Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Methods Mol Biol ; 2813: 145-165, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38888777

RESUMEN

As an alternative to traditional serological markers, that is, antibodies, for serum-based specific diagnosis of infections, circulating non-antibody markers may be used to monitor active disease. Acute phase proteins (APPs) are a prominent class of such markers widely used for diagnosing ongoing inflammation and infection. In this chapter, basic theoretical and practical considerations on developing APP assays and using APPs as markers of ongoing infection are presented with a specific focus on intracellular infections in pigs. Examples on APP-based monitoring of infection in pigs with viruses such as porcine respiratory and reproductive syndrome virus (PRRSV), porcine endemic diarrhea virus (PEDV), and influenza A virus (IAV), as well as intracellular bacteria (Lawsonia intracellularis) and the protozoan intracellular parasites Toxoplasma gondii and Cryptosporidium parvum are presented, with an emphasis on major pig APPs C-reactive protein (CRP), haptoglobin, serum amyloid A (SAA), and pig major acute phase protein (pig-MAP). The performance of these APPs as biomarkers in a range of experimental infection studies in pigs is described as examples on their use for estimating the severity of infection, vaccine efficacy, herd health characterization, and differential diagnosis.


Asunto(s)
Proteínas de Fase Aguda , Biomarcadores , Enfermedades de los Porcinos , Animales , Porcinos , Proteínas de Fase Aguda/metabolismo , Proteínas de Fase Aguda/inmunología , Biomarcadores/sangre , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/parasitología , Enfermedades de los Porcinos/sangre
2.
Immunobiology ; 227(3): 152192, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35255458

RESUMEN

Nasal mucosal explant (NEs) cultured at an air-liquid interface mimics in vivo conditions more accurately than monolayer cultures of respiratory cell linesor primary cells cultured in flat-bottom microtiter wells. NEs might be relevant for studies of host-pathogen interactions and antiviral immune responses after infection with respiratory viruses, including influenza and corona viruses. Pigs are natural hosts for swine influenza A virus (IAV) but are also susceptible to IAV from humans, emphasizing the relevance of porcine NEs in the study of IAV infection. Therefore, we performed fundamental characterization and study of innate antiviral responses in porcine NEs using microfluidic high-throughput quantitative real-time PCR (qPCR) to generate expression profiles of host genes involved in inflammation, apoptosis, and antiviral immune responses in mock inoculated and IAV infected porcine NEs. Handling and culturing of the explants ex vivo had a significant impact on gene expression compared to freshly harvested tissue. Upregulation (2-43 fold) of genes involved in inflammation, including IL1A and IL6, and apoptosis, including FAS and CASP3, and downregulation of genes involved in viral recognition (MDA5 (IFIH1)), interferon response (IFNA), and response to virus (OAS1, IFIT1, MX1) was observed. However, by comparing time-matched mock and virus infected NEs, transcription of viral pattern recognition receptors (RIG-I (DDX58), MDA5 (IFIH1), TLR3) and type I and III interferons (IFNB1, IL28B (IFNL3)) were upregulated 2-16 fold in IAV-infected NEs. Furthermore, several interferon-stimulated genes including MX1, MX2, OAS, OASL, CXCL10, and ISG15 was observed to increase 2-26 fold in response to IAV inoculation. NE expression levels of key genes involved in antiviral responses including IL28B (IFNL3), CXCL10, and OASL was highly comparable to expression levels found in respiratory tissues including nasal mucosa and lung after infection of pigs with the same influenza virus isolate.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Animales , Antivirales , Humanos , Inmunidad Innata , Inflamación , Helicasa Inducida por Interferón IFIH1 , Interferones/genética , Interferones/metabolismo , Porcinos
3.
ILAR J ; 59(3): 323-337, 2018 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-30476076

RESUMEN

Influenza is a viral respiratory disease having a major impact on public health. Influenza A virus (IAV) usually causes mild transitory disease in humans. However, in specific groups of individuals such as severely obese, the elderly, and individuals with underlying inflammatory conditions, IAV can cause severe illness or death. In this review, relevant small and large animal models for human IAV infection, including the pig, ferret, and mouse, are discussed. The focus is on the pig as a large animal model for human IAV infection as well as on the associated innate immune response. Pigs are natural hosts for the same IAV subtypes as humans, they develop clinical disease mirroring human symptoms, they have similar lung anatomy, and their respiratory physiology and immune responses to IAV infection are remarkably similar to what is observed in humans. The pig model shows high face and target validity for human IAV infection, making it suitable for modeling many aspects of influenza, including increased risk of severe disease and impaired vaccine response due to underlying pathologies such as low-grade inflammation. Comparative analysis of proteins involved in viral pattern recognition, interferon responses, and regulation of interferon-stimulated genes reveals a significantly higher degree of similarity between pig, ferret, and human compared with mice. It is concluded that the pig is a promising animal model displaying substantial human translational value with the ability to provide essential insights into IAV infection, pathogenesis, and immunity.


Asunto(s)
Virus de la Influenza A/patogenicidad , Gripe Humana/virología , Animales , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata/genética , Inmunidad Innata/fisiología , Inflamación/metabolismo , Gripe Humana/genética , MicroARNs/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA