Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 145: 88-98, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32485181

RESUMEN

Class IIa histone deacetylases (HDACs) critically regulate cardiac function through the repression of the activity of myocyte enhancer factor 2 (MEF2)-dependent gene programs. Protein kinase D (PKD) and Ca2+/Calmodulin-dependent kinase II (CaMKII) activate MEF2 by phosphorylating distinct HDAC isoforms and thereby creating 14-3-3 binding sites for nucleo-cytoplasmic shuttling. Recently, it has been shown that this process is counteracted by cyclic AMP (cAMP)-dependent signaling. Here, we investigated the specific mechanisms of how cAMP-dependent signaling regulates distinct HDAC isoforms and determined their relative contributions to the protection from pathological MEF2 activation. We found that cAMP is sufficient to induce nuclear retention and to blunt phosphorylation of the 14-3-3 binding sites of HDAC5 (Ser259/498) and HDAC9 (Ser218/448) but not HDAC4 (Ser246/467/632). These regulatory events could be observed only in cardiomyocytes and myocyte-like cells but not in non-myocytes, pointing to an indirect myocyte-specific mode of action. Consistent with one previous report, we found that blunted phosphorylation of HDAC5 and HDAC9 was mediated by protein kinase A (PKA)-dependent inhibition of PKD. However, we show by the use of neonatal cardiomyocytes derived from genetic HDAC mouse models that endogenous HDAC5 but not HDAC9 contributes specifically to the repression of endogenous MEF2 activity. HDAC4 contributed significantly to the repression of MEF2 activity but based on the mechanistic findings of this study combined with previous results we attribute this to PKA-dependent proteolysis of HDAC4. Consistently, cAMP-induced repression of agonist-driven cellular hypertrophy was blunted in cardiomyocytes deficient for both HDAC5 and HDAC4. In conclusion, cAMP inhibits MEF2 through both nuclear accumulation of hypo-phosphorylated HDAC5 and through a distinct HDAC4-dependent mechanism.


Asunto(s)
AMP Cíclico/metabolismo , Histona Desacetilasas/metabolismo , Factores de Transcripción MEF2/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas 14-3-3/metabolismo , Animales , Animales Recién Nacidos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ventrículos Cardíacos/patología , Factores de Transcripción MEF2/antagonistas & inhibidores , Ratones , Modelos Biológicos , Fosforilación , Unión Proteica , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Ratas Sprague-Dawley , Transducción de Señal
2.
Cell Mol Life Sci ; 71(9): 1673-90, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24310814

RESUMEN

Cardiovascular disease (CVD) represents a major challenge for health care systems, both in terms of the high mortality associated with it and the huge economic burden of its treatment. Although CVD represents a diverse range of disorders, they share common compensatory changes in the heart at the structural, cellular, and molecular level that, in the long term, can become maladaptive and lead to heart failure. Treatment of adverse cardiac remodeling is therefore an important step in preventing this fatal progression. Although previous efforts have been primarily focused on inhibition of deleterious signaling cascades, the stimulation of endogenous cardioprotective mechanisms offers a potent therapeutic tool. In this review, we discuss class I and class II histone deacetylases, a subset of chromatin-modifying enzymes known to have critical roles in the regulation of cardiac remodeling. In particular, we discuss their molecular modes of action and go on to consider how their inhibition or the stimulation of their intrinsic cardioprotective properties may provide a potential therapeutic route for the clinical treatment of CVD.


Asunto(s)
Histona Desacetilasas/metabolismo , Transducción de Señal , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Remodelación Ventricular
3.
FEBS J ; 274(9): 2196-209, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17419733

RESUMEN

Domains within the multienzyme polyketide synthases are linked by noncatalytic sequences of variable length and unknown function. Recently, the crystal structure was reported of a portion of the linker between the acyltransferase (AT) and ketoreductase (KR) domains from module 1 of the erythromycin synthase (6-deoxyerythronolide B synthase), as a pseudodimer with the adjacent ketoreductase (KR). On the basis of this structure, the homologous linker region between the dehydratase (DH) and enoyl reductase (ER) domains in fully reducing modules has been proposed to occupy a position on the periphery of the polyketide synthases complex, as in porcine fatty acid synthase. We report here the expression and characterization of the same region of the 6-deoxyerythronolide B synthase module 1 AT-KR linker, without the adjacent KR domain (termed DeltaN AT1-KR1), as well as the corresponding section of the DH-ER linker. The linkers fold autonomously and are well structured. However, analytical gel filtration and ultracentrifugation analysis independently show that DeltaN AT1-KR1 is homodimeric in solution; site-directed mutagenesis further demonstrates that linker self-association is compatible with the formation of a linker-KR pseudodimer. Our data also strongly indicate that the DH-ER linker associates with the upstream DH domain. Both of these findings are incompatible with the proposed model for polyketide synthase architecture, suggesting that it is premature to allocate the linker regions to a position in the multienzymes based on the solved structure of animal fatty acid synthase.


Asunto(s)
Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Pliegue de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Homología Estructural de Proteína , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Clonación Molecular , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Sintasas Poliquetidas/genética , Estructura Terciaria de Proteína/genética , Subunidades de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Life Sci ; 118(2): 165-72, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-24632477

RESUMEN

Endothelin-1 (ET1) is a peptide that was initially identified as a strong inductor of vascular contraction. In the last 25 years, there have been several biological processes identified in which ET1 seems to play a critical role. In particular, genetic studies have unveiled that ET1 is important for neuronal development, growth and function. Experimental studies identified ET1 as a regulator of the interaction between sympathetic neurons and cardiac myocytes. This might be of clinical importance since patients suffering from heart failure are characterized by disrupted norepinephrine homeostasis in the heart. This review summarizes the important findings on the role of ET1 for sympathetic neurons and norepinephrine homeostasis in the heart.


Asunto(s)
Endotelina-1/metabolismo , Miocardio/metabolismo , Sistema Nervioso Simpático/metabolismo , Animales , Antagonistas de los Receptores de Endotelina/farmacología , Humanos , Receptores de Endotelina/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA