Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Neurosci ; 42(3): 405-415, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34880120

RESUMEN

Duloxetine, a serotonin and norepinephrine reuptake inhibitor, is the best-established treatment for painful chemotherapy-induced peripheral neuropathy (CIPN). While it is only effective in little more than half of patients, our ability to predict patient response remains incompletely understood. Given that stress exacerbates CIPN, and that the therapeutic effect of duloxetine is thought to be mediated, at least in part, via its effects on adrenergic mechanisms, we evaluated the contribution of neuroendocrine stress axes, sympathoadrenal and hypothalamic-pituitary-adrenal, to the effect of duloxetine in preclinical models of oxaliplatin- and paclitaxel-induced CIPN. Systemic administration of duloxetine, which alone had no effect on nociceptive threshold, both prevented and reversed mechanical hyperalgesia associated with oxaliplatin- and paclitaxel-CIPN. It more robustly attenuated oxaliplatin CIPN in male rats, while it was more effective for paclitaxel CIPN in females. Gonadectomy attenuated these sex differences in the effect of duloxetine. To assess the role of neuroendocrine stress axes in the effect of duloxetine on CIPN, rats of both sexes were submitted to adrenalectomy combined with fixed level replacement of corticosterone and epinephrine. While CIPN, in these rats, was of similar magnitude to that observed in adrenal-intact animals, rats of neither sex responded to duloxetine. Furthermore, duloxetine blunted an increase in corticosterone induced by oxaliplatin, and prevented the exacerbation of CIPN by sound stress. Our results demonstrate a role of neuroendocrine stress axes in duloxetine analgesia (anti-hyperalgesia) for the treatment of CIPN.SIGNIFICANCE STATEMENT Painful chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating dose-dependent and therapy-limiting side effect of many of the cytostatic drugs used to treat cancer (Argyriou et al., 2010; Marmiroli et al., 2017). Duloxetine is the only treatment for CIPN currently recommended by the American Society of Clinical Oncology (Hershman et al., 2014). In the present study, focused on elucidating mechanisms mediating the response of oxaliplatin- and paclitaxel-induced painful peripheral neuropathy to duloxetine, we demonstrate a major contribution to its effect of neuroendocrine stress axis function. These findings, which parallel the clinical observation that stress may impact response of CIPN to duloxetine (Taylor et al., 2007), open new approaches to the treatment of CIPN and other stress-associated pain syndromes.


Asunto(s)
Analgésicos/uso terapéutico , Antineoplásicos/efectos adversos , Clorhidrato de Duloxetina/uso terapéutico , Umbral del Dolor/efectos de los fármacos , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Analgésicos/farmacología , Animales , Antineoplásicos/uso terapéutico , Corticosterona/sangre , Clorhidrato de Duloxetina/farmacología , Femenino , Masculino , Oxaliplatino/efectos adversos , Paclitaxel/efectos adversos , Manejo del Dolor , Enfermedades del Sistema Nervioso Periférico/sangre , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Ratas , Ratas Sprague-Dawley
2.
Molecules ; 28(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36903662

RESUMEN

Intense exposure to UVB radiation incites excessive production of reactive oxygen species (ROS) and inflammation. The resolution of inflammation is an active process orchestrated by a family of lipid molecules that includes AT-RvD1, a specialized proresolving lipid mediator (SPM). AT-RvD1 is derived from omega-3, which presents anti-inflammatory activity and reduces oxidative stress markers. The present work aims to investigate the protective effect of AT-RvD1 on UVB-induced inflammation and oxidative stress in hairless mice. Animals were first treated with 30, 100, and 300 pg/animal AT-RvD1 (i.v.) and then exposed to UVB (4.14 J/cm2). The results showed that 300 pg/animal of AT-RvD1 could restrict skin edema, neutrophil and mast cell infiltration, COX-2 mRNA expression, cytokine release, and MMP-9 activity and restore skin antioxidant capacity as per FRAP and ABTS assays and control O2•- production, lipoperoxidation, epidermal thickening, and sunburn cells development. AT-RvD1 could reverse the UVB-induced downregulation of Nrf2 and its downstream targets GSH, catalase, and NOQ-1. Our results suggest that by upregulating the Nrf2 pathway, AT-RvD1 promotes the expression of ARE genes, restoring the skin's natural antioxidant defense against UVB exposition to avoid oxidative stress, inflammation, and tissue damage.


Asunto(s)
Antioxidantes , Aspirina , Animales , Ratones , Antioxidantes/farmacología , Aspirina/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Inflamación , Ácidos Docosahexaenoicos/farmacología , Rayos Ultravioleta
3.
Inflamm Res ; 69(12): 1271-1282, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32886146

RESUMEN

OBJECTIVE: To investigate the role of IL-33 in gouty arthritis. MATERIAL: 174 Balb/c (wild-type) and 54 ST2-/- mice were used in this study. In vitro experiments were conducted in bone marrow-derived macrophages (BMDMs). Synovial fluid samples from gouty arthritis (n = 7) and osteoarthritis (n = 8) hospital patients were used to measure IL-33 and sST2 levels. METHODS: Gout was induced by injection of monosodium urate (MSU) crystals in the knee joint of mice. Pain was determined using the electronic von Frey and static weight bearing. Neutrophil recruitment was determined by H&E staining, Rosenfeld staining slides, and MPO activity. ELISA was used for cytokine and sST2 measurement. The priming effect of IL-33 was determined in BMDM. RESULTS: Synovial fluid of gout patients showed higher IL-33 levels and neutrophil counts than osteoarthritis patients. In mice, the absence of ST2 prevented mechanical pain, knee joint edema, neutrophil recruitment to the knee joint, and lowered IL-1ß and superoxide anion levels. In macrophages, IL-33 enhanced the release of IL-1ß and TNF-α, and BMDMs from ST2-/- showed reduced levels of these cytokines after stimulus with MSU crystals. CONCLUSION: IL-33 mediates gout pain and inflammation by boosting macrophages production of cytokines upon MSU crystals stimulus.


Asunto(s)
Artritis Gotosa/patología , Inflamación/inducido químicamente , Interleucina-1beta/metabolismo , Interleucina-33/farmacología , Macrófagos/metabolismo , Dolor/inducido químicamente , Animales , Artritis Gotosa/inducido químicamente , Artritis Gotosa/metabolismo , Femenino , Humanos , Inflamación/psicología , Proteína 1 Similar al Receptor de Interleucina-1/genética , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Persona de Mediana Edad , Infiltración Neutrófila/efectos de los fármacos , Dolor/psicología , Peroxidasa/metabolismo , Superóxidos/metabolismo , Membrana Sinovial/patología , Ácido Úrico
4.
Molecules ; 25(12)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604968

RESUMEN

Excessive exposure to UV, especially UVB, is the most important risk factor for skin cancer and premature skin aging. The identification of the specialized pro-resolving lipid mediators (SPMs) challenged the preexisting paradigm of how inflammation ends. Rather than a passive process, the resolution of inflammation relies on the active production of SPMs, such as Lipoxins (Lx), Maresins, protectins, and Resolvins. LXA4 is an SPM that exerts its action through ALX/FPR2 receptor. Stable ALX/FPR2 agonists are required because SPMs can be quickly metabolized within tissues near the site of formation. BML-111 is a commercially available synthetic ALX/FPR2 receptor agonist with analgesic, antioxidant, and anti-inflammatory properties. Based on that, we aimed to determine the effect of BML-111 in a model of UVB-induced skin inflammation in hairless mice. We demonstrated that BML-111 ameliorates the signs of UVB-induced skin inflammation by reducing neutrophil recruitment and mast cell activation. Reduction of these cells by BML-111 led to lower number of sunburn cells formation, decrease in epidermal thickness, collagen degradation, cytokine production (TNF-α, IL-1ß, IL-6, TGF, and IL-10), and oxidative stress (observed by an increase in total antioxidant capacity and Nrf2 signaling pathway), indicating that BML-111 might be a promising drug to treat skin disorders.


Asunto(s)
Dermatitis/prevención & control , Ácidos Heptanoicos/administración & dosificación , Protectores contra Radiación/administración & dosificación , Receptores de Lipoxina/antagonistas & inhibidores , Animales , Antígenos CD59/metabolismo , Dermatitis/etiología , Dermatitis/metabolismo , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Relación Dosis-Respuesta a Droga , Ácidos Heptanoicos/farmacología , Lipoxinas/metabolismo , Ratones , Ratones Pelados , Protectores contra Radiación/farmacología , Rayos Ultravioleta/efectos adversos
5.
Inflammopharmacology ; 28(4): 979-992, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32048121

RESUMEN

Arthritis can be defined as a painful musculoskeletal disorder that affects the joints. Hesperidin methyl chalcone (HMC) is a flavonoid with analgesic, anti-inflammatory, and antioxidant effects. However, its effects on a specific cell type and in the zymosan-induced inflammation are unknown. We aimed at evaluating the effects of HMC in a zymosan-induced arthritis model. A dose-response curve of HMC (10, 30, or 100 mg/kg) was performed to determine the most effective analgesic dose after intra-articular zymosan stimuli. Knee joint oedema was determined using a calliper. Leukocyte recruitment was performed by cell counting on knee joint wash as well as histopathological analysis. Oxidative stress was measured by colorimetric assays (GSH, FRAP, ABTS and NBT) and RT-qPCR (gp91phox and HO-1 mRNA expression) performed. In vitro, oxidative stress was assessed by DCFDA assay using RAW 264.7 macrophages. Cytokine production was evaluated in vivo and in vitro by ELISA. In vitro NF-κB activation was analysed by immunofluorescence. We observed HMC reduced mechanical hypersensitivity and knee joint oedema, leukocyte recruitment, and pro-inflammatory cytokine levels. We also observed a reduction in zymosan-induced oxidative stress as per increase in total antioxidant capacity and reduction in gp91phox and increase in HO-1 mRNA expression. Accordingly, total ROS production and macrophage NFκB activation were diminished. HMC interaction with NFκB p65 at Ser276 was revealed using molecular docking analysis. Thus, data presented in this work suggest the usefulness of HMC as an analgesic and anti-inflammatory in a zymosan-induced arthritis model, possibly by targeting NFκB activation in macrophages.


Asunto(s)
Artralgia/tratamiento farmacológico , Chalconas/farmacología , Hesperidina/análogos & derivados , Inflamación/tratamiento farmacológico , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , FN-kappa B/metabolismo , Zimosan/farmacología , Analgésicos/farmacología , Animales , Antiinflamatorios/farmacología , Antioxidantes/fisiología , Artralgia/inducido químicamente , Artralgia/metabolismo , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/metabolismo , Hesperidina/farmacología , Inflamación/inducido químicamente , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Simulación del Acoplamiento Molecular/métodos , Estrés Oxidativo/efectos de los fármacos , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos
6.
Biol Reprod ; 100(1): 112-122, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010983

RESUMEN

Spermatogenesis and steroidogenesis are not fully established during puberty. Especially during this period, children and adolescents may be chronically sleep deprived due to early school hours and constant exposure to artificial light and interactive activities. We have previously shown that sleep restriction (SR) during peripuberty impairs sperm motility and has consequences on epididymal development in rats. Thus, this study aimed to evaluate the effect of SR during peripuberty on sexual hormones and its impact on testicular tissue. Rats were subjected to 18 h of SR per day for 21 days or were maintained as controls (C) in the same room. The circulating luteinizing hormone levels were decreased in SR rats without changes in the follicle stimulating hormone levels. Plasma and intratesticular testosterone and corticosterone in the SR group were increased in relation to C group. These alterations impair testicular tissue, with decreased IL-1ß, IL-6, and TNFα levels in the testis and diminished seminiferous epithelium height and Sertoli cell number. SR also increased testicular lipid peroxidation with no alteration in antioxidant profiles. There were no significant changes in sperm parameters, seminiferous tubule diameter, histopathology, spermatogenesis kinetics, neutrophil and macrophage recruitment, and IL-10 concentration. Our results show that SR unbalances sexual hormones and testicular cytokines at a critical period of sexual maturation. These changes lead to lipid peroxidation in the testes and negatively influence the testicular tissue, as evidenced by diminished seminiferous epithelium height-with apoptosis of germinative cell-and Sertoli cell number.


Asunto(s)
Citocinas/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Maduración Sexual/fisiología , Privación de Sueño/metabolismo , Privación de Sueño/fisiopatología , Testículo/metabolismo , Animales , Células Cultivadas , Hormonas Esteroides Gonadales/sangre , Inflamación/metabolismo , Masculino , Tamaño de los Órganos , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Análisis de Semen , Testículo/crecimiento & desarrollo , Testículo/fisiopatología
7.
Reprod Fertil Dev ; 29(9): 1813-1820, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27780518

RESUMEN

Good sleep quality has a direct effect on the activity of the neuroendocrine-reproductive control axis and oxidative stress. Thus, the aim of the present study was to evaluate whether sleep restriction (SR) during the peripubertal period impaired the postnatal development of the epididymis in Wistar rats. After 21 days SR (18h per day), epididymides were collected on Postnatal Day (PND) 62 for evaluation of oxidative stress markers, inflammatory profile, sperm count and histopathological and stereological analyses; in addition, the motility of spermatozoa from the vas deferens was examined. SR significantly increased lipid peroxidation and glutathione levels in the caput and cauda epididymidis, and increased levels of total radical-trapping antioxidant potential in the caput epididymidis only. Neutrophil migration to the caput or corpus epididymidis was decreased by SR, and the size of the luminal compartment in the 2A region and the epithelial compartment in the 5A/B region was also decreased. In these regions, there was an increase in the size of the interstitial compartment. The percentage of immotile spermatozoa was higher in the SR group. In conclusion, SR affects epididymal postnatal development, as well as sperm motility, in association with increased oxidative stress and a decrease in the size of the epithelial compartment in the cauda epididymidis.


Asunto(s)
Epidídimo/crecimiento & desarrollo , Estrés Oxidativo/fisiología , Privación de Sueño/fisiopatología , Motilidad Espermática/fisiología , Espermatozoides/metabolismo , Animales , Movimiento Celular/fisiología , Epidídimo/metabolismo , Epidídimo/fisiopatología , Peroxidación de Lípido/fisiología , Masculino , Neutrófilos/fisiología , Ratas , Ratas Wistar , Privación de Sueño/metabolismo
8.
Inflammopharmacology ; 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28508104

RESUMEN

We investigated the anti-inflammatory and analgesic effects of quercetin in monosodium urate crystals (MSU)-induced gout arthritis, and the sensitivity of quercetin effects to naloxone, an opioid receptor antagonist. Mice were treated with quercetin, and mechanical hyperalgesia was assessed at 1-24 h after MSU injection. In vivo, leukocyte recruitment, cytokine levels, oxidative stress, NFκB activation, and gp91phox and inflammasome components (NLRP3, ASC, Pro-caspase-1, and Pro-IL-1ß) mRNA expression by qPCR were determined in the knee joints at 24 h after MSU injection. Inflammasome activation was determined, in vitro, in lipopolysaccharide-primed macrophages challenged with MSU. Quercetin inhibited MSU-induced mechanical hyperalgesia, leukocyte recruitment, TNFα and IL-1ß production, superoxide anion production, inflammasome activation, decrease of antioxidants levels, NFκB activation, and inflammasome components mRNA expression. Naloxone pre-treatment prevented all the inhibitory effects of quercetin over MSU-induced gout arthritis. These results demonstrate that quercetin exerts analgesic and anti-inflammatory effect in the MSU-induced arthritis in a naloxone-sensitive manner.

9.
Inflammopharmacology ; 24(2-3): 97-107, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27160222

RESUMEN

We evaluated the effect of pyrrolidine dithiocarbamate (PDTC) in superoxide anion-induced inflammatory pain. Male Swiss mice were treated with PDTC and stimulated with an intraplantar or intraperitoneal injection of potassium superoxide, a superoxide anion donor. Subcutaneous PDTC treatment attenuated mechanical hyperalgesia, thermal hyperalgesia, paw oedema and leukocyte recruitment (neutrophils and macrophages). Intraplantar injection of superoxide anion activated NF-κB and increased cytokine production (IL-1ß, TNF-α and IL-10) and oxidative stress (nitrite and lipid peroxidation levels) at the primary inflammatory foci and in the spinal cord (L4-L6). PDTC treatment inhibited superoxide anion-induced NF-κB activation, cytokine production and oxidative stress in the paw and spinal cord. Furthermore, intrathecal administration of PDTC successfully inhibited superoxide anion-induced mechanical hyperalgesia, thermal hyperalgesia and inflammatory response in peripheral foci (paw). These results suggest that peripheral stimulus with superoxide anion activates the local and spinal cord oxidative- and NF-κB-dependent inflammatory nociceptive mechanisms. PDTC targets these events, therefore, inhibiting superoxide anion-induced inflammatory pain in mice.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Dolor/metabolismo , Pirrolidinas/administración & dosificación , Médula Espinal/metabolismo , Tiocarbamatos/administración & dosificación , Animales , Relación Dosis-Respuesta a Droga , Edema/inducido químicamente , Edema/metabolismo , Edema/prevención & control , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/prevención & control , Masculino , Ratones , FN-kappa B/antagonistas & inhibidores , Estrés Oxidativo/fisiología , Dolor/inducido químicamente , Dolor/prevención & control , Médula Espinal/efectos de los fármacos , Superóxidos/toxicidad
10.
J Nat Prod ; 77(11): 2488-96, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25394199

RESUMEN

Pimaradienoic acid (1) is a pimarane diterpene (ent-pimara-8(14),15-dien-19-oic acid) extracted at high amounts from various plants including Vigueira arenaria Baker. Compound 1 inhibited carrageenan-induced paw edema and acetic acid-induced abdominal writhing, which are its only known anti-inflammatory activities. Therefore, it is important to further investigate the analgesic effects of 1. Oral administration of 1 (1, 3, and 10 mg/kg) inhibited the acetic acid-induced writhing. This was also observed at 10 mg/kg via sc and ip routes. Both phases of the formalin- and complete Freund's adjuvant (CFA)-induced paw flinch and time spent licking the paw were inhibited by 1. Compound 1 inhibited carrageenan-, CFA-, and PGE2-induced mechanical hyperalgesia. Treatment with 1 inhibited carrageenan-induced production of TNF-α, IL-1ß, IL-33, and IL-10 and nuclear factor κB activation. Pharmacological inhibitors also demonstrated that the analgesic effects of 1 depend on activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway. Compound 1 did not alter plasma levels of AST, ALT, or myeloperoxidase activity in the stomach. These results demonstrate that 1 causes analgesic effects associated with the inhibition of NF-κB activation, reduction of cytokine production, and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway.


Asunto(s)
Antiinflamatorios/farmacología , Diterpenos/farmacología , Ácido Acético/farmacología , Analgésicos/farmacología , Carragenina/farmacología , GMP Cíclico/metabolismo , Diterpenos/química , Edema/inducido químicamente , Adyuvante de Freund/farmacología , Hiperalgesia/tratamiento farmacológico , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Canales KATP/efectos de los fármacos , Estructura Molecular , Dolor/tratamiento farmacológico , Canales de Potasio/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología
11.
Res Sq ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38464172

RESUMEN

The primary cilium, a 1-3 µm long hair-like structure protruding from the surface of almost all cells in the vertebrate body, is critical for neuronal development and also functions in the adult. As the migratory neural crest settles into dorsal root ganglia (DRG) sensory neurons elaborate a single primary cilium at their soma that is maintained into adult stages. While it is not known if primary cilia are expressed in nociceptors, or their potential function in the mature DRG neuron, recent studies have shown a role for Hedgehog, whose signaling demonstrates a dependence on primary cilia, in nociceptor sensitization. Here we report the expression of primary cilia in rat and mouse nociceptors, where they modulate mechanical nociceptive threshold, and contribute to inflammatory and neuropathic pain. When siRNA targeting Ift88, a primary cilium-specific intraflagellar transport (IFT) protein required for ciliary integrity, was administered by intrathecal injection, in the rat, it resulted in loss of Ift88 mRNA in DRG, and primary cilia in neuronal cell bodies, which was associated with an increase in mechanical nociceptive threshold, and abrogation of hyperalgesia induced by the pronociceptive inflammatory mediator, prostaglandin E2, and painful peripheral neuropathy induced by a neurotoxic chemotherapy drug, paclitaxel. To provide further support for the role of the primary cilium in nociceptor function we also administered siRNA for another IFT protein, Ift52. Ift52 siRNA results in loss of Ift52 in DRG and abrogates paclitaxel-induced painful peripheral neuropathy. Attenuation of Hedgehog-induced hyperalgesia by Ift88 knockdown supports a role for the primary cilium in the hyperalgesia induced by Hedgehog, and attenuation of paclitaxel chemotherapy-induced neuropathy (CIPN) by cyclopamine, which attenuates Hedgehog signaling, suggests a role of Hedgehog in CIPN. Our findings support a role of nociceptor primary cilia in the control of mechanical nociceptive threshold and in inflammatory and neuropathic pain, the latter, at least in part, Hedgehog dependent.

12.
J Nat Prod ; 76(6): 1141-9, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23742617

RESUMEN

The flavonoid vitexin (1) is a flavone C-glycoside (apigenin-8-C-ß-D-glucopyranoside) present in several medicinal and other plants. Plant extracts containing 1 are reported to possess antinociceptive, anti-inflammatory, and antioxidant activities. However, the only evidence that 1 exhibits antinociceptive activity was demonstrated in the acetic acid-induced writhing model. Therefore, the analgesic effects and mechanisms of 1 were evaluated. In the present investigation, intraperitoneal treatment with 1 dose-dependently inhibited acetic acid-induced writhing. Furthermore, treatment with 1 also inhibited pain-like behavior induced by phenyl-p-benzoquinone, complete Freund's adjuvant (CFA), capsaicin (an agonist of transient receptor potential vanilloid 1, TRPV1), and both phases of the formalin test. It was also observed that inhibition of carrageenan-, capsaicin-, and chronic CFA-induced mechanical and thermal hyperalgesia occurred. Regarding the antinociceptive mechanisms of 1, it prevented the decrease of reduced glutathione levels, ferric-reducing ability potential, and free-radical scavenger ability, inhibited the production of hyperalgesic cytokines such as TNF-α, IL-1ß, IL-6, and IL-33, and up-regulated the levels of the anti-hyperalgesic cytokine IL-10. These results demonstrate that 1 exhibits an analgesic effect in a variety of inflammatory pain models by targeting TRPV1 and oxidative stress and by modulating cytokine production.


Asunto(s)
Analgésicos/farmacología , Apigenina/farmacología , Extractos Vegetales/farmacología , Canales Catiónicos TRPV/efectos de los fármacos , Animales , Antiinflamatorios/efectos adversos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Apigenina/uso terapéutico , Benzoquinonas , Capsaicina/efectos adversos , Capsaicina/uso terapéutico , Carragenina/efectos adversos , Carragenina/uso terapéutico , Citocinas/efectos adversos , Citocinas/biosíntesis , Citocinas/uso terapéutico , Modelos Animales de Enfermedad , Adyuvante de Freund/farmacología , Glicósidos/efectos adversos , Glicósidos/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Masculino , Ratones , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Extractos Vegetales/uso terapéutico
13.
Pain ; 164(6): 1375-1387, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36729863

RESUMEN

ABSTRACT: Stress plays a major role in the symptom burden of oncology patients and can exacerbate cancer chemotherapy-induced peripheral neuropathy (CIPN), a major adverse effect of many classes of chemotherapy. We explored the role of stress in the persistent phase of the pain induced by oxaliplatin. Oxaliplatin induced hyperalgesic priming, a model of the transition to chronic pain, as indicated by prolongation of hyperalgesia produced by prostaglandin E 2 , in male rats, which was markedly attenuated in adrenalectomized rats. A neonatal handling protocol that induces stress resilience in adult rats prevented oxaliplatin-induced hyperalgesic priming. To elucidate the role of the hypothalamic-pituitary-adrenal and sympathoadrenal neuroendocrine stress axes in oxaliplatin CIPN, we used intrathecally administered antisense oligodeoxynucleotides (ODNs) directed against mRNA for receptors mediating the effects of catecholamines and glucocorticoids, and their second messengers, to reduce their expression in nociceptors. Although oxaliplatin-induced hyperalgesic priming was attenuated by intrathecal administration of ß 2 -adrenergic and glucocorticoid receptor antisense ODNs, oxaliplatin-induced hyperalgesia was only attenuated by ß 2 -adrenergic receptor antisense. Administration of pertussis toxin, a nonselective inhibitor of Gα i/o proteins, attenuated hyperalgesic priming. Antisense ODNs for Gα i 1 and Gα o also attenuated hyperalgesic priming. Furthermore, antisense for protein kinase C epsilon, a second messenger involved in type I hyperalgesic priming, also attenuated oxaliplatin-induced hyperalgesic priming. Inhibitors of second messengers involved in the maintenance of type I (cordycepin) and type II (SSU6656 and U0126) hyperalgesic priming both attenuated hyperalgesic priming. These experiments support a role for neuroendocrine stress axes in hyperalgesic priming, in male rats with oxaliplatin CIPN.


Asunto(s)
Dolor Crónico , Hiperalgesia , Ratas , Masculino , Animales , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Ratas Sprague-Dawley , Oxaliplatino/toxicidad , Umbral del Dolor/fisiología
14.
bioRxiv ; 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38234719

RESUMEN

The primary cilium, a 1-3 µm long hair-like structure protruding from the surface of almost all cells in the vertebrate body, is critical for neuronal development and also functions in the adult. As the migratory neural crest settles into dorsal root ganglia (DRG) sensory neurons elaborate a single primary cilium at their soma that is maintained into adult stages. While it is not known if primary cilia are expressed in nociceptors, or their potential function in the mature DRG neuron, recent studies have shown a role for Hedgehog, whose signaling demonstrates a dependence on primary cilia, in nociceptor sensitization. Here we report the expression of primary cilia in rat and mouse nociceptors, where they modulate mechanical nociceptive threshold, and contribute to inflammatory and neuropathic pain. When siRNA targeting Ift88 , a primary cilium-specific intra-flagellar transport (IFT) protein required for ciliary integrity, was administered by intrathecal injection, in the rat, it resulted in loss of Ift88 mRNA in DRG, and primary cilia in neuronal cell bodies, which was associated with an increase in mechanical nociceptive threshold, and abrogation of hyperalgesia induced by the pronociceptive inflammatory mediator, prostaglandin E 2 , and painful peripheral neuropathy induced by a neurotoxic chemotherapy drug, paclitaxel. To provide further support for the role of the primary cilium in nociceptor function we also administered siRNA for another IFT protein, Ift 52. Ift 52 siRNA results in loss of Ift 52 in DRG and abrogates paclitaxel-induced painful peripheral neuropathy. Attenuation of Hedgehog-induced hyperalgesia by Ift88 knockdown supports a role for the primary cilium in the hyperalgesia induced by Hedgehog, and attenuation of paclitaxel chemotherapy-induced neuropathy (CIPN) by cyclopamine, which attenuates Hedgehog signaling, suggests a role of Hedgehog in CIPN. Our findings support a role of nociceptor primary cilia in the control of mechanical nociceptive threshold and in inflammatory and neuropathic pain, the latter, at least in part, Hedgehog dependent.

15.
Cells ; 12(4)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36831223

RESUMEN

Chikungunya virus is an arthropod-borne infectious agent that causes Chikungunya fever disease. About 90% of the infected patients experience intense polyarthralgia, affecting mainly the extremities but also the large joints such as the knees. Chronic disease symptoms persist for months, even after clearance of the virus from the blood. Envelope proteins stimulate the immune response against the Chikungunya virus, becoming an important therapeutic target. We inactivated the Chikungunya virus (iCHIKV) and produced recombinant E2 (rE2) protein and three different types of anti-rE2 monoclonal antibodies. Using these tools, we observed that iCHIKV and rE2 protein induced mechanical hyperalgesia (electronic aesthesiometer test) and thermal hyperalgesia (Hargreaves test) in mice. These behavioral results were accompanied by the activation of dorsal root ganglia (DRG) neurons in mice, as observed by calcium influx. Treatment with three different types of anti-rE2 monoclonal antibodies and absence or blockade (AMG-9810 treatment) of transient receptor potential vanilloid 1 (TRPV1) channel diminished mechanical and thermal hyperalgesia in mice. iCHIKV and rE2 activated TRPV1+ mouse DRG neurons in vitro, demonstrating their ability to activate nociceptor sensory neurons directly. Therefore, our mouse data demonstrate that targeting E2 CHIKV protein with monoclonal antibodies and inhibiting TRPV1 channels are reasonable strategies to control CHIKV pain.


Asunto(s)
Anticuerpos Monoclonales , Fiebre Chikungunya , Virus Chikungunya , Hiperalgesia , Proteínas del Envoltorio Viral , Animales , Ratones , Anticuerpos Monoclonales/farmacología , Anticuerpos Antivirales , Antineoplásicos , Hiperalgesia/tratamiento farmacológico , Canales Catiónicos TRPV , Proteínas del Envoltorio Viral/metabolismo , Fiebre Chikungunya/tratamiento farmacológico
16.
Front Immunol ; 14: 949407, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388729

RESUMEN

Background: Lipoxin A4 (LXA4) has anti-inflammatory and pro-resolutive roles in inflammation. We evaluated the effects and mechanisms of action of LXA4 in titanium dioxide (TiO2) arthritis, a model of prosthesis-induced joint inflammation and pain. Methods: Mice were stimulated with TiO2 (3mg) in the knee joint followed by LXA4 (0.1, 1, or 10ng/animal) or vehicle (ethanol 3.2% in saline) administration. Pain-like behavior, inflammation, and dosages were performed to assess the effects of LXA4 in vivo. Results: LXA4 reduced mechanical and thermal hyperalgesia, histopathological damage, edema, and recruitment of leukocytes without liver, kidney, or stomach toxicity. LXA4 reduced leukocyte migration and modulated cytokine production. These effects were explained by reduced nuclear factor kappa B (NFκB) activation in recruited macrophages. LXA4 improved antioxidant parameters [reduced glutathione (GSH) and 2,2-azino-bis 3-ethylbenzothiazoline-6-sulfonate (ABTS) levels, nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and Nrf2 protein expression], reducing reactive oxygen species (ROS) fluorescent detection induced by TiO2 in synovial fluid leukocytes. We observed an increase of lipoxin receptor (ALX/FPR2) in transient receptor potential cation channel subfamily V member 1 (TRPV1)+ DRG nociceptive neurons upon TiO2 inflammation. LXA4 reduced TiO2-induced TRPV1 mRNA expression and protein detection, as well TRPV1 co-staining with p-NFκB, indicating reduction of neuronal activation. LXA4 down-modulated neuronal activation and response to capsaicin (a TRPV1 agonist) and AITC [a transient receptor potential ankyrin 1 (TRPA1) agonist] of DRG neurons. Conclusion: LXA4 might target recruited leukocytes and primary afferent nociceptive neurons to exert analgesic and anti-inflammatory activities in a model resembling what is observed in patients with prosthesis inflammation.


Asunto(s)
Artritis , Lipoxinas , Animales , Ratones , FN-kappa B , Factor 2 Relacionado con NF-E2/genética , Lipoxinas/farmacología , Líquido Sinovial , Inflamación , Canales Catiónicos TRPV/genética
17.
Pain ; 163(9): 1728-1739, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34913881

RESUMEN

ABSTRACT: High-molecular-weight hyaluronan (HMWH) is an agonist at cluster of differentiation (CD)44, the cognate hyaluronan receptor, on nociceptors, where it acts to induce antihyperalgesia in preclinical models of inflammatory and neuropathic pain. In the present experiments, we studied the CD44 second messengers that mediate HMWH-induced attenuation of pain associated with oxaliplatin and paclitaxel chemotherapy-induced peripheral neuropathy (CIPN). While HMWH attenuated CIPN only in male rats, after ovariectomy or intrathecal administration of an oligodeoxynucleotide (ODN) antisense to G protein-coupled estrogen receptor (GPR30) mRNA, female rats were also sensitive to HMWH. Intrathecal administration of an ODN antisense to CD44 mRNA markedly attenuated HMWH-induced antihyperalgesia in male rats with CIPN induced by oxaliplatin or paclitaxel. Intradermal administration of inhibitors of CD44 second messengers, RhoA (member of the Rho family of GTPases), phospholipase C, and phosphatidylinositol (PI) 3-kinase gamma (PI3Kγ), attenuated HMWH-induced antihyperalgesia as does intrathecal administration of an ODN antisense to PI3Kγ. Our results demonstrated that HMWH induced antihyperalgesia in CIPN, mediated by its action at CD44 and downstream signaling by RhoA, phospholipase C, and PI3Kγ.


Asunto(s)
Antineoplásicos , Ácido Hialurónico , Neuralgia , Sistemas de Mensajero Secundario , Animales , Antineoplásicos/efectos adversos , Femenino , Ácido Hialurónico/farmacología , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/genética , Masculino , Neuralgia/inducido químicamente , Oxaliplatino/efectos adversos , Paclitaxel/efectos adversos , ARN Mensajero , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Fosfolipasas de Tipo C/metabolismo
18.
Acta Histochem ; 124(1): 151843, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35021147

RESUMEN

Aluminium (Al) is an important metal, but it can be toxic including for prostate tissue. This study aimed to evaluate whether exposure to aluminium chloride (AlCl3) during the peripubertal period affects ventral prostate development in rats. Male Wistar rats (30 days old) were distributed into three experimental groups: control (sterile 0.9% saline solution), AL7 (7 mg AlCl3/kg) and AL34 (34 mg AlCl3/kg). Animals were treated intraperitoneally from postnatal day (PND) 36-66 (peripubertal period). At PND67, the animals were anaesthetized and euthanized. Blood was collected for testosterone levels. The ventral prostate (VP) was removed, weighed and processed for histochemistry and immunohistochemistry to detect androgen (AR) and Ki67. Stereological and histopathological analyses, mast cell counts, and determinations of myeloperoxidase (MPO) and N-acetyl glycosidase (NAG) activity and IL-6 levels were performed. The AL34 group presented a reduction in body weight and increase in MPO activity compared to the other groups. In both the AL7 and AL34 groups, there was reorganization of the prostatic tissue compartments. There was no significant difference in prostate weight, number of granulated or degranulated mast cells, or testosterone levels. In conclusion, the exposure to aluminium chloride during the peripubertal period impairs the prostatic development.


Asunto(s)
Andrógenos , Próstata , Cloruro de Aluminio , Animales , Inmunohistoquímica , Masculino , Próstata/patología , Ratas , Ratas Wistar
19.
Reprod Sci ; 29(1): 277-290, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34494235

RESUMEN

The hyperhomocysteinemia (HHcy) is toxic to the cells and associated with several diseases. Clinical studies have shown changes in plasma concentrations of Hcy after physical exercise. This study aimed to assess the effect of HHcy on testis, epididymis and sperm quality and to investigate whether voluntary exercise training protects this system against damage caused by HHcy in Swiss mice. In this study, 48 mice were randomly distributed in the control, HHcy, physical exercise, and HHcy combined with physical exercise groups. HHcy was induced by daily administration of dl-homocysteine thiolactone via gavage throughout the experimental period. Physical exercise was performed through voluntary running on the exercise wheels. The plasma concentrations of homocysteine (Hcy) and testosterone were determined. The testes and epididymis were used to assess the sperm count, histopathology, lipoperoxidation, cytokine levels, testicular cholesterol, myeloperoxidase, and catalase activity. Spermatozoa were analyzed for morphology, acrosome integrity, mitochondrial activity, and motility. In the testes, HHcy increased the number of abnormal seminiferous tubules, reduced the tubular diameter and the height of the germinal epithelium. In the epididymis, there was tissue remodeling in the head region. Ultimately, voluntary physical exercise training reduced plasma Hcy concentration but did not attenuate HHcy-induced testicular and epididymal disturbances.


Asunto(s)
Epidídimo/fisiopatología , Hiperhomocisteinemia/terapia , Condicionamiento Físico Animal/fisiología , Testículo/fisiopatología , Animales , Catalasa/sangre , Epidídimo/metabolismo , Homocisteína/sangre , Hiperhomocisteinemia/sangre , Hiperhomocisteinemia/fisiopatología , Masculino , Ratones , Estrés Oxidativo/fisiología , Testículo/metabolismo , Testosterona/sangre , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
20.
Brain Sci ; 12(9)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36138983

RESUMEN

We standardized a model by injecting Ehrlich tumor cells into the paw to evaluate cancer pain mechanisms and pharmacological treatments. Opioid treatment, but not cyclooxygenase inhibitor or tricyclic antidepressant treatments reduces Ehrlich tumor pain. To best use this model for drug screening it is essential to understand its pathophysiological mechanisms. Herein, we investigated the contribution of the transient receptor potential cation channel subfamily V member 1 (TRPV1) in the Ehrlich tumor-induced pain model. Dorsal root ganglia (DRG) neurons from the Ehrlich tumor mice presented higher activity (calcium levels using fluo-4 fluorescent probe) and an increased response to capsaicin (TRPV1 agonist) than the saline-injected animals (p < 0.05). We also observed diminished mechanical (electronic von Frey) and thermal (hot plate) hyperalgesia, paw flinching, and normalization of weight distribution imbalance in TRPV1 deficient mice (p < 0.05). On the other hand, TRPV1 deficiency did not alter paw volume or weight, indicating no significant alteration in tumor growth. Intrathecal injection of AMG9810 (TRPV1 antagonist) reduced ongoing Ehrlich tumor-triggered mechanical and thermal hyperalgesia (p < 0.05). Therefore, the contribution of TRPV1 to Ehrlich tumor pain behavior was revealed by genetic and pharmacological approaches, thus, supporting the use of this model to investigate TRPV1-targeting therapies for the treatment of cancer pain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA