MOGAD showed lower GM volumes in the temporal lobes, deep GM, insula, and cingulate cortex (75.79 cm3); AQP4+NMOSD in the occipital cortex (32.83 cm3); and RRMS diffusely in the GM (260.61 cm3). MOGAD showed more pronounced temporal cortex atrophy than RRMS (6.71 cm3), whereas AQP4+NMOSD displayed greater occipital cortex atrophy than RRMS (19.82 cm3). RRMS demonstrated more pronounced deep GM atrophy in comparison with MOGAD (27.90 cm3) and AQP4+NMOSD (47.04 cm3). In MOGAD, higher periventricular and cortical/juxtacortical lesions were linked to reduced temporal cortex, deep GM, and insula volumes. In RRMS, the diffuse GM atrophy was associated with lesions in all locations. AQP4+NMOSD showed no lesion/GM volume correlation. INTERPRETATION: GM atrophy is more widespread in RRMS compared with the other two conditions. MOGAD primarily affects the temporal cortex, whereas AQP4+NMOSD mainly involves the occipital cortex. In MOGAD and RRMS, lesion-related tract degeneration is associated with atrophy, but this link is absent in AQP4+NMOSD. ANN NEUROL 2024.

2.
Brain ; 147(4): 1331-1343, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38267729

RESUMEN

Cortical myelin loss and repair in multiple sclerosis (MS) have been explored in neuropathological studies, but the impact of these processes on neurodegeneration and the irreversible clinical progression of the disease remains unknown. Here, we evaluated in vivo cortical demyelination and remyelination in a large cohort of people with all clinical phenotypes of MS followed up for 5 years using magnetization transfer imaging (MTI), a technique that has been shown to be sensitive to myelin content changes in the cortex. We investigated 140 people with MS (37 clinically isolated syndrome, 71 relapsing-MS, 32 progressive-MS), who were clinically assessed at baseline and after 5 years and, along with 84 healthy controls, underwent a 3 T-MRI protocol including MTI at baseline and after 1 year. Changes in cortical volume over the radiological follow-up were computed with a Jacobian integration method. Magnetization transfer ratio was employed to calculate for each patient an index of cortical demyelination at baseline and of dynamic cortical demyelination and remyelination over the follow-up period. The three indices of cortical myelin content change were heterogeneous across patients but did not significantly differ across clinical phenotypes or treatment groups. Cortical remyelination, which tended to fail in the regions closer to CSF (-11%, P < 0.001), was extensive in half of the cohort and occurred independently of age, disease duration and clinical phenotype. Higher indices of cortical dynamic demyelination (ß = 0.23, P = 0.024) and lower indices of cortical remyelination (ß = -0.18, P = 0.03) were significantly associated with greater cortical atrophy after 1 year, independently of age and MS phenotype. While the extent of cortical demyelination predicted a higher probability of clinical progression after 5 years in the entire cohort [odds ratio (OR) = 1.2; P = 0.043], the impact of cortical remyelination in reducing the risk of accumulating clinical disability after 5 years was significant only in the subgroup of patients with shorter disease duration and limited extent of demyelination in cortical regions (OR = 0.86, P = 0.015, area under the curve = 0.93). In this subgroup, a 30% increase in cortical remyelination nearly halved the risk of clinical progression at 5 years, independently of clinical relapses. Overall, our results highlight the critical role of cortical myelin dynamics in the cascade of events leading to neurodegeneration and to the subsequent accumulation of irreversible disability in MS. Our findings suggest that early-stage myelin repair compensating for cortical myelin loss has the potential to prevent neuro-axonal loss and its long-term irreversible clinical consequences in people with MS.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Humanos , Vaina de Mielina/patología , Esclerosis Múltiple/patología , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/patología , Progresión de la Enfermedad , Atrofia/patología
3.
Magn Reson Med ; 91(4): 1608-1624, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38102807

RESUMEN

PURPOSE: MP2RAGE parameter optimization is redefined to allow more time-efficient MR acquisitions, whereas the T1 -based synthetic imaging framework is used to obtain on-demand T1 -weighted contrasts. Our aim was to validate this concept on healthy volunteers and patients with multiple sclerosis, using plug-and-play parallel-transmission brain imaging at 7 T. METHODS: A "time-efficient" MP2RAGE sequence was designed with optimized parameters including TI and TR set as small as possible. Extended phase graph formalism was used to set flip-angle values to maximize the gray-to-white-matter contrast-to-noise ratio (CNR). Several synthetic contrasts (UNI, EDGE, FGATIR, FLAWSMIN , FLAWSHCO ) were generated online based on the acquired T1 maps. Experimental validation was performed on 4 healthy volunteers at various spatial resolutions. Clinical applicability was evaluated on 6 patients with multiple sclerosis, scanned with both time-efficient and conventional MP2RAGE parameterizations. RESULTS: The proposed time-efficient MP2RAGE protocols reduced acquisition time by 40%, 30%, and 19% for brain imaging at (1 mm)3 , (0.80 mm)3 and (0.65 mm)3 , respectively, when compared with conventional parameterizations. They also provided all synthetic contrasts and comparable contrast-to-noise ratio on UNI images. The flexibility in parameter selection allowed us to obtain a whole-brain (0.45 mm)3 acquisition in 19 min 56 s. On patients with multiple sclerosis, a (0.67 mm)3 time-efficient acquisition enhanced cortical lesion visualization compared with a conventional (0.80 mm)3 protocol, while decreasing the scan time by 15%. CONCLUSION: The proposed optimization, associated with T1 -based synthetic contrasts, enabled substantial decrease of the acquisition time or higher spatial resolution scans for a given time budget, while generating all typical brain contrasts derived from MP2RAGE.


Asunto(s)
Imagen por Resonancia Magnética , Esclerosis Múltiple , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología
4.
Ann Neurol ; 94(2): 366-383, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37039158

RESUMEN

OBJECTIVE: To determine the prognostic value of persisting neuroinflammation in multiple sclerosis (MS) lesions, we developed a 18 kDa-translocator-protein-positron emission tomography (PET) -based classification of each lesion according to innate immune cell content and localization. We assessed the respective predictive value of lesion phenotype and diffuse inflammation on atrophy and disability progression over 2 years. METHODS: Thirty-six people with MS (disease duration 9 ± 6 years; 12 with relapsing-remitting, 13 with secondary-progressive, and 11 with primary-progressive) and 19 healthy controls (HCs) underwent a dynamic [18 F]-DPA-714-PET. At baseline and after 2 years, the patients also underwent a magnetic resonance imaging (MRI) and neurological examination. Based on a threshold of significant inflammation defined by a comparison of [18 F]-DPA-714 binding between patients with MS and HCs, white matter lesions were classified as homogeneously active (active center), rim-active (inactive center and active periphery), or nonactive. Longitudinal cortical atrophy was measured using Jacobian integration. RESULTS: Patients with MS had higher innate inflammation in normal-appearing white matter (NAWM) and cortex than HCs (respective standardized effect size = 1.15, 0.89, p = 0.003 and < 0.001). Out of 1,335 non-gadolinium-enhancing lesions, 53% were classified as homogeneously-active (median = 17 per patient with MS), 6% rim-active (median = 1 per patient with MS), and 41% non-active (median = 14 per patient with MS). The number of homogenously-active lesions was the strongest predictor of longitudinal changes, associating with cortical atrophy (ß = 0.49, p = 0.023) and Expanded Disability Status Scale (EDSS) changes (ß = 0.35, p = 0.023) over 2 years. NAWM and cortical binding were not associated to volumetric and clinical changes. INTERPRETATION: The [18 F]-DPA-714-PET revealed that an unexpectedly high proportion of MS lesions have a smoldering component, which predicts atrophy and clinical progression. This suggests that following the acute phase, most lesions develop a chronic inflammatory component, promoting neurodegeneration and clinical progression. ANN NEUROL 2023;94:366-383.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Sustancia Blanca , Humanos , Esclerosis Múltiple/patología , Sustancia Blanca/patología , Tomografía de Emisión de Positrones , Imagen por Resonancia Magnética/métodos , Inflamación/metabolismo , Progresión de la Enfermedad , Atrofia/patología , Encéfalo/patología , Esclerosis Múltiple Recurrente-Remitente/patología
5.
Mult Scler ; 30(6): 726-737, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38519434

RESUMEN

BACKGROUND: Respiratory disorders remain incompletely described in multiple sclerosis (MS), even though they are a frequent cause of death. METHODS: The objective was to describe respiratory disorders in MS patients with Expanded Disability Status Score (EDSS) ⩾ 6.5. Diaphragm dysfunction was defined by at least two of the seven criteria: clinical signs, inspiratory recruitment of neck muscles during wakefulness, reduced upright vital capacity (VC) < 80%, upright-to-supine VC ⩾ 15% of upright VC, decrease in Maximal Inspiratory Pressure < 60%, phasic activation of inspiratory neck muscles during sleep, and opposition of thoracic and abdominal movements during sleep. Cough weakness was defined by a peak cough flow < 270 L/min and/or need for cough assist. Sleep apnea syndrome was defined by an apnea-hypopnea index ⩾ 15. RESULTS: Notably, 71 MS patients were included: median age 54 [48, 61] years; median disease duration 21.4 [16.0, 31.4] years. Of these, 52 patients had one or more respiratory disorders; diaphragm dysfunction was the most frequent (n = 34). Patients with diaphragm dysfunction and cough weakness were more disabled. The fatigue score and the cognitive evaluations did not differ between the groups. Five patients required non-invasive ventilation. CONCLUSION: Respiratory disorders are frequent in severe MS, mostly diaphragm dysfunction. Of interest, instrumental interventions are available to address these disorders.


Asunto(s)
Esclerosis Múltiple , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Transversales , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/fisiopatología , Trastornos Respiratorios/etiología , Trastornos Respiratorios/fisiopatología , Diafragma/fisiopatología , Tos/fisiopatología , Tos/etiología , Índice de Severidad de la Enfermedad , Síndromes de la Apnea del Sueño/fisiopatología , Adulto
6.
Mult Scler ; 30(3): 381-395, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38247113

RESUMEN

BACKGROUND: Epidemiologic studies on coronavirus disease 2019 (COVID-19) in patients with multiple sclerosis (pwMS) have focused on the first waves of the pandemic until early 2021. OBJECTIVES: We aimed to extend these data from the onset of the pandemic to the global coverage by vaccination in summer 2022. METHODS: This retrospective, multicenter observational study analyzed COVISEP registry data on reported COVID-19 cases in pwMS between January 2020 and July 2022. Severe COVID-19 was defined as hospitalization or higher severity. RESULTS: Among 2584 pwMS with confirmed/highly suspected COVID-19, severe infection rates declined from 14.6% preomicron wave to 5.7% during omicron wave (p < 0.001). Multivariate analysis identified age (odds ratio (OR) = 1.43, 95% confidence interval (CI) = [1.25-1.64] per 10 years), male sex (OR = 2.01, 95% CI = [1.51-2.67]), obesity (OR = 2.36, 95% CI = [1.52-3.68]), cardiac comorbidities (OR = 2.36, 95% CI = [1.46-3.83]), higher Expanded Disability Status Scale (EDSS) scores (OR = 2.09, 95% CI = [1.43-3.06] for EDSS 3-5.5 and OR = 4.53, 95% CI = [3.04-6.75] for EDSS ⩾6), and anti-CD20 therapies (OR = 2.67, 95% CI = [1.85-3.87]) as risk factors for COVID-19 severity. Vaccinated individuals experienced less severe COVID-19, whether on (risk ratio (RR) = 0.64, 95% CI = [0.60-0.69]) or off (RR = 0.32, 95% CI = [0.30-0.33]) anti-CD20. DISCUSSION: In pwMS, consistent risk factors were anti-CD20 therapies and neurological disability, emerging as vital drivers of COVID-19 severity regardless of wave, period, or vaccination status.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Humanos , Masculino , Niño , Estudios Retrospectivos , Corazón , Hospitalización
7.
Brain ; 146(1): 182-194, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36097347

RESUMEN

In multiple sclerosis, spontaneous remyelination is generally incomplete and heterogeneous across patients. A high heterogeneity in remyelination may also exist across lesions within the same individual, suggesting the presence of local factors interfering with myelin regeneration. In this study we explored in vivo the regional distribution of myelin repair and investigated its relationship with neurodegeneration. We first took advantage of the myelin binding property of the amyloid radiotracer 11C-PiB to conduct a longitudinal 11C-PiB PET study in an original cohort of 19 participants with a relapsing-remitting form of multiple sclerosis, followed-up over a period of 1-4 months. We then replicated our results on an independent cohort of 40 people with multiple sclerosis followed-up over 1 year with magnetization transfer imaging, an MRI metrics sensitive to myelin content. For each imaging method, voxel-wise maps of myelin content changes were generated according to modality-specific thresholds. We demonstrated a selective failure of remyelination in periventricular white matter lesions of people with multiple sclerosis in both cohorts. In both the original and the replication cohort, we estimated that the probability of demyelinated voxels to remyelinate over the follow-up increased significantly as a function of the distance from ventricular CSF. Enlarged choroid plexus, a recently discovered biomarker linked to neuroinflammation, was found to be associated with the periventricular failure of remyelination in the two cohorts (r = -0.79, P = 0.0018; r = -0.40, P = 0.045, respectively), suggesting a role of the brain-CSF barrier in affecting myelin repair in surrounding tissues. In both cohorts, the failure of remyelination in periventricular white matter lesions was associated with lower thalamic volume (r = 0.86, P < 0.0001; r = 0.33; P = 0.069, respectively), an imaging marker of neurodegeneration. Interestingly, we also showed an association between the periventricular failure of remyelination and regional cortical atrophy that was mediated by the number of cortex-derived tracts passing through periventricular white matter lesions, especially in patients at the relapsing-remitting stage. Our findings demonstrate that lesion proximity to ventricles is associated with a failure of myelin repair and support the hypothesis that a selective periventricular remyelination failure in combination with the large number of tracts connecting periventricular lesions with cortical areas is a key mechanism contributing to cortical damage in multiple sclerosis.


Asunto(s)
Esclerosis Múltiple , Remielinización , Sustancia Blanca , Humanos , Esclerosis Múltiple/patología , Tiazoles , Compuestos de Anilina , Encéfalo/patología , Vaina de Mielina/metabolismo , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/patología
8.
Brain ; 146(6): 2453-2463, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36995973

RESUMEN

In multiple sclerosis, while remarkable progress has been accomplished to control the inflammatory component of the disease, repair of demyelinated lesions is still an unmet need. Despite encouraging results generated in experimental models, several candidates favouring or promoting remyelination have not reached the expected outcomes in clinical trials. One possible reason for these failures is that, in most cases, during preclinical testing, efficacy was evaluated on histology only, while functional recovery had not been assessed. We have generated a Xenopus laevis transgenic model Tg(mbp:GFP-NTR) of conditional demyelination in which spontaneous remyelination can be accelerated using candidate molecules. Xenopus laevis is a classic model for in vivo studies of myelination because tadpoles are translucent. We reasoned that demyelination should translate into loss of sensorimotor functions followed by behavioural recovery upon remyelination. To this end, we measured the swimming speed and distance travelled before and after demyelination and during the ongoing spontaneous remyelination and have developed a functional assay based on the visual avoidance of a virtual collision. Here we show that alteration of these functional and clinical performances correlated well with the level of demyelination and that histological remyelination, assayed by counting in vivo the number of myelinating oligodendrocytes in the optic nerve, translated in clinical-functional recovery. This method was further validated in tadpoles treated with pro-remyelinating agents (clemastine, siponimod) showing that increased remyelination in the optic nerve was associated with functional improvement. Our data illustrate the potential interest of correlating histopathological parameters and functional-clinical parameters to screen molecules promoting remyelination in a simple in vivo model of conditional demyelination.


Asunto(s)
Esclerosis Múltiple , Remielinización , Animales , Esclerosis Múltiple/patología , Oligodendroglía/patología , Remielinización/fisiología , Nervio Óptico/patología , Modelos Animales de Enfermedad , Xenopus laevis , Vaina de Mielina/patología
9.
Brain ; 146(6): 2489-2501, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515653

RESUMEN

MRI and clinical features of myelin oligodendrocyte glycoprotein (MOG)-antibody disease may overlap with those of other inflammatory demyelinating conditions posing diagnostic challenges, especially in non-acute phases and when serologic testing for MOG antibodies is unavailable or shows uncertain results. We aimed to identify MRI and clinical markers that differentiate non-acute MOG-antibody disease from aquaporin 4 (AQP4)-antibody neuromyelitis optica spectrum disorder and relapsing remitting multiple sclerosis, guiding in the identification of patients with MOG-antibody disease in clinical practice. In this cross-sectional retrospective study, data from 16 MAGNIMS centres were included. Data collection and analyses were conducted from 2019 to 2021. Inclusion criteria were: diagnosis of MOG-antibody disease; AQP4-neuromyelitis optica spectrum disorder and multiple sclerosis; brain and cord MRI at least 6 months from relapse; and Expanded Disability Status Scale (EDSS) score on the day of MRI. Brain white matter T2 lesions, T1-hypointense lesions, cortical and cord lesions were identified. Random forest models were constructed to classify patients as MOG-antibody disease/AQP4-neuromyelitis optica spectrum disorder/multiple sclerosis; a leave one out cross-validation procedure assessed the performance of the models. Based on the best discriminators between diseases, we proposed a guide to target investigations for MOG-antibody disease. One hundred and sixty-two patients with MOG-antibody disease [99 females, mean age: 41 (±14) years, median EDSS: 2 (0-7.5)], 162 with AQP4-neuromyelitis optica spectrum disorder [132 females, mean age: 51 (±14) years, median EDSS: 3.5 (0-8)], 189 with multiple sclerosis (132 females, mean age: 40 (±10) years, median EDSS: 2 (0-8)] and 152 healthy controls (91 females) were studied. In young patients (<34 years), with low disability (EDSS < 3), the absence of Dawson's fingers, temporal lobe lesions and longitudinally extensive lesions in the cervical cord pointed towards a diagnosis of MOG-antibody disease instead of the other two diseases (accuracy: 76%, sensitivity: 81%, specificity: 84%, P < 0.001). In these non-acute patients, the number of brain lesions < 6 predicted MOG-antibody disease versus multiple sclerosis (accuracy: 83%, sensitivity: 82%, specificity: 83%, P < 0.001). An EDSS < 3 and the absence of longitudinally extensive lesions in the cervical cord predicted MOG-antibody disease versus AQP4-neuromyelitis optica spectrum disorder (accuracy: 76%, sensitivity: 89%, specificity: 62%, P < 0.001). A workflow with sequential tests and supporting features is proposed to guide better identification of patients with MOG-antibody disease. Adult patients with non-acute MOG-antibody disease showed distinctive clinical and MRI features when compared to AQP4-neuromyelitis optica spectrum disorder and multiple sclerosis. A careful inspection of the morphology of brain and cord lesions together with clinical information can guide further analyses towards the diagnosis of MOG-antibody disease in clinical practice.


Asunto(s)
Esclerosis Múltiple , Neuromielitis Óptica , Femenino , Humanos , Neuromielitis Óptica/patología , Estudios Retrospectivos , Glicoproteína Mielina-Oligodendrócito , Estudios Transversales , Acuaporina 4 , Esclerosis Múltiple/diagnóstico por imagen , Autoanticuerpos , Imagen por Resonancia Magnética
10.
Curr Opin Neurol ; 36(3): 214-221, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078651

RESUMEN

PURPOSE OF REVIEW: Choroid plexuses (ChPs) are key actors of the blood-to-cerebrospinal-fluid barrier and serve as brain immune checkpoint. The past years have seen a regain of interest about their potential involvement in the physiopathology of neuroinflammatory disorders like multiple sclerosis (MS). This article offers an overview of the recent findings on ChP alterations in MS, with a focus on the imaging tools able to detect these abnormalities and on their involvement in inflammation, tissue damage and repair. RECENT FINDINGS: On MRI, ChPs are enlarged in people with MS (PwMS) versus healthy individuals. This size increase is an early event, already detected in presymptomatic and pediatric MS. Enlargement of ChPs is linked to local inflammatory infiltrates, and their dysfunction selectively impacts periventricular damage, larger ChPs predicting the expansion of chronic active lesions, smoldering inflammation and remyelination failure in tissues surrounding the ventricles. ChP volumetry may add value for the prediction of disease activity and disability worsening. SUMMARY: ChP imaging metrics are emerging as possible biomarkers of neuroinflammation and repair failure in MS. Future works combining multimodal imaging techniques should provide a more refined characterization of ChP functional changes, their link with tissue damage, blood to cerebrospinal-fluid barrier dysfunction and fluid trafficking in MS.


Asunto(s)
Esclerosis Múltiple , Niño , Humanos , Esclerosis Múltiple/patología , Encéfalo , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/patología , Inflamación/patología , Coroides/patología
11.
Mult Scler ; 29(2): 236-247, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36515394

RESUMEN

BACKGROUND: In relapsing-remitting multiple sclerosis (RRMS), early identification of suboptimal responders can prevent disability progression. OBJECTIVE: We aimed to develop and validate a dynamic score to guide the early decision to switch from first- to second-line therapy. METHODS: Using time-dependent propensity scores (PS) from a French cohort of 12,823 patients with RRMS, we constructed one training and two validation PS-matched cohorts to compare the switched patients to second-line treatment and the maintained patients. We used a frailty Cox model for predicting individual hazard ratios (iHRs). RESULTS: From the validation PS-matched cohort of 348 independent patients with iHR ⩽ 0.69, we reported the 5-year relapse-free survival at 0.14 (95% confidence interval (CI) 0.09-0.22) for the waiting group and 0.40 (95% CI 0.32-0.51) for the switched group. From the validation PS-matched cohort of 518 independent patients with iHR > 0.69, these values were 0.37 (95% CI 0.30-0.46) and 0.44 (95% CI 0.37-0.52), respectively. CONCLUSIONS: By using the proposed dynamic score, we estimated that at least one-third of patients could benefit from an earlier switch to prevent relapse.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Factores Inmunológicos , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico
12.
J Neurol Neurosurg Psychiatry ; 93(1): 24-31, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34341142

RESUMEN

BACKGROUND: SARS-CoV-2 seroconversion rate after COVID-19 may be influenced by disease-modifying therapies (DMTs) in patients with multiple sclerosis (MS) or neuromyelitis optica spectrum disorders (NMO-SD). OBJECTIVE: To investigate the seroprevalence and the quantity of SARS-CoV-2 antibodies in a cohort of patients with MS or NMO-SD. METHODS: Blood samples were collected in patients diagnosed with COVID-19 between 19 February 2020 and 26 February 2021. SARS-CoV-2 antibody positivity rates and Ig levels (anti-S IgG titre, anti-S IgA index, anti-N IgG index) were compared between DMTs groups. Multivariate logistic and linear regression models were used to estimate the influence of DMTs and other confounding variables on SARS-CoV-2 serological outcomes. RESULTS: 119 patients (115 MS, 4 NMO, mean age: 43.0 years) were analysed. Overall, seroconversion rate was 80.6% within 5.0 (SD 3.4) months after infection. 20/21 (95.2%) patients without DMT and 66/77 (85.7%) patients on DMTs other than anti-CD20 had at least one SARS-CoV-2 Ig positivity, while this rate decreased to only 10/21 (47.6%) for patients on anti-CD20 (p<0.001). Being on anti-CD20 was associated with a decreased odd of positive serology (OR, 0.07 (95% CI 0.01 to 0.69), p=0.02) independently from time to COVID-19, total IgG level, age, sex and COVID-19 severity. Time between last anti-CD20 infusion and COVID-19 was longer (mean (SD), 3.7 (2.0) months) in seropositive patients compared with seronegative patients (mean (SD), 1.9 (1.5) months, p=0.04). CONCLUSIONS: SARS-CoV-2 antibody response was decreased in patients with MS or NMO-SD treated with anti-CD20 therapies. Monitoring long-term risk of reinfection and specific vaccination strategies in this population may be warranted. TRIAL REGISTRATION NUMBER: NCT04568707.


Asunto(s)
COVID-19/inmunología , Inmunidad Humoral , Inmunosupresores/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Neuromielitis Óptica/tratamiento farmacológico , SARS-CoV-2/inmunología , Adulto , Anticuerpos Antivirales/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Paris , Estudios Seroepidemiológicos
13.
Mult Scler ; 28(1): 132-138, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33764197

RESUMEN

BACKGROUND: The spread of Coronavirus disease-19 (COVID-19) poses unique challenges in the management of people with multiple sclerosis (PwMS). OBJECTIVES: To collect data about the impact of COVID-19 emergency on access to care for PwMS and on MS treatment practices. METHODS: Between March and July 2020, the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) promoted an online survey covering patient access to care, management of relapses and visits, disease-modifying therapy (DMT) and experience with COVID-19. RESULTS: Three-hundred and sixty neurologists from 52 countries (68% from Europe) completed the survey. 98% reported COVID-19-related restrictions. Telemedicine was adopted to overcome the limited access to care and was newly activated (73%) or widely implemented (17%). 70% reported changes in DMT management. Interferons and glatiramer were considered safe. Dimethyl fumarate, teriflunomide and fingolimod were considered safe except for patients developing lymphopenia. No modifications were considered for natalizumab in 64%, cladribine in 24%, anti-CD20 in 22% and alemtuzumab in 17%; 18% (for alemtuzumab and cladribine) and 43% (for anti-CD20) considered postponing treatment. CONCLUSION: The ECTRIMS survey highlighted the challenges in keeping standards of care in clinical practice. Telemedicine clearly needs to be implemented. Gathering data on DMT safety will remain crucial to inform treatment decisions.


Asunto(s)
COVID-19 , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Clorhidrato de Fingolimod/uso terapéutico , Humanos , Inmunosupresores , Esclerosis Múltiple/tratamiento farmacológico , SARS-CoV-2
14.
Mult Scler ; 28(12): 1881-1890, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35708126

RESUMEN

OBJECTIVE: To investigate the clinical relevance of individual profiles of cortical and white matter lesion myelin content changes combining magnetisation transfer imaging (MTI) and 11C-PiB-positron emission tomography (PET) in patients with multiple sclerosis (MS). METHODS: MTI and [11C]PiB-PET acquired in 19 patients with MS followed up over 2-4 months and in seven healthy controls (HCs), were employed to generate individual maps of cortical and white matter (WM) lesion myelin content changes, respectively. These maps were used to calculate individual indices of demyelination and remyelination, and to investigate their association with clinical scores. RESULTS: Cortical remyelination ranged between 1% and 5% of the total cortical volume (17%-45% of the cortical volume demyelinated at baseline). WM lesion remyelination ranged between 8% and 22% of the lesional volume. An extensive cortical remyelination was associated with a shorter disease duration (rho = -0.63, p = 0.01) and, in combination with WM lesion remyelination, explained 68%-70% of the variance of clinical scores (p < 0.01). CONCLUSION: Our multimodal and multicompartment approach allows us to explore single-patient cortical and WM lesion demyelination and remyelination, and to generate clinically relevant indices of myelin repair. These indices may be used as outcome measures in clinical trials, thus increasing the chance to identify successful promyelinating treatments in patients with MS.


Asunto(s)
Esclerosis Múltiple , Remielinización , Sustancia Blanca , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Vaina de Mielina/patología , Tomografía de Emisión de Positrones/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
15.
Mult Scler ; 28(9): 1424-1456, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35196927

RESUMEN

Over the recent years, the treatment of multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) has evolved very rapidly and a large number of disease-modifying treatments (DMTs) are now available. However, most DMTs are associated with adverse events, the most frequent of which being infections. Consideration of all DMT-associated risks facilitates development of risk mitigation strategies. An international focused workshop with expert-led discussions was sponsored by the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) and was held in April 2021 to review our current knowledge about the risk of infections associated with the use of DMTs for people with MS and NMOSD and corresponding risk mitigation strategies. The workshop addressed DMT-associated infections in specific populations, such as children and pregnant women with MS, or people with MS who have other comorbidities or live in regions with an exceptionally high infection burden. Finally, we reviewed the topic of DMT-associated infectious risks in the context of the current SARS-CoV-2 pandemic. Herein, we summarize available evidence and identify gaps in knowledge which justify further research.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Neuromielitis Óptica , Niño , Femenino , Humanos , Esclerosis Múltiple/terapia , Neuromielitis Óptica/epidemiología , Pandemias , Embarazo , SARS-CoV-2
16.
Eur J Neurol ; 29(6): 1719-1729, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35152511

RESUMEN

BACKGROUND AND PURPOSE: Lesion remyelination preserves axonal integrity in animal models of multiple sclerosis (MS), but an in vivo demonstration of its protective effect on surrounding tissues in humans is lacking. METHODS: Nineteen persons with MS were enrolled in a cohort study and underwent two positron emission tomography (PET)/magnetic resonance imaging (MRI) scans 1-4 months apart. Voxelwise maps of Pittsburgh compound B distribution volume ratio, reflecting myelin content, were used to calculate an index of baseline demyelination, and of dynamic demyelination and remyelination over the follow-up in 549 single white matter lesions. Changes in fractional anisotropy and mean diffusivity, reflecting microstructural damage, were calculated in the proximal and distal 3-mm-thick rings surrounding each lesion, and used to classify perilesional microstructure as "preserved" or "worsening" over the follow-up. Mixed-effect linear models and logistic regressions were employed to investigate whether PET-derived lesional indices were associated with changes in MRI metrics in perilesions, and to identify which of them best predicted the microstructural evolution of perilesions over time. RESULTS: A higher index of remyelination, and a lower index of baseline and dynamic demyelination in lesions were associated with a less severe microstructural deterioration of the corresponding proximal and distal perilesions over time (p-value range: <0.001-0.012), but the index of remyelination was the best predicting variable of perilesional fate. For every extra 1% of remyelination within each lesion, the probability of the corresponding perilesional microstructure remaining preserved over time increased by 39% (odds ratio = 6.62, 95% confidence interval = 2.16-20.32, p < 0.001). CONCLUSIONS: Intralesional remyelination is associated with the microstructural preservation of surrounding tissues, possibly preventing neuroaxonal damage resulting from Wallerian degeneration.


Asunto(s)
Esclerosis Múltiple , Remielinización , Animales , Estudios de Cohortes , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Vaina de Mielina/patología
17.
Eur J Neurol ; 29(1): 329-334, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34541732

RESUMEN

BACKGROUND AND PURPOSE: Diagnostic criteria for adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) due to colony-stimulating factor 1 receptor (CSF1R) mutation have recently been proposed. Our objective was to assess their accuracy in an independent multicenter cohort. METHODS: We evaluated the sensitivity and specificity of the diagnostic criteria for ALSP (including the "probable" and "possible" definitions) in a national cohort of 22 patients with CSF1R mutation, and 59 patients with an alternative diagnosis of adult onset inherited leukoencephalopathy. RESULTS: Overall, the sensitivity of the diagnostic criteria for ALSP was 82%, including nine of 22 patients diagnosed as probable and nine of 22 diagnosed as possible. Twenty of the 59 CSF1R mutation-negative leukoencephalopathies fulfilled the diagnostic criteria, leading to a specificity of 66%. CONCLUSIONS: Diagnostic criteria for ALSP have an overall limited sensitivity along with a modest specificity. We suggest that in patients suspected of genetic leukoencephalopathy, a comprehensive magnetic resonance imaging pattern-based approach is warranted, together with white matter gene panel or whole exome sequencing.


Asunto(s)
Leucoencefalopatías , Sustancia Blanca , Adulto , Humanos , Leucoencefalopatías/diagnóstico , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Imagen por Resonancia Magnética , Mutación , Neuroglía/patología , Receptores del Factor Estimulante de Colonias/genética , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
18.
Neuroimage ; 224: 117425, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33035669

RESUMEN

The intra-axonal water exchange time (τi), a parameter associated with axonal permeability, could be an important biomarker for understanding and treating demyelinating pathologies such as Multiple Sclerosis. Diffusion-Weighted MRI (DW-MRI) is sensitive to changes in permeability; however, the parameter has so far remained elusive due to the lack of general biophysical models that incorporate it. Machine learning based computational models can potentially be used to estimate such parameters. Recently, for the first time, a theoretical framework using a random forest (RF) regressor suggests that this is a promising new approach for permeability estimation. In this study, we adopt such an approach and for the first time experimentally investigate it for demyelinating pathologies through direct comparison with histology. We construct a computational model using Monte Carlo simulations and an RF regressor in order to learn a mapping between features derived from DW-MRI signals and ground truth microstructure parameters. We test our model in simulations, and find strong correlations between the predicted and ground truth parameters (intra-axonal volume fraction f: R2 =0.99, τi: R2 =0.84, intrinsic diffusivity d: R2 =0.99). We then apply the model in-vivo, on a controlled cuprizone (CPZ) mouse model of demyelination, comparing the results from two cohorts of mice, CPZ (N=8) and healthy age-matched wild-type (WT, N=8). We find that the RF model estimates sensible microstructure parameters for both groups, matching values found in literature. Furthermore, we perform histology for both groups using electron microscopy (EM), measuring the thickness of the myelin sheath as a surrogate for exchange time. Histology results show that our RF model estimates are very strongly correlated with the EM measurements (ρ = 0.98 for f, ρ = 0.82 for τi). Finally, we find a statistically significant decrease in τi in all three regions of the corpus callosum (splenium/genu/body) of the CPZ cohort (<τi>=310ms/330ms/350ms) compared to the WT group (<τi>=370ms/370ms/380ms). This is in line with our expectations that τi is lower in regions where the myelin sheath is damaged, as axonal membranes become more permeable. Overall, these results demonstrate, for the first time experimentally and in vivo, that a computational model learned from simulations can reliably estimate microstructure parameters, including the axonal permeability .


Asunto(s)
Axones/patología , Cuerpo Calloso/patología , Enfermedades Desmielinizantes/diagnóstico por imagen , Aprendizaje Automático , Sustancia Blanca/diagnóstico por imagen , Animales , Axones/metabolismo , Axones/ultraestructura , Simulación por Computador , Cuerpo Calloso/ultraestructura , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Imagen de Difusión por Resonancia Magnética , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador , Ratones , Microscopía Electrónica , Inhibidores de la Monoaminooxidasa/toxicidad , Método de Montecarlo , Permeabilidad , Sustancia Blanca/patología
19.
Radiology ; 301(1): 166-177, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34254858

RESUMEN

Background Choroid plexuses (CPs) have been suggested as a key gateway for inflammation in experimental autoimmune encephalitis, but in vivo evidence of their involvement in multiple sclerosis (MS) is lacking. Purpose To assess CP volumetric and inflammatory changes in patients with MS versus healthy control participants. Materials and Methods This was a secondary analysis of 97 patients (61 with relapsing-remitting MS [RRMS] and 36 with progressive MS) and 44 healthy control participants who participated in three prospective 3.0-T brain MRI studies between May 2009 and September 2017. A subgroup of 37 patients and 19 healthy control participants also underwent translocator protein fluorine 18 (18F)-DPA-714 PET for neuroinflammation. Relapses and disability scores were collected at baseline and over 2 years. CPs were manually segmented on three-dimensional T1-weighted images; other brain volumes were additionally segmented. Volumes were expressed as a ratio of intracranial volume. The 18F-DPA-714 distribution volume ratio was quantified in parenchymal regions, whereas standardized uptake value was used for CP inflammation. Multivariable linear regression analyses were performed to assess CP volumetric and inflammatory differences between patients with MS and healthy control participants and correlations between CP volume and lesion load, brain volumes, 18F-DPA-714 uptake, and annualized relapse rate. Results Ninety-seven patients with MS (mean age, 42 years ± 12 [standard deviation]; 49 women) and 44 healthy control participants (mean age, 39 years ± 14; 23 women) underwent MRI. Thirty-seven patients with MS and 19 healthy control participants underwent PET. CPs were 35% larger in patients with MS (mean value, 15.9 × 10-4 ± 4.5) than in healthy control participants (mean value, 11.8 × 10-4 ± 3.8; P = .004). Subgroup analysis confirmed greater CP volume in patients with RRMS (mean value, 15.5 × 10-4 ± 4.6; P = .008) than in healthy control participants. CP enlargement was greater in patients with active lesions at MRI (mean volume, 18.2 × 10-4 ± 4.9 in patients with lesions that enhanced with gadolinium vs 14.9 × 10-4 ± 4 in patients with lesions that did not enhance with gadolinium; P < .001) and correlated with white matter lesion load (r = 0.39; 95% CI: 0.20, 0.55; P < .001) and 18F-DPA-714 binding in the thalami (r = 0.44; 95% CI: 0.22, 0.72; P = .04) and normal-appearing white matter (r = 0.5; 95% CI: 0.20, 0.71; P = .005). Moreover, it correlated with annualized relapse rate in patients with RRMS (r = 0.37; 95% CI: 0.1, 0.55; P = .005). Finally, patients with MS showed 18.5% higher CP 18F-DPA-714 uptake than control participants (mean value, 0.778 ± 0.23 vs 0.635 ± 0.15, respectively; P = .01). CP volume in patients with RRMS (r = 0.57; 95% CI: 0.37, 0.73; P = .009) correlated with higher 18F-DPA-714 uptake. Conclusion Choroid plexuses (CPs) are enlarged and inflamed in patients with multiple sclerosis (MS), particularly in those with relapsing-remitting MS with inflammatory profiles; CP volumetric analysis could represent an MS imaging marker. © RSNA, 2021 EudraCT no. 2008-004174-40; clinical trial registration nos. NCT02305264 and NCT01651520 Online supplemental material is available for this article.


Asunto(s)
Plexo Coroideo/patología , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/patología , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/genética , Adulto , Plexo Coroideo/diagnóstico por imagen , Femenino , Humanos , Inflamación/complicaciones , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Tamaño de los Órganos , Estudios Prospectivos
20.
Ann Neurol ; 88(3): 438-452, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32506714

RESUMEN

The identification of progression in multiple sclerosis is typically retrospective. Given the profound burden of progressive multiple sclerosis, and the recent development of effective treatments for these patients, there is a need to establish measures capable of identifying progressive multiple sclerosis early in the disease course. Starting from recent pathological findings, this review assesses the state of the art of potential measures able to predict progressive multiple sclerosis. Future promising biomarkers that might shed light on mechanisms of progression are also discussed. Finally, expansion of the concept of progressive multiple sclerosis, by including an assessment of cognition, patient-reported outcomes, and comorbidities, is considered. ANN NEUROL 2020;88:438-452.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva/diagnóstico , Esclerosis Múltiple Crónica Progresiva/patología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA