Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(1): 101519, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34942148

RESUMEN

Melanin is a major virulence factor in pathogenic fungi that enhances the ability of fungal cells to resist immune clearance. Cryptococcus neoformans is an important human pathogenic fungus that synthesizes melanin from exogenous tissue catecholamine precursors during infection, but the type of melanin made in cryptococcal meningoencephalitis is unknown. We analyzed the efficacy of various catecholamines found in brain tissue in supporting melanization using animal brain tissue and synthetic catecholamine mixtures reflecting brain tissue proportions. Solid-state NMR spectra of the melanin pigment produced from such mixtures yielded more melanin than expected if only the preferred constituent dopamine had been incorporated, suggesting uptake of additional catecholamines. Probing the biosynthesis of melanin using radiolabeled catecholamines revealed that C. neoformans melanization simultaneously incorporated more than one catecholamine, implying that the pigment was polytypic in nature. Nonetheless, melanin derived from individual or mixed catecholamines had comparable ability to protect C. neoformans against ultraviolet light and oxidants. Our results indicate that melanin produced during infection differs depending on the catecholamine composition of tissue and that melanin pigment synthesized in vivo is likely to accrue from the polymerization of a mixture of precursors. From a practical standpoint, our results strongly suggest that using dopamine as a polymerization precursor is capable of producing melanin pigment comparable to that produced during infection. On a more fundamental level, our findings uncover additional structural complexity for natural cryptococcal melanin by demonstrating that pigment produced during human infection is likely to be composed of polymerized moieties derived from chemically different precursors.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Melaninas , Animales , Catecolaminas , Criptococosis/microbiología , Cryptococcus neoformans/metabolismo , Dopamina/metabolismo , Melaninas/metabolismo
2.
J Biol Chem ; 295(44): 15083-15096, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32859751

RESUMEN

A primary virulence-associated trait of the opportunistic fungal pathogen Cryptococcus neoformans is the production of melanin pigments that are deposited into the cell wall and interfere with the host immune response. Previously, our solid-state NMR studies of isolated melanized cell walls (melanin "ghosts") revealed that the pigments are strongly associated with lipids, but their identities, origins, and potential roles were undetermined. Herein, we exploited spectral editing techniques to identify and quantify the lipid molecules associated with pigments in melanin ghosts. The lipid profiles were remarkably similar in whole C. neoformans cells, grown under either melanizing or nonmelanizing conditions; triglycerides (TGs), sterol esters (SEs), and polyisoprenoids (PPs) were the major constituents. Although no quantitative differences were found between melanized and nonmelanized cells, melanin ghosts were relatively enriched in SEs and PPs. In contrast to lipid structures reported during early stages of fungal growth in nutrient-rich media, variants found herein could be linked to nutrient stress, cell aging, and subsequent production of substances that promote chronic fungal infections. The fact that TGs and SEs are the typical cargo of lipid droplets suggests that these organelles could be connected to C. neoformans melanin synthesis. Moreover, the discovery of PPs is intriguing because dolichol is a well-established constituent of human neuromelanin. The presence of these lipid species even in nonmelanized cells suggests that they could be produced constitutively under stress conditions in anticipation of melanin synthesis. These findings demonstrate that C. neoformans lipids are more varied compositionally and functionally than previously recognized.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Pared Celular/metabolismo , Cryptococcus neoformans/metabolismo , Lípidos/clasificación , Melaninas/metabolismo , Espectroscopía de Protones por Resonancia Magnética/métodos , Cryptococcus neoformans/patogenicidad , Lípidos/análisis , Virulencia
3.
J Biol Chem ; 295(7): 1815-1828, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31896575

RESUMEN

Cryptococcus neoformans and Cryptococcus gattii are two species complexes in the large fungal genus Cryptococcus and are responsible for potentially lethal disseminated infections. These two complexes share several phenotypic traits, such as production of the protective compound melanin. In C. neoformans, the pigment associates with key cellular constituents that are essential for melanin deposition within the cell wall. Consequently, melanization is modulated by changes in cell-wall composition or ultrastructure. However, whether similar factors influence melanization in C. gattii is unknown. Herein, we used transmission EM, biochemical assays, and solid-state NMR spectroscopy of representative isolates and "leaky melanin" mutant strains from each species complex to examine the compositional and structural factors governing cell-wall pigment deposition in C. neoformans and C. gattii. The principal findings were the following. 1) C. gattii R265 had an exceptionally high chitosan content compared with C. neoformans H99; a rich chitosan composition promoted homogeneous melanin distribution throughout the cell wall but did not increase the propensity of pigment deposition. 2) Strains from both species manifesting the leaky melanin phenotype had reduced chitosan content, which was compensated for by the production of lipids and other nonpolysaccharide constituents that depended on the species or mutation. 3) Changes in the relative rigidity of cell-wall chitin were associated with aberrant pigment retention, implicating cell-wall flexibility as an independent variable in cryptococcal melanin assembly. Overall, our results indicate that cell-wall composition and molecular architecture are critical factors for the anchoring and arrangement of melanin pigments in both C. neoformans and C. gattii species complexes.


Asunto(s)
Pared Celular/genética , Cryptococcus gattii/metabolismo , Cryptococcus neoformans/metabolismo , Melaninas/genética , Pigmentación/genética , Pared Celular/química , Quitina/química , Quitina/metabolismo , Quitosano/química , Quitosano/metabolismo , Criptococosis/genética , Criptococosis/microbiología , Cryptococcus gattii/genética , Cryptococcus gattii/patogenicidad , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Humanos , Espectroscopía de Resonancia Magnética , Melaninas/química , Melaninas/metabolismo , Mutación/genética
4.
J Biol Chem ; 294(27): 10471-10489, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31118223

RESUMEN

Melanins are synthesized macromolecules that are found in all biological kingdoms. These pigments have a myriad of roles that range from microbial virulence to key components of the innate immune response in invertebrates. Melanins also exhibit unique properties with potential applications in physics and material sciences, ranging from electrical batteries to novel therapeutics. In the fungi, melanins, such as eumelanins, are components of the cell wall that provide protection against biotic and abiotic elements. Elucidation of the smallest fungal cell wall-associated melanin unit that serves as a building block is critical to understand the architecture of these polymers, its interaction with surrounding components, and their functional versatility. In this study, we used isopycnic gradient sedimentation, NMR, EPR, high-resolution microscopy, and proteomics to analyze the melanin in the cell wall of the human pathogenic fungus Cryptococcus neoformans We observed that melanin is assembled into the cryptococcal cell wall in spherical structures ∼200 nm in diameter, termed melanin granules, which are in turn composed of nanospheres ∼30 nm in diameter, termed fungal melanosomes. We noted that melanin granules are closely associated with proteins that may play critical roles in the fungal melanogenesis and the supramolecular structure of this polymer. Using this structural information, we propose a model for C. neoformans' melanization that is similar to the process used in animal melanization and is consistent with the phylogenetic relatedness of the fungal and animal kingdoms.


Asunto(s)
Pared Celular/metabolismo , Cryptococcus neoformans/metabolismo , Melaninas/química , Cryptococcus neoformans/clasificación , Levodopa/química , Espectroscopía de Resonancia Magnética , Melaninas/análisis , Melaninas/metabolismo , Microscopía Electrónica de Transmisión , Nanopartículas/química , Tamaño de la Partícula , Filogenia , Proteómica
5.
Bioorg Med Chem ; 28(9): 115428, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32216988

RESUMEN

Erwinia carotovora is a major cause of potato tuber infection, which results in disastrous failures of this important food crop. There is currently no effective antibiotic treatment against E. carotovora. Recently we reported antibacterial assays of wound tissue extracts from four potato cultivars that exhibit a gradient of russeting character, finding the highest potency against this pathogen for a polar extract from the tissue formed immediately after wounding by an Atlantic cultivar. In the current investigation, antibacterial activity-guided fractions of this extract were analyzed by liquid chromatography-mass spectrometry (LC-MS) utilizing a quadrupole-time-of-flight (QTOF) mass spectrometer. The most active chemical compounds identified against E. carotovora were: 6-O-nonyl glucitol, Lyratol C, n-[2-(4-Hydroxyphenyl)] ethyldecanamide, α-chaconine and α-solanine. Interactions among the three compounds, ferulic acid, feruloyl putrescine, and α-chaconine, representing metabolite classes upregulated during initial stages of wound healing, were also evaluated, offering possible explanations for the burst in antibacterial activity after tuber wounding and a chemical rationale for the temporal resistance phenomenon.


Asunto(s)
Antibacterianos/farmacología , Pectobacterium carotovorum/efectos de los fármacos , Solanum tuberosum/química , Extractos de Tejidos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Extractos de Tejidos/química , Extractos de Tejidos/aislamiento & purificación , Cicatrización de Heridas/efectos de los fármacos
6.
Solid State Nucl Magn Reson ; 109: 101686, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32896783

RESUMEN

Many interesting solid-state targets for biological research do not form crystalline structures; these materials include intrinsically disordered proteins, plant biopolymer composites, cell-wall polysaccharides, and soil organic matter. The absence of aligned repeating structural elements and atomic-level rigidity presents hurdles to achieving structural elucidation and obtaining functional insights. We describe strategies for adapting several solid-state NMR methods to determine the molecular structures and compositions of these amorphous biosolids. The main spectroscopic problems in studying amorphous structures by NMR are over/under-sampling of the spin signals and spectral complexity. These problems arise in part because amorphous biosolids typically contain a mix of rigid and mobile domains, making it difficult to select a single experiment or set of acquisition conditions that fairly represents all nuclear spins in a carbon-based organic sample. These issues can be addressed by running hybrid experiments, such as using direct excitation alongside cross polarization-based methods, to develop a more holistic picture of the macromolecular system. In situations of spectral crowding or overlap, the structural elucidation strategy can be further assisted by coupling 13C spins to nuclei such as 15N, filtering out portions of the spectrum, highlighting individual moieties of interest, and adding a second or third spectral dimension to an NMR experiment in order to spread out the resonances and link them pairwise through space or through bonds. We discuss practical aspects and illustrations from the recent literature for 1D experiments that use cross or direct polarization and both homo- and heteronuclear 2D and 3D solid-state NMR experiments.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Sustancias Macromoleculares/química
7.
J Biol Chem ; 293(52): 20157-20168, 2018 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-30385508

RESUMEN

Natural brown-black eumelanin pigments confer structural coloration in animals and potently block ionizing radiation and antifungal drugs. These functions also make them attractive for bioinspired materials design, including coating materials for drug-delivery vehicles, strengthening agents for adhesive hydrogel materials, and free-radical scavengers for soil remediation. Nonetheless, the molecular determinants of the melanin "developmental road traveled" and the resulting architectural features have remained uncertain because of the insoluble, heterogeneous, and amorphous characteristics of these complex polymeric assemblies. Here, we used 2D solid-state NMR, EPR, and dynamic nuclear polarization spectroscopic techniques, assisted in some instances by the use of isotopically enriched precursors, to address several open questions regarding the molecular structures and associated functions of eumelanin. Our findings uncovered: 1) that the identity of the available catecholamine precursor alters the structure of melanin pigments produced either in Cryptococcus neoformans fungal cells or under cell-free conditions; 2) that the identity of the available precursor alters the scaffold organization and membrane lipid content of melanized fungal cells; 3) that the fungal cells are melanized preferentially by an l-DOPA precursor; and 4) that the macromolecular carbon- and nitrogen-based architecture of cell-free and fungal eumelanins includes indole, pyrrole, indolequinone, and open-chain building blocks that develop depending on reaction time. In conclusion, the availability of catecholamine precursors plays an important role in eumelanin development by affecting the efficacy of pigment formation, the melanin molecular structure, and its underlying scaffold in fungal systems.


Asunto(s)
Cryptococcus neoformans/metabolismo , Levodopa/metabolismo , Melaninas/biosíntesis , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , Cryptococcus neoformans/química , Levodopa/química , Melaninas/química
8.
Microbiology (Reading) ; 163(11): 1540-1556, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29043954

RESUMEN

Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother-daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In summary, GlcNAc supplementation had pleiotropic effects on cell-wall and melanin architectures, and thus established its capacity to perturb these structures, a property that could prove useful for metabolic tracking studies.


Asunto(s)
Acetilglucosamina/metabolismo , Pared Celular/metabolismo , Cryptococcus neoformans/metabolismo , Melaninas/metabolismo , Pared Celular/química , Pared Celular/ultraestructura , Quitina/metabolismo , Quitosano/metabolismo , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/ultraestructura , Farmacorresistencia Fúngica/fisiología , Pruebas de Enzimas , Lacasa/metabolismo , Melaninas/biosíntesis , Pruebas de Sensibilidad Microbiana , Fenotipo
9.
J Biol Chem ; 290(22): 13779-90, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25825492

RESUMEN

Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment "ghosts" and applied 2D (13)C-(13)C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics.


Asunto(s)
Carbono/química , Pared Celular/química , Cryptococcus neoformans/química , Espectroscopía de Resonancia Magnética/métodos , Melaninas/química , Sistemas de Liberación de Medicamentos , Radicales Libres/química , Glucosa/química , Glicéridos/química , Indoles/química , Levodopa/química , Pigmentación , Polisacáridos/química , Factores de Virulencia/química
10.
Biomacromolecules ; 17(1): 215-24, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26652188

RESUMEN

Plant cuticles on outer fruit and leaf surfaces are natural macromolecular composites of waxes and polyesters that ensure mechanical integrity and mitigate environmental challenges. They also provide renewable raw materials for cosmetics, packaging, and coatings. To delineate the structural framework and flexibility underlying the versatile functions of cutin biopolymers associated with polysaccharide-rich cell-wall matrices, solid-state NMR spectra and spin relaxation times were measured in a tomato fruit model system, including different developmental stages and surface phenotypes. The hydrophilic-hydrophobic balance of the cutin ensures compatibility with the underlying polysaccharide cell walls; the hydroxy fatty acid structures of outer epidermal cutin also support deposition of hydrophobic waxes and aromatic moieties while promoting the formation of cell-wall cross-links that rigidify and strengthen the cuticle composite during fruit development. Fruit cutin-deficient tomato mutants with compromised microbial resistance exhibit less efficient local and collective biopolymer motions, stiffening their cuticular surfaces and increasing their susceptibility to fracture.


Asunto(s)
Biopolímeros/metabolismo , Frutas/metabolismo , Lípidos de la Membrana/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Solanum lycopersicum/genética , Pared Celular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Imagen por Resonancia Magnética , Lípidos de la Membrana/genética , Resonancia Magnética Nuclear Biomolecular , Proteínas de Plantas/genética , Polisacáridos/metabolismo , Ceras/metabolismo
11.
Plant J ; 77(5): 667-75, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24372802

RESUMEN

The aerial epidermis of all land plants is covered with a hydrophobic cuticle that provides essential protection from desiccation, and so its evolution is believed to have been prerequisite for terrestrial colonization. A major structural component of apparently all plant cuticles is cutin, a polyester of hydroxy fatty acids; however, despite its ubiquity, the details of cutin polymeric structure and the mechanisms of its formation and remodeling are not well understood. We recently reported that cutin polymerization in tomato (Solanum lycopersicum) fruit occurs via transesterification of hydroxyacylglycerol precursors, catalyzed by the GDSL-motif lipase/hydrolase family protein (GDSL) Cutin Deficient 1 (CD1). Here, we present additional biochemical characterization of CD1 and putative orthologs from Arabidopsis thaliana and the moss Physcomitrella patens, which represent a distinct clade of cutin synthases within the large GDSL superfamily. We demonstrate that members of this ancient and conserved family of cutin synthase-like (CUS) proteins act as polyester synthases with negligible hydrolytic activity. Moreover, solution-state NMR analysis indicates that CD1 catalyzes the formation of primarily linear cutin oligomeric products in vitro. These results reveal a conserved mechanism of cutin polyester synthesis in land plants, and suggest that elaborations of the linear polymer, such as branching or cross-linking, may require additional, as yet unknown, factors.


Asunto(s)
Evolución Molecular , Lípidos de la Membrana/biosíntesis , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimología , Secuencia de Aminoácidos , Secuencia Conservada , Solanum lycopersicum/genética , Familia de Multigenes , Proteínas de Plantas/química , Proteínas de Plantas/genética , Polimerizacion
12.
Antimicrob Agents Chemother ; 60(3): 1646-55, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26711773

RESUMEN

The importance of Alternaria species fungi to human health ranges from their role as etiological agents of serious infections with poor prognoses in immunosuppressed individuals to their association with respiratory allergic diseases. The present work focuses on Alternaria infectoria, which was used as a model organism of the genus, and was designed to unravel melanin production in response to antifungals. After we characterized the pigment produced by A. infectoria, we studied the dynamics of 1,8-dihydroxynaphthalene (DHN)-melanin production during growth, the degree of melanization in response to antifungals, and how melanization affected susceptibility to several classes of therapeutic drugs. We demonstrate that A. infectoria increased melanin deposition in cell walls in response to nikkomycin Z, caspofungin, and itraconazole but not in response to fluconazole or amphotericin B. These results indicate that A. infectoria activates DHN-melanin synthesis in response to certain antifungal drugs, possibly as a protective mechanism against these drugs. Inhibition of DHN-melanin synthesis by pyroquilon resulted in a lower minimum effective concentration (MEC) of caspofungin and enhanced morphological changes (increased hyphal balloon size), characterized by thinner and less organized A. infectoria cell walls. In summary, A. infectoria synthesizes melanin in response to certain antifungal drugs, and its susceptibility is influenced by melanization, suggesting the therapeutic potential of drug combinations that affect melanin synthesis.


Asunto(s)
Alternaria/efectos de los fármacos , Antifúngicos/farmacología , Pared Celular/efectos de los fármacos , Melaninas/biosíntesis , Aminoglicósidos/farmacología , Anfotericina B/farmacología , Caspofungina , Equinocandinas/farmacología , Fluconazol/farmacología , Itraconazol/farmacología , Lipopéptidos/farmacología , Pruebas de Sensibilidad Microbiana , Naftoles , Pirroles/farmacología , Quinolinas/farmacología
13.
J Biol Chem ; 288(27): 19805-15, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23658011

RESUMEN

Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803-G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP(-/-) mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG.


Asunto(s)
Citosol/química , Proteínas de Unión a Ácidos Grasos/química , Hígado/química , Monoglicéridos/química , Animales , Sitios de Unión , Transporte Biológico/fisiología , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Cinética , Hígado/metabolismo , Ratones , Ratones Noqueados , Monoglicéridos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Ratas
14.
Biomacromolecules ; 15(3): 799-811, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24502663

RESUMEN

Periderms present in plant barks are essential protective barriers to water diffusion, mechanical breakdown, and pathogenic invasion. They consist of densely packed layers of dead cells with cell walls that are embedded with suberin. Understanding the interplay of molecular structure, dynamics, and biomechanics in these cell wall-associated insoluble amorphous polymeric assemblies presents substantial investigative challenges. We report solid-state NMR coordinated with FT-IR and tensile strength measurements for periderms from native and wound-healing potatoes and from potatoes with genetically modified suberins. The analyses include the intact suberin aromatic-aliphatic polymer and cell-wall polysaccharides, previously reported soluble depolymerized transmethylation products, and undegraded residues including suberan. Wound-healing suberized potato cell walls, which are 2 orders of magnitude more permeable to water than native periderms, display a strikingly enhanced hydrophilic-hydrophobic balance, a degradation-resistant aromatic domain, and flexibility suggestive of an altered supramolecular organization in the periderm. Suppression of ferulate ester formation in suberin and associated wax remodels the periderm with more flexible aliphatic chains and abundant aromatic constituents that can resist transesterification, attenuates cooperative hydroxyfatty acid motions, and produces a mechanically compromised and highly water-permeable periderm.


Asunto(s)
Pared Celular/química , Lípidos/química , Complejos Multiproteicos/química , Plantas Modificadas Genéticamente/química , Estructura Molecular , Solanum tuberosum/química , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química
15.
Org Biomol Chem ; 12(34): 6730-6, 2014 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-25047903

RESUMEN

Despite the essential functions of melanin pigments in diverse organisms and their roles in inspiring designed nanomaterials for electron transport and drug delivery, the structural frameworks of the natural materials and their biomimetic analogs remain poorly understood. To overcome the investigative challenges posed by these insoluble heterogeneous pigments, we have used l-tyrosine or dopamine enriched with stable (13)C and (15)N isotopes to label eumelanins metabolically in cell-free and Cryptococcus neoformans cell systems and to define their molecular structures and supramolecular architectures. Using high-field two-dimensional solid-state nuclear magnetic resonance (NMR), our study directly evaluates the assumption of structural commonality between synthetic melanin models and the corresponding natural pigments, demonstrating a common indole-based aromatic core in the products from contrasting synthetic protocols for the first time.


Asunto(s)
Cryptococcus neoformans/metabolismo , Melaninas/biosíntesis , Melaninas/química , Fracciones Subcelulares/metabolismo , Isótopos de Carbono , Cryptococcus neoformans/química , Dopamina/química , Dopamina/metabolismo , Espectroscopía de Resonancia Magnética , Melaninas/síntesis química , Conformación Molecular , Isótopos de Nitrógeno , Coloración y Etiquetado , Fracciones Subcelulares/química , Tirosina/química , Tirosina/metabolismo
16.
J Chem Educ ; 90(3): 368-371, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23526490

RESUMEN

An eight-session interdisciplinary laboratory curriculum has been designed using a suite of analytical chemistry techniques to study biomaterials derived from an inexpensive source such as the tomato fruit. A logical progression of research-inspired laboratory modules serves to "tour" the macroscopic characteristics of the fruit and the submicroscopic properties of its constituent cuticular biopolymers by atomic force microscopy (AFM), UV-visible, and nuclear magnetic resonance (NMR) methods at increasingly detailed molecular levels. The modular curriculum can be tailored for specialty undergraduate courses or summer high school workshops. By applying analytical tools to investigate biopolymers, making connections between molecular and microscale structure, and linking both structural regimes to the functional properties of natural polymers, groundwork is established for further student investigations at the interface of chemistry with biology or chemical engineering.

17.
Sci Rep ; 13(1): 10154, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349387

RESUMEN

Insecticides have made great strides in reducing the global burden of vector-borne disease. Nonetheless, serious public health concerns remain because insecticide-resistant vector populations continue to spread globally. To circumvent insecticide resistance, it is essential to understand all contributing mechanisms. Contact-based insecticides are absorbed through the insect cuticle, which is comprised mainly of chitin polysaccharides, cuticular proteins, hydrocarbons, and phenolic biopolymers sclerotin and melanin. Cuticle interface alterations can slow or prevent insecticide penetration in a phenomenon referred to as cuticular resistance. Cuticular resistance characterization of the yellow fever mosquito, Aedes aegypti, is lacking. In the current study, we utilized solid-state nuclear magnetic resonance spectroscopy, gas chromatography/mass spectrometry, and transmission electron microscopy to gain insights into the cuticle composition of congenic cytochrome P450 monooxygenase insecticide resistant and susceptible Ae. aegypti. No differences in cuticular hydrocarbon content or phenolic biopolymer deposition were found. In contrast, we observed cuticle thickness of insecticide resistant Ae. aegypti increased over time and exhibited higher polysaccharide abundance. Moreover, we found these local cuticular changes correlated with global metabolic differences in the whole mosquito, suggesting the existence of novel cuticular resistance mechanisms in this major disease vector.


Asunto(s)
Aedes , Insecticidas , Piretrinas , Fiebre Amarilla , Animales , Insecticidas/farmacología , Resistencia a los Insecticidas , Mosquitos Vectores
18.
bioRxiv ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36712033

RESUMEN

Insecticides have made great strides in reducing the global burden of vector-borne disease. Nonetheless, serious public health concerns remain because insecticide-resistant vector populations continue to spread globally. To circumvent insecticide resistance, it is essential to understand all contributing mechanisms. Contact-based insecticides are absorbed through the insect cuticle, which is comprised mainly of chitin polysaccharides, cuticular proteins, hydrocarbons, and phenolic biopolymers sclerotin and melanin. Cuticle interface alterations can slow or prevent insecticide penetration in a phenomenon referred to as cuticular resistance. Cuticular resistance characterization of the yellow fever mosquito, Aedes aegypti , is lacking. In the current study, we utilized solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy, gas chromatography/mass spectrometry (GC-MS), and transmission electron microscopy (TEM) to gain insights into the cuticle composition of congenic cytochrome P450 monooxygenase insecticide resistant and susceptible Ae. aegypti . No differences in cuticular hydrocarbon content or phenolic biopolymer deposition were found. In contrast, we observed cuticle thickness of insecticide resistant Ae. aegypti increased over time and exhibited higher polysaccharide abundance. Moreover, we found these local cuticular changes correlated with global metabolic differences in the whole mosquito, suggesting the existence of novel cuticular resistance mechanisms in this major disease vector.

19.
Biochemistry ; 51(31): 6080-8, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22765382

RESUMEN

Melanins are a class of natural pigments associated with a wide range of biological functions, including microbial virulence, energy transduction, and protection against solar radiation. Because of their insolubility and structural heterogeneity, solid-state nuclear magnetic resonance (NMR) spectroscopy provides an unprecedented means to define the molecular architecture of these enigmatic pigments. The requirement of obligatory catecholamines for melanization of the pathogenic fungus Cryptococcus neoformans also offers unique opportunities for investigating melanin development. In the current study, pigments produced with L-dopa, methyl-L-dopa, epinephrine, and norepinephrine precursors are compared structurally using (13)C and (1)H magic-angle spinning (MAS) NMR. Striking structural differences were observed for both aromatic and aliphatic molecular constituents of the mature fungal pigment assemblies, thus making it possible to redefine the molecular prerequisites for formation of the aromatic domains of insoluble indole-based biopolymers, to rationalize their distinctive physical characteristics, and to delineate the role of cellular constituents in assembly of the melanized macromolecules with polysaccharides and fatty acyl chain-containing moieties. By achieving an augmented understanding of the mechanisms of C. neoformans melanin biosynthesis and cellular assembly, such studies can guide future drug discovery efforts related to melanin-associated virulence, resistance to tumor therapy, and production of melanin mimetics under cell-free conditions.


Asunto(s)
Catecolaminas/metabolismo , Cryptococcus neoformans/metabolismo , Melaninas/metabolismo , Pared Celular/metabolismo , Cryptococcus neoformans/citología , Polisacáridos Fúngicos/metabolismo , Indoles/metabolismo , Espectroscopía de Resonancia Magnética , Melaninas/biosíntesis
20.
ACS Omega ; 7(5): 3978-3989, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35155893

RESUMEN

The protection of terrestrial plants from desiccation, mechanical injury, and pathogenic invasion is achieved by waxes and cutin polyesters on leaf and fruit surfaces as well as suberin polymers that are embedded in the cell walls of roots, but the physicochemical principles governing the organization of these biological composites remain incompletely understood. Despite the well-established enzymatic mediation of suberin formation in the skins of potato tubers, cork oak trees, and internal plant tissues, the additional possibility of self-assembly in this system was suggested by our serendipitous finding that solvent extracts from potato phellem tissues form suspended fibers and needles in the absence of such catalysts over a period of several weeks. In the current study, we investigated self-assembly for three-component model chemical mixtures comprised of a hydroxyfatty acid, glycerol, and either of two hydroxycinnamic acids that together typify the building blocks of potato suberin biopolymers. We demonstrate that these mixtures spontaneously form lamellar structures that are reminiscent of suberized plant tissues, incorporate all constituents into self-assemblies, can form covalently bound ester structures, and display antibacterial activity. These findings provide new perspectives on the self-association and reactivity of these classes of organic compounds, insights into agriculturally important suberin formation in food crops, and a starting point for engineering sustainable materials with antimicrobial capabilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA