Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Trends Genet ; 38(11): 1180-1192, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35773025

RESUMEN

The early-life gut microbiome is linked to human phenotypes as an imbalanced microbiome of this period is implicated in diseases throughout life. Several determinants of early-life gut microbiome are explored, however, mechanisms of acquisition, colonization, and stability of early-life gut microbiome and their interindividual variability remain elusive. Host genetics play a vital role to shape the gut microbiome and interact with it to modulate individual phenotypes in human studies and animal models. Given the microbial linkage between host generations, we discuss the current state of roles of host genetics in forming intergenerational microbiomes associated with mothers, offspring, and those vertically transmitted, providing a basis for taking into account host genetics in future early-life microbiome research. We further expand our discussion to the bidirectional interactions between host gene expression and microbiome in human health.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Microbioma Gastrointestinal/genética , Humanos , Microbiota/genética
2.
Gut ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926079

RESUMEN

OBJECTIVE: Food addiction is a multifactorial disorder characterised by a loss of control over food intake that may promote obesity and alter gut microbiota composition. We have investigated the potential involvement of the gut microbiota in the mechanisms underlying food addiction. DESIGN: We used the Yale Food Addiction Scale (YFAS) 2.0 criteria to classify extreme food addiction in mouse and human subpopulations to identify gut microbiota signatures associated with vulnerability to this disorder. RESULTS: Both animal and human cohorts showed important similarities in the gut microbiota signatures linked to food addiction. The signatures suggested possible non-beneficial effects of bacteria belonging to the Proteobacteria phylum and potential protective effects of Actinobacteria against the development of food addiction in both cohorts of humans and mice. A decreased relative abundance of the species Blautia wexlerae was observed in addicted humans and of Blautia genus in addicted mice. Administration of the non-digestible carbohydrates, lactulose and rhamnose, known to favour Blautia growth, led to increased relative abundance of Blautia in mice faeces in parallel with dramatic improvements in food addiction. A similar improvement was revealed after oral administration of Blautia wexlerae as a beneficial microbe. CONCLUSION: By understanding the crosstalk between this behavioural alteration and gut microbiota, these findings constitute a step forward to future treatments for food addiction and related eating disorders.

3.
Appl Environ Microbiol ; 90(3): e0207423, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38319094

RESUMEN

Bifidobacterium breve, one of the main bifidobacterial species colonizing the human gastrointestinal tract in early life, has received extensive attention for its purported beneficial effects on human health. However, exploration of the mode of action of such beneficial effects exerted by B. breve is cumbersome due to the lack of effective genetic tools, which limits its synthetic biology application. The widespread presence of CRISPR-Cas systems in the B. breve genome makes endogenous CRISPR-based gene editing toolkits a promising tool. This study revealed that Type I-C CRISPR-Cas systems in B. breve can be divided into two groups based on the amino acid sequences encoded by cas gene clusters. Deletion of the gene coding uracil phosphoribosyl-transferase (upp) was achieved in five B. breve strains from both groups using this system. In addition, translational termination of uracil phosphoribosyl-transferase was successfully achieved in B. breve FJSWX38M7 by single-base substitution of the upp gene and insertion of three stop codons. The gene encoding linoleic acid isomerase (bbi) in B. breve, being a characteristic trait, was deleted after plasmid curing, which rendered it unable to convert linoleic acid into conjugated linoleic acid, demonstrating the feasibility of successive editing. This study expands the toolkit for gene manipulation in B. breve and provides a new approach toward functional genome editing and analysis of B. breve strains.IMPORTANCEThe lack of effective genetic tools for Bifidobacterium breve is an obstacle to studying the molecular mechanisms of its health-promoting effects, hindering the development of next-generation probiotics. Here, we introduce a gene editing method based on the endogenous CRISPR-Cas system, which can achieve gene deletion, single-base substitution, gene insertion, and successive gene editing in B. breve. This study will facilitate discovery of functional genes and elucidation of molecular mechanisms of B. breve pertaining to health-associated benefits.


Asunto(s)
Bifidobacterium breve , Sistemas CRISPR-Cas , Humanos , Edición Génica/métodos , Bifidobacterium breve/genética , Ácido Linoleico , Transferasas/genética , Uracilo
4.
Mol Psychiatry ; 28(2): 601-610, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36289300

RESUMEN

The impact of diet on the microbiota composition and the role of diet in supporting optimal mental health have received much attention in the last decade. However, whether whole dietary approaches can exert psychobiotic effects is largely understudied. Thus, we investigated the influence of a psychobiotic diet (high in prebiotic and fermented foods) on the microbial profile and function as well as on mental health outcomes in a healthy human population. Forty-five adults were randomized into either a psychobiotic (n = 24) or control (n = 21) diet for 4 weeks. Fecal microbiota composition and function was characterized using shotgun sequencing. Stress, overall health and diet were assessed using validated questionnaires. Metabolic profiling of plasma, urine and fecal samples was performed. Intervention with a psychobiotic diet resulted in reductions of perceived stress (32% in diet vs. 17% in control group), but not between groups. Similarly, biological marker of stress were not affected. Additionally, higher adherence to the diet resulted in stronger decreases in perceived stress. While the dietary intervention elicited only subtle changes in microbial composition and function, significant changes in the level of 40 specific fecal lipids and urinary tryptophan metabolites were observed. Lastly, microbial volatility was linked to greater changes in perceived stress scores in those on the psychobiotic diet. These results highlight that dietary approaches can be used to reduce perceived stress in a human cohort. Using microbiota-targeted diets to positively modulate gut-brain communication holds possibilities for the reduction of stress and stress-associated disorders, but additional research is warranted to investigate underlying mechanisms, including the role of the microbiota.


Asunto(s)
Dieta , Microbiota , Humanos , Adulto , Heces , Estrés Psicológico/psicología
5.
Artículo en Inglés | MEDLINE | ID: mdl-38512752

RESUMEN

A novel bacterial strain, APC 4016T, was previously isolated from the skin of a snub-nosed spiny eel, Notacanthus chemnitzii, from a depth of 1000 m in the northern Atlantic Ocean. Cells were aerobic, cocci, motile, Gram-positive to Gram-variable staining, and gave rise to orange-pigmented colonies. Growth occurred at 4-40 °C (optimum, 25-28 °C), pH 5.5-12 (optimum, pH 7-7.5), and 0-12 % (w/v) NaCl (optimum, 1 %). 16S rRNA gene phylogenetic analysis confirmed that strain APC 4016T belonged to the genus Planococcus and was most closely related to Planococcus okeanokoites IFO 12536T (98.98 % 16S similarity). However, digital DNA-DNA hybridization and average nucleotide identity values between these two strains were low, at 20.1 and 83.8 %, respectively. Major (>10 %) cellular fatty acids of strain APC 4016T were iso-C14 : 0, anteiso-C15 : 0 and C16 : 1-ω-Alc. The predominant respiratory quinones were menaquinones 5, 6, 7 and 8. The major cellular polar lipids were phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine, and three unknown lipids were also present. The draft genome sequence is 3.6 Mb with a G+C content of 45.25 mol%. This strain was previously shown to have antimicrobial activity and to encode bacteriocin and secondary metabolite biosynthetic gene clusters. Based on the phylogenetic analysis and its distinct phenotypic characteristics, strain APC 4016T is deemed to represent a novel species of the genus Planococcus, and for which the name Planococcus notacanthi sp. nov. is proposed. The type strain of this species is APC 4016T (=DSM 115753T=NCIMB 15463T).


Asunto(s)
Ácidos Grasos , Planococcus (Bacteria) , Animales , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Composición de Base , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Anguilas/genética
6.
Annu Rev Pharmacol Toxicol ; 60: 477-502, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31506009

RESUMEN

The traditional fields of pharmacology and toxicology are beginning to consider the substantial impact our gut microbiota has on host physiology. The microbiota-gut-brain axis is emerging as a particular area of interest and a potential new therapeutic target for effective treatment of central nervous system disorders, in addition to being a potential cause of drug side effects. Microbiota-gut-brain axis signaling can occur via several pathways, including via the immune system, recruitment of host neurochemical signaling, direct enteric nervous system routes and the vagus nerve, and the production of bacterial metabolites. Altered gut microbial profiles have been described in several psychiatric and neurological disorders. Psychobiotics, live biotherapeutics or substances whose beneficial effects on the brain are bacterially mediated, are currently being investigated as direct and/or adjunctive therapies for psychiatric and neurodevelopmental disorders and possibly for neurodegenerative disease, and they may emerge as new therapeutic options in the clinical management of brain disorders.


Asunto(s)
Encéfalo/fisiopatología , Enfermedades del Sistema Nervioso Central/fisiopatología , Microbioma Gastrointestinal , Animales , Encéfalo/microbiología , Enfermedades del Sistema Nervioso Central/microbiología , Enfermedades del Sistema Nervioso Central/terapia , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/microbiología , Humanos , Trastornos Mentales/microbiología , Trastornos Mentales/fisiopatología , Trastornos Mentales/terapia , Enfermedades Neurodegenerativas/microbiología , Enfermedades Neurodegenerativas/fisiopatología , Enfermedades Neurodegenerativas/terapia
7.
Mol Ecol ; 32(12): 3322-3339, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36906957

RESUMEN

The gut microbiota have important consequences for host biological processes and there is some evidence that they also affect fitness. However, the complex, interactive nature of ecological factors that influence the gut microbiota has scarcely been investigated in natural populations. We sampled the gut microbiota of wild great tits (Parus major) at different life stages allowing us to evaluate how microbiota varied with respect to a diverse range of key ecological factors of two broad types: (1) host state, namely age and sex, and the life history variables, timing of breeding, fecundity and reproductive success; and (2) the environment, including habitat type, the distance of the nest to the woodland edge, and the general nest and woodland site environments. The gut microbiota varied with life history and the environment in many ways that were largely dependent on age. Nestlings were far more sensitive to environmental variation than adults, pointing to a high degree of flexibility at an important time in development. As nestlings developed their microbiota from one to two weeks of life, they retained consistent (i.e., repeatable) among-individual differences. However these apparent individual differences were driven entirely by the effect of sharing the same nest. Our findings point to important early windows during development in which the gut microbiota are most sensitive to a variety of environmental drivers at multiple scales, and suggest reproductive timing, and hence potentially parental quality or food availability, are linked with the microbiota. Identifying and explicating the various ecological sources that shape an individual's gut bacteria is of vital importance for understanding the gut microbiota's role in animal fitness.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Passeriformes , Animales , Microbioma Gastrointestinal/genética , Bacterias , Fertilidad
8.
Brain Behav Immun ; 108: 309-327, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36535610

RESUMEN

Numerous studies have emphasised the importance of the gut microbiota during early life and its role in modulating neurodevelopment and behaviour. Epidemiological studies have shown that early-life antibiotic exposure can increase an individual's risk of developing immune and metabolic diseases. Moreover, preclinical studies have shown that long-term antibiotic-induced microbial disruption in early life can have enduring effects on physiology, brain function and behaviour. However, these studies have not investigated the impact of targeted antibiotic-induced microbiota depletion during critical developmental windows and how this may be related to neurodevelopmental outcomes. Here, we addressed this gap by administering a broad-spectrum oral antibiotic cocktail (ampicillin, gentamicin, vancomycin, and imipenem) to mice during one of three putative critical windows: the postnatal (PN; P2-9), pre-weaning (PreWean; P12-18), or post-weaning (Wean; P21-27) developmental periods and assessed the effects on physiology and behaviour in later life. Our results demonstrate that targeted microbiota disruption during early life has enduring effects into adolescence on the structure and function of the caecal microbiome, especially for antibiotic exposure during the weaning period. Further, we show that microbial disruption in early life selectively alters circulating immune cells and modifies neurophysiology in adolescence, including altered myelin-related gene expression in the prefrontal cortex and altered microglial morphology in the basolateral amygdala. We also observed sex and time-dependent effects of microbiota depletion on anxiety-related behavioural outcomes in adolescence and adulthood. Antibiotic-induced microbial disruption had limited and subtle effects on social behaviour and did not have any significant effects on depressive-like behaviour, short-term working, or recognition memory. Overall, this study highlights the importance of the gut microbiota during critical windows of development and the subtle but long-term effects that microbiota-targeted perturbations can have on brain physiology and behaviour.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Antibacterianos/farmacología , Conducta Social , Microbioma Gastrointestinal/fisiología , Ansiedad
9.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37877999

RESUMEN

A novel bacterial strain, APC 3343T, was isolated from the intestine of a deep-sea loosejaw dragon fish, Malacosteus niger, caught at a depth of 1000 m in the Northwest Atlantic Ocean. Cells were aerobic, rod-shaped, yellow/orange-pigmented, non-motile and Gram-negative. Growth of strain APC 3343T was observed at 4-30 °C (optimum, 21-25 °C), pH 5.5-10 (optimum, pH 7-8) and 0.5-8 % (w/v) NaCl (optimum, 2-4 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain APC 3343T was most closely related to members of the genus Winogradskyella, with the most closely related type strains being Winogradskyella algae Kr9-9T (98.46 % identity), Winogradskyella damuponensis F081-2T (98.07 %), Winogradskyella eximia CECT 7946T (97.93 %), Winogradskyella litoriviva KMM 6491T (97.79 %) and Winogradskyella endarachnes HL2-2T (97.79 %). Major fatty acids (>10 % of total) were iso-C16 : 0 3-OH, iso-C15 : 0, anteiso-C15 : 0 and iso-C17 : 0 3-OH. The predominant respiratory quinone was menaquinone-6 (MK-6). Polar lipids were phosphatidylethanolamine, three unknown aminolipids and eight unknown lipids. The draft genome sequence was 3.8 Mb in length with a G+C content of 33.43 mol%. Based on the phenotypic characteristics and phylogenetic analysis, strain APC 3343T is deemed to be a novel species of the genus Winogradskyella, and for which the name Winogradskyella bathintestinalis sp. nov. is proposed. The type strain of this species is APC 3343T (=DSM 115832T=NCIMB 15464T).


Asunto(s)
Ácidos Grasos , Perciformes , Animales , Niger , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Peces , Intestinos
10.
Cell Mol Life Sci ; 79(9): 470, 2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35932328

RESUMEN

Research on the influence of gut microbiota on systemic inflammatory arthritis has exploded in the past decade. Gut microbiota changes may be a crucial regulatory component in systemic inflammatory arthritis. As a result of advancements in the field, microbiota-assisted therapy has evolved, but this discipline is still in its infancy. Consequently, we review the limitations of current systemic inflammatory arthritis treatment, analyze the connection between the microbiota and arthritis, and summarize the research progress of microbiota regulating systemic inflammatory arthritis and the further development aspects of microbiota-assisted therapy. Finally, the partial mechanisms of microbiota-assisted therapy of systemic inflammatory arthritis are being discussed. In general, this review summarizes the current progress, challenges, and prospects of microbiota-assisted therapy for systemic inflammatory arthritis and points out the direction for the development of microbiota-assisted therapy in the future.


Asunto(s)
Artritis Psoriásica , Microbioma Gastrointestinal , Microbiota , Humanos
11.
Acta Paediatr ; 112(10): 2093-2101, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37505464

RESUMEN

AIM: To evaluate the combined outcome of death and/or severe grade necrotising enterocolitis (NEC) in very preterm infants admitted to Cork University Maternity Hospital, Ireland, before and after introduction of routine supplementation with Bifidobacterium bifidum and Lactobacillus acidophilus probiotics (Infloran®). METHODS: A retrospective study of infants <32 weeks gestation and < 1500 g surviving beyond 72 h of life was performed. Two 6-year epochs; pre-probiotics (Epoch 1: 2008-2013) and with probiotics (Epoch 2: 2015-2020), were evaluated. The primary outcome was defined as death after 72 h or NEC Bell stage 2a or greater. RESULTS: Seven-hundred-and-forty-four infants were included (Epoch 1: 391, Epoch 2: 353). The primary outcome occurred in 67 infants (Epoch 1: 37, Epoch 2: 30, p = 0.646). After adjustment, the difference was significant (OR [95% CI]: 0.53 [0.29 to 0.97], p = 0.038). Differences between epochs did not depend on gestational age group (<28 weeks; ≥28 weeks). CONCLUSION: There was an associated reduction of the composite outcome of severe grade NEC and/or death, after adjustment for confounding variables, with introduction of routine administration of a B. bifidum and L. acidophilus probiotic at our institution.


Asunto(s)
Enterocolitis Necrotizante , Enfermedades del Prematuro , Probióticos , Embarazo , Lactante , Recién Nacido , Humanos , Femenino , Recien Nacido Prematuro , Estudios Retrospectivos , Recién Nacido de muy Bajo Peso , Probióticos/uso terapéutico , Edad Gestacional , Lactobacillus acidophilus , Enterocolitis Necrotizante/prevención & control
12.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768196

RESUMEN

Environmental factors, including westernised diets and alterations to the gut microbiota, are considered risk factors for inflammatory bowel diseases (IBD). The mechanisms underpinning diet-microbiota-host interactions are poorly understood in IBD. We present evidence that feeding a lard-based high-fat (HF) diet can protect mice from developing DSS-induced acute and chronic colitis and colitis-associated cancer (CAC) by significantly reducing tumour burden/incidence, immune cell infiltration, cytokine profile, and cell proliferation. We show that HF protection was associated with increased gut microbial diversity and a significant reduction in Proteobacteria and an increase in Firmicutes and Clostridium cluster XIVa abundance. Microbial functionality was modulated in terms of signalling fatty acids and bile acids (BA). Faecal secondary BAs were significantly induced to include moieties that can activate the vitamin D receptor (VDR), a nuclear receptor richly represented in the intestine and colon. Indeed, colonic VDR downstream target genes were upregulated in HF-fed mice and in combinatorial lipid-BAs-treated intestinal HT29 epithelial cells. Collectively, our data indicate that HF diet protects against colitis and CAC risk through gut microbiota and BA metabolites modulating vitamin D targeting pathways. Our data highlights the complex relationship between dietary fat-induced alterations of microbiota-host interactions in IBD/CAC pathophysiology.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Neoplasias , Ratones , Animales , Vitamina D/metabolismo , Inflamación/metabolismo , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Colon/patología , Dieta Alta en Grasa/efectos adversos , Bacterias , Ácidos y Sales Biliares/metabolismo , Ratones Endogámicos C57BL , Sulfato de Dextran/efectos adversos , Neoplasias/metabolismo
13.
J Proteome Res ; 21(5): 1262-1275, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35380444

RESUMEN

The modulation of host and dietary metabolites by gut microbiota (GM) is important for maintaining correct host physiology and in the onset of various pathologies. An ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry method was developed for the targeted quantitation in human plasma, serum, and urine of 89 metabolites resulting from human-GM cometabolism of dietary essential amino acids tryptophan, tyrosine, and phenylalanine as well as branched-chain amino acids. Ninety-six-well plate hybrid-SPE enables fast clean-up of plasma and serum. Urine was diluted and filtered. A 15 min cycle enabled the acquisition of 96 samples per day, with most of the metabolites stable in aqueous solution for up to 72 h. Calibration curves were specifically optimized to cover expected concentrations in biological fluids, and limits of detection were at the order of ppb. Matrix effects were in acceptable ranges, and analytical recoveries were in general greater than 80%. Inter and intraday precision and accuracy were satisfactory. We demonstrated its application in plasma and urine samples obtained from the same individual in the frame of an interventional study, allowing the quantitation of 51 metabolites. The method could be considered the reference for deciphering changes in human-gut microbial cometabolism in health and disease. Data are available via Metabolights with the identifier MTBLS4399.


Asunto(s)
Espectrometría de Masas en Tándem , Triptófano , Aminoácidos de Cadena Ramificada , Cromatografía Líquida de Alta Presión/métodos , Humanos , Fenilalanina , Espectrometría de Masas en Tándem/métodos , Tirosina , Flujo de Trabajo
14.
Brain Behav Immun ; 104: 191-204, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35688340

RESUMEN

BACKGROUND AND AIM: Relative to men, women present with pain conditions more commonly. Although consistent differences exist between men and women in terms of physiological pain sensitivity, the underlying mechanisms are incompletely understood and yet could inform the development of effective sex specific treatments for pain. The gut microbiota can modulate nervous system functioning, including pain signaling pathways. We hypothesized that the gut microbiota and critical components of the gut-brain axis might influence electrical pain thresholds. Further, we hypothesized that sex, menstrual cycle, and hormonal contraceptive use might account for inter-sex differences in pain perception. METHODS: Healthy, non-obese males (N = 15) and females (N = 16), (nine of whom were using hormonal contraceptives), were recruited. Male subjects were invited to undergo testing once, whereas females were invited three times across the menstrual cycle, based on self-reported early follicular (EF), late follicular (LF), or mid-luteal (ML) phase. On test days, electrical stimulation on the right ankle was performed; salivary cortisol levels were measured in the morning; levels of lipopolysaccharide-binding protein (LBP), soluble CD14 (sCD14), pro-inflammatory cytokines were assessed in plasma, and microbiota composition and short-chain fatty acids (SCFAs) levels were determined in fecal samples. RESULTS: We observed that the pain tolerance threshold/pain sensation threshold (PTT/PST) ratio was significantly lesser in women than men, but not PST or PTT alone. Further, hormonal contraceptive use was associated with increased LBP levels (LF & ML phase), whilst sCD14 levels or inflammatory cytokines were not affected. Interestingly, in women, hormonal contraceptive use was associated with an increase in the relative abundance of Erysipelatoclostridium, and the relative abundances of certain bacterial genera correlated positively with pain sensation thresholds (Prevotella and Megasphera) during the LF phase and cortisol awakening response (Anaerofustis) during the ML phase. In comparison with men, women displayed overall stronger associations between i) SCFAs data, ii) cortisol data, iii) inflammatory cytokines and PTT and PST. DISCUSSION AND CONCLUSION: Our findings support the hypothesis that the gut microbiota may be one of the factors determining the physiological inter-sex differences in pain perception. Further research is needed to investigate the molecular mechanisms by which specific sex hormones and gut microbes modulate pain signaling pathways, but this study highlights the possibilities for innovative individual targeted therapies for pain management.

15.
Neuroendocrinology ; 112(8): 744-762, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34607331

RESUMEN

INTRODUCTION: Gastrointestinal dyshomeostasis is investigated in the context of metabolic dysfunction, systemic, and neuroinflammation in Alzheimer's disease. Dysfunctional gastrointestinal redox homeostasis and the brain-gut incretin axis have been reported in the rat model of insulin-resistant brain state-driven neurodegeneration induced by intracerebroventricular streptozotocin (STZ-icv). We aimed to assess whether (i) the structural epithelial changes accompany duodenal oxidative stress; (ii) the brain glucose-dependent insulinotropic polypeptide receptor (GIP-R) regulates redox homeostasis of the duodenum; and (iii) the STZ-icv brain-gut axis is resistant to pharmacological inhibition of the brain GIP-R. METHODS: GIP-R inhibitor [Pro3]-GIP (85 µg/kg) was administered intracerebroventricularly to the control and the STZ-icv rats 1 month after model induction. Thiobarbituric acid reactive substances (TBARSs) were measured in the plasma and duodenum, and the sections were analyzed morphometrically. Caspase-3 expression and activation were assessed by Western blot and multiplex fluorescent signal amplification. RESULTS: Intracerebroventricular [Pro3]-GIP decreased plasma TBARSs in the control and STZ-icv animals and increased duodenal TBARSs in the controls. In the controls, inhibition of brain GIP-R affected duodenal epithelial cells, but not villus structure, while all morphometric parameters were altered in the STZ-icv-treated animals. Morphometric changes in the STZ-icv animals were accompanied by reduced levels of caspase-3. Suppression of brain GIP-R inhibited duodenal caspase-3 activation. CONCLUSION: Brain GIP-R seems to be involved in the regulation of duodenal redox homeostasis and epithelial cell turnover. Resistance of the brain-gut GIP axis and morphological changes indicative of abnormal epithelial cell turnover accompany duodenal oxidative stress in the STZ-icv rats.


Asunto(s)
Enfermedad de Alzheimer , Receptores de la Hormona Gastrointestinal , Enfermedad de Alzheimer/metabolismo , Animales , Apoptosis , Encéfalo/metabolismo , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Duodeno/metabolismo , Células Epiteliales/metabolismo , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Oxidación-Reducción , Ratas , Receptores de la Hormona Gastrointestinal/metabolismo , Estreptozocina/uso terapéutico
16.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36530047

RESUMEN

Colorectal cancer (CRC) is the third most common cancer in the world. Currently, chemotherapy and radiotherapy used to treat CRC exhibit many side effects, hence, it is an urgent need to design effective therapies to prevent and treat CRC. Lactic acid bacteria (LAB) can regulate gut microbiota, intestinal immunity, and intestinal mechanical barrier, which is becoming a hot product for the prevention and treatment of CRC, whereas comprehensive reviews of their anti-CRC mechanisms are limited. This review systematically reveals the latest incidence, mortality, risk factors, and molecular mechanisms of CRC, then summarizes the roles of probiotics in alleviating CRC in animal and clinical studies and critically reviews the possible mechanisms by which these interventions exert their activities. It then shows the limitations in mechanisms and clinical studies, and the suggestions for future research are also put forward, which will play an important role in guiding and promoting the basic and clinical research of remising CRC by LAB and the development of LAB products.

17.
Nutr Neurosci ; 25(2): 356-378, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32734823

RESUMEN

Background: Early life stress is a key predisposing factor for depression and anxiety disorders. Selective serotonin re-uptake inhibitors (SSRI) are frequently used as the first line of pharmacology treatment for depression but have several negative qualities, i.e. a delay or absence of effectiveness and negative side-effects. Therefore, there is a growing need for new nutraceutical-based strategies to blunt the effects of adverse-life events.Objectives: This study aimed to use the maternal separation model in rats to test the efficacy of fish oil dietary supplementation, on its own and in conjunction with the SSRI anti-depressant fluoxetine, as a treatment for depressive and anxiety-like symptoms associated with early life stress.Methods: Behavioural tests (open field test, elevated plus maze test and forced swim test) and biochemical markers (corticosterone, BDNF, brain fatty acids and short chain fatty acids) were used to analyse the effects of the dietary treatments. Gut microbial communities and relating metabolites (SCFA) were analysed to investigate possible changes in the microbiota-gut-brain axis.Results: Maternally separated rats showed depressive-like behaviours in the forced swim and open field tests. These behaviours were prevented significantly by fluoxetine administration and in part by fish oil supplementation. Associated biochemical changes reported include altered brain fatty acids, significantly lower plasma corticosterone levels (AUC) and reduced brain stem serotonin turnover, compared to untreated, maternally separated (MS) rats. Untreated MS animals had significantly lower ratios of SCFA producers such as Caldicoprobacteraceae, Streptococcaceae, Rothia, Lachnospiraceae_NC2004_group, and Ruminococcus_2, along with significantly reduced levels of total SCFA compared to non-separated animals. Compared to untreated MS animals, animals fed fish oil had significantly higher Bacteroidetes and Prevotellaceae and reduced levels of butyrate, while fluoxetine treatment resulted in significantly higher levels of Neochlamydia, Lachnoclostridium, Acetitomaculum and Stenotrophomonas and, acetate and propionate.Conclusion: Despite the limitations in extrapolating from animal behavioural data and the notable differences in pharmacokinetics between rodents and humans, the results of this study provide a further advancement into the understanding of some of the complex systems within which nutraceuticals and pharmaceuticals effect the microbiota-gut-brain axis.


Asunto(s)
Ansiedad , Depresión , Aceites de Pescado , Estrés Psicológico , Animales , Ratas , Conducta Animal , Suplementos Dietéticos , Modelos Animales de Enfermedad , Aceites de Pescado/farmacología , Privación Materna
18.
Proc Natl Acad Sci U S A ; 116(19): 9644-9651, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010921

RESUMEN

Psychological stress during adolescence may cause enduring cognitive deficits and anxiety in both humans and animals, accompanied by rearrangement of numerous brain structures and functions. A healthy diet is essential for proper brain development and maintenance of optimal cognitive functions during adulthood. Furthermore, nutritional components profoundly affect the intestinal community of microbes that may affect gut-brain communication. We adopted a relatively mild stress protocol, social instability stress, which when repeatedly administered to juvenile rats modifies cognitive behaviors and plasticity markers in the brain. We then tested the preventive effect of a prolonged diet enriched with the ω-3 polyunsaturated fatty acids eicosapentaenoic acid, docosahexaenoic acid, and docosapentaenoic acid and vitamin A. Our findings highlight the beneficial effects of this enriched diet on cognitive memory impairment induced by social instability stress, as stressed rats fed the enriched diet exhibited performance undistinguishable from that of nonstressed rats on both emotional and reference memory tests. Furthermore, in stressed rats, the decline in brain-derived neurotrophic factor expression in the hippocampus and shifts in the microbiota composition were normalized by the enriched diet. The detrimental behavioral and neurochemical effects of adolescent stress, as well as the protective effect of the enriched diet, were maintained throughout adulthood, long after the exposure to the stressful environment was terminated. Taken together, our results strongly suggest a beneficial role of nutritional components in ameliorating stress-related behaviors and associated neurochemical and microbiota changes, opening possible new venues in the field of nutritional neuropsychopharmacology.


Asunto(s)
Cognición/efectos de los fármacos , Dieta , Ácidos Grasos Omega-3/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Hipocampo/fisiopatología , Estrés Psicológico , Animales , Ansiedad/microbiología , Ansiedad/fisiopatología , Ansiedad/prevención & control , Conducta Animal/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Estrés Psicológico/microbiología , Estrés Psicológico/fisiopatología , Estrés Psicológico/prevención & control
19.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36499169

RESUMEN

Inflammatory bowel disease (IBD) is a worldwide chronic intestinal inflammatory immune-related disease. In this study, mice with dextran sulfate sodium (DSS)-induced colitis were used to evaluate the effect of Lactobacillus acidophilus on colitis. The results revealed that L. acidophilus CCFM137 and FAHWH11L56 show potential for relieving colitis symptoms, while L. acidophilus FGSYC48L79 did not show a protective effect. Moreover, L. acidophilus NCFM and FAHWH11L56 showed similar effects on various indicators of DSS-induced colitis, increasing the IL-10 and IL-17 in the colon, and modifying the CCL2/CCR2 axis and CCL3/CCR1 axis. For L. acidophilus CCFM137, its effects on colitis were different from the above two strains. Moreover, L. acidophilus FGSYC48L79 had negative effects on colitis by increasing the abundance of harmful bacteria in the gut microbiota and may promote the signaling of chemokines and their receptors. This may be related to its special genome compared to the other strains.


Asunto(s)
Colitis , Probióticos , Ratones , Animales , Lactobacillus acidophilus , Sulfato de Dextran/toxicidad , Colitis/inducido químicamente , Colitis/microbiología , Probióticos/uso terapéutico , Colon/microbiología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Citocinas
20.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077271

RESUMEN

The infant gut microbiota is critical for promoting and maintaining early-life health. The study aimed to analyze the composition of sIgA-coated and sIgA-uncoated bacterial communities at genus level and lactobacilli and bifidobacterial communities at species level in human breast milk (HBM) and infant and maternal feces. Eleven pregnant women were recruited successfully. HBM; infant feces during colostrum, transition, and mature stages; and maternal feces within the mature stage were collected. sIgA-coated and sIgA-uncoated bacteria were separated with magnetic-activated cell sorting. Then, 16S rRNA sequencing, bifidobacterial groEL gene sequencing, and lactobacilli groEL gene sequencing were performed to analyze the bacterial community. PCoA revealed that the compositions of sIgA-coated and sIgA-uncoated bacteria were different among HBM and infant and maternal feces. Higher relative abundance of sIgA-uncoated Bifidobacterium was found in the three lactation stages in infant feces compared to the corresponding HBM, and a higher relative abundance of sIgA-uncoated Faecalibacterium was found in maternal feces compared to HBM and infant feces. For bifidobacterial community, sIgA-coated and sIgA-uncoated B. longum subsp. infantis and B. pseudocatenulatum was dominant in infant feces and maternal feces, respectively. The relative abundance of sIgA-uncoated B. longum subsp. infantis was significantly higher in infant feces compared to that in maternal feces. For the Lactobacillus community, L. paragasseri and L. mucosae were dominant in infant and maternal feces, respectively. HBM and infant and maternal feces showed distinct diversity and composition of both sIgA-coated and sIgA-uncoated bacteria at genus level. Infant and maternal feces showed similar composition of Bifidobacterium at species level. The same Bifidobacterium species could be detected both in sIgA-coated and -uncoated form. This article provided deeper understanding on the microbiota profile in HBM and infant and maternal feces.


Asunto(s)
Leche Humana , Madres , Bacterias/genética , Bifidobacterium/genética , Heces/microbiología , Femenino , Humanos , Inmunoglobulina A Secretora , Lactante , Intestinos/microbiología , Lactobacillus/genética , Leche Humana/microbiología , Embarazo , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA