Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nucleic Acids Res ; 47(12): 6551-6567, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31114923

RESUMEN

The universally conserved N6-threonylcarbamoyladenosine (t6A) modification of tRNA is essential for translational fidelity. In bacteria, t6A biosynthesis starts with the TsaC/TsaC2-catalyzed synthesis of the intermediate threonylcarbamoyl adenylate (TC-AMP), followed by transfer of the threonylcarbamoyl (TC) moiety to adenine-37 of tRNA by the TC-transfer complex comprised of TsaB, TsaD and TsaE subunits and possessing an ATPase activity required for multi-turnover of the t6A cycle. We report a 2.5-Å crystal structure of the T. maritima TC-transfer complex (TmTsaB2D2E2) bound to Mg2+-ATP in the ATPase site, and substrate analog carboxy-AMP in the TC-transfer site. Site directed mutagenesis results show that residues in the conserved Switch I and Switch II motifs of TsaE mediate the ATP hydrolysis-driven reactivation/reset step of the t6A cycle. Further, SAXS analysis of the TmTsaB2D2-tRNA complex in solution reveals bound tRNA lodged in the TsaE binding cavity, confirming our previous biochemical data. Based on the crystal structure and molecular docking of TC-AMP and adenine-37 in the TC-transfer site, we propose a model for the mechanism of TC transfer by this universal biosynthetic system.


Asunto(s)
Adenosina/análogos & derivados , Proteínas Bacterianas/química , ARN de Transferencia/metabolismo , Adenosina/biosíntesis , Adenosina Trifosfatasas/genética , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Modelos Moleculares , Mutagénesis , Conformación Proteica , ARN de Transferencia/química , Thermotoga maritima
2.
Nucleic Acids Res ; 46(3): 1395-1411, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29309633

RESUMEN

The universal N(6)-threonylcarbamoyladenosine (t6A) modification at position 37 of ANN-decoding tRNAs is central to translational fidelity. In bacteria, t6A biosynthesis is catalyzed by the proteins TsaB, TsaC/TsaC2, TsaD and TsaE. Despite intense research, the molecular mechanisms underlying t6A biosynthesis are poorly understood. Here, we report biochemical and biophysical studies of the t6A biosynthesis system from Thermotoga maritima. Small angle X-ray scattering analysis reveals a symmetric 2:2 stoichiometric complex of TsaB and TsaD (TsaB2D2), as well as 2:2:2 complex (TsaB2D2E2), in which TsaB acts as a dimerization module, similar to the role of Pcc1 in the archaeal system. The TsaB2D2 complex is the minimal platform for the binding of one tRNA molecule, which can then accommodate a single TsaE subunit. Kinetic data demonstrate that TsaB2D2 alone, and a TsaB2D2E1 complex with TsaE mutants deficient in adenosine triphosphatase (ATPase) activity, can catalyze only a single cycle of t6A synthesis, while gel shift experiments provide evidence that the role of TsaE-catalyzed ATP hydrolysis occurs after the release of product tRNA. Based on these results, we propose a model for t6A biosynthesis in bacteria.


Asunto(s)
Adenosina/análogos & derivados , Proteínas Bacterianas/genética , Ligasas/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , Thermotoga maritima/enzimología , Adenosina/biosíntesis , Adenosina/química , Adenosina/genética , Adenosina Trifosfatasas/deficiencia , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Codón , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Ligasas/química , Ligasas/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Thermotoga maritima/genética
3.
Biochemistry ; 58(17): 2199-2207, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30938154

RESUMEN

The ability to precisely control protein complex formation has high utility in the expanding field of biomaterials. Driving protein-protein binding through metal-ligand bridging interactions is a promising method of achieving this goal. Furthermore, the capacity to precisely regulate both complex formation and dissociation enables additional control not available with constitutive protein complexes. Here we describe the design of three metal-controlled protein dimers that are completely monomeric in the absence of metal yet form high-affinity symmetric homodimers in the presence of zinc sulfate. The scaffold used for the designed dimers is the ß1 domain of streptococcal protein G. In addition to forming high-affinity dimers in the presence of metal, the complexes also dissociate upon addition of EDTA. Biophysical characterization revealed that the proteins maintain relatively high thermal stability, bind with high affinity, and are completely monodisperse in the monomeric and dimeric states. High-resolution crystal structures revealed that the dimers adopt the target structure and that the designed metal-binding histidine residues successfully bind zinc and function to drive dimer formation.


Asunto(s)
Proteínas Bacterianas/química , Metales/química , Dominios Proteicos , Multimerización de Proteína , Proteínas Bacterianas/metabolismo , Unión Competitiva , Dicroismo Circular , Cristalografía por Rayos X , Diseño de Fármacos , Metales/metabolismo , Modelos Moleculares , Unión Proteica , Sulfato de Zinc/química , Sulfato de Zinc/metabolismo
4.
Biochem J ; 474(6): 1017-1039, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28126741

RESUMEN

Guanosine 5'-triphosphate (GTP) cyclohydrolase-I (GCYH-I) catalyzes the first step in folic acid biosynthesis in bacteria and plants, biopterin biosynthesis in mammals, and the biosynthesis of 7-deazaguanosine-modified tRNA nucleosides in bacteria and archaea. The type IB GCYH (GCYH-IB) is a prokaryotic-specific enzyme found in many pathogens. GCYH-IB is structurally distinct from the canonical type IA GCYH involved in biopterin biosynthesis in humans and animals, and thus is of interest as a potential antibacterial drug target. We report kinetic and inhibition data of Neisseria gonorrhoeae GCYH-IB and two high-resolution crystal structures of the enzyme; one in complex with the reaction intermediate analog and competitive inhibitor 8-oxoguanosine 5'-triphosphate (8-oxo-GTP), and one with a tris(hydroxymethyl)aminomethane molecule bound in the active site and mimicking another reaction intermediate. Comparison with the type IA enzyme bound to 8-oxo-GTP (guanosine 5'-triphosphate) reveals an inverted mode of binding of the inhibitor ribosyl moiety and, together with site-directed mutagenesis data, shows that the two enzymes utilize different strategies for catalysis. Notably, the inhibitor interacts with a conserved active-site Cys149, and this residue is S-nitrosylated in the structures. This is the first structural characterization of a biologically S-nitrosylated bacterial protein. Mutagenesis and biochemical analyses demonstrate that Cys149 is essential for the cyclohydrolase reaction, and S-nitrosylation maintains enzyme activity, suggesting a potential role of the S-nitrosothiol in catalysis.


Asunto(s)
Proteínas Bacterianas/química , GTP Ciclohidrolasa/química , Guanosina Trifosfato/análogos & derivados , Neisseria gonorrhoeae/química , Trometamina/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Escherichia coli/genética , Escherichia coli/metabolismo , GTP Ciclohidrolasa/antagonistas & inhibidores , GTP Ciclohidrolasa/genética , GTP Ciclohidrolasa/metabolismo , Expresión Génica , Guanosina Trifosfato/química , Cinética , Modelos Moleculares , Mutación , Neisseria gonorrhoeae/enzimología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Nitrosotioles/química , Especificidad por Sustrato
5.
Proc Natl Acad Sci U S A ; 111(40): E4148-55, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25246591

RESUMEN

Genomic sequencing and structural genomics produced a vast amount of sequence and structural data, creating an opportunity for structure-function analysis in silico [Radivojac P, et al. (2013) Nat Methods 10(3):221-227]. Unfortunately, only a few large experimental datasets exist to serve as benchmarks for function-related predictions. Furthermore, currently there are no reliable means to predict the extent of functional similarity among proteins. Here, we quantify structure-function relationships among three phylogenetic branches of the matrix metalloproteinase (MMP) family by comparing their cleavage efficiencies toward an extended set of phage peptide substrates that were selected from ∼ 64 million peptide sequences (i.e., a large unbiased representation of substrate space). The observed second-order rate constants [k(obs)] across the substrate space provide a distance measure of functional similarity among the MMPs. These functional distances directly correlate with MMP phylogenetic distance. There is also a remarkable and near-perfect correlation between the MMP substrate preference and sequence identity of 50-57 discontinuous residues surrounding the catalytic groove. We conclude that these residues represent the specificity-determining positions (SDPs) that allowed for the expansion of MMP proteolytic function during evolution. A transmutation of only a few selected SDPs proximal to the bound substrate peptide, and contributing the most to selectivity among the MMPs, is sufficient to enact a global change in the substrate preference of one MMP to that of another, indicating the potential for the rational and focused redesign of cleavage specificity in MMPs.


Asunto(s)
Dominio Catalítico , Metaloproteinasas de la Matriz/química , Metaloproteinasas de la Matriz/metabolismo , Péptidos/metabolismo , Algoritmos , Secuencia de Aminoácidos , Sitios de Unión/genética , Biocatálisis , Humanos , Cinética , Metaloproteinasas de la Matriz/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Filogenia , Proteolisis , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
6.
J Biol Chem ; 290(3): 1592-606, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25429968

RESUMEN

The lipid phosphatase activity of the tumor suppressor phosphatase and tensin homolog (PTEN) is enhanced by the presence of its biological product, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This enhancement is suggested to occur via the product binding to the N-terminal region of the protein. PTEN effects on short-chain phosphoinositide (31)P linewidths and on the full field dependence of the spin-lattice relaxation rate (measured by high resolution field cycling (31)P NMR using spin-labeled protein) are combined with enzyme kinetics with the same short-chain phospholipids to characterize where PI(4,5)P2 binds on the protein. The results are used to model a discrete site for a PI(4,5)P2 molecule close to, but distinct from, the active site of PTEN. This PI(4,5)P2 site uses Arg-47 and Lys-13 as phosphate ligands, explaining why PTEN R47G and K13E can no longer be activated by that phosphoinositide. Placing a PI(4,5)P2 near the substrate site allows for proper orientation of the enzyme on interfaces and should facilitate processive catalysis.


Asunto(s)
Fosfohidrolasa PTEN/química , Fosfatidilinositol 4,5-Difosfato/química , Sitio Alostérico , Dominio Catalítico , Humanos , Hidrólisis , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Micelas , Mutación , Fosfatidilinositoles/química , Fosfolípidos/química , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química
7.
Nature ; 457(7232): 1019-22, 2009 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-19118384

RESUMEN

The death inducing signalling complex (DISC) formed by Fas receptor, FADD (Fas-associated death domain protein) and caspase 8 is a pivotal trigger of apoptosis. The Fas-FADD DISC represents a receptor platform, which once assembled initiates the induction of programmed cell death. A highly oligomeric network of homotypic protein interactions comprised of the death domains of Fas and FADD is at the centre of DISC formation. Thus, characterizing the mechanistic basis for the Fas-FADD interaction is crucial for understanding DISC signalling but has remained unclear largely because of a lack of structural data. We have successfully formed and isolated the human Fas-FADD death domain complex and report the 2.7 A crystal structure. The complex shows a tetrameric arrangement of four FADD death domains bound to four Fas death domains. We show that an opening of the Fas death domain exposes the FADD binding site and simultaneously generates a Fas-Fas bridge. The result is a regulatory Fas-FADD complex bridge governed by weak protein-protein interactions revealing a model where the complex itself functions as a mechanistic switch. This switch prevents accidental DISC assembly, yet allows for highly processive DISC formation and clustering upon a sufficient stimulus. In addition to depicting a previously unknown mode of death domain interactions, these results further uncover a mechanism for receptor signalling solely by oligomerization and clustering events.


Asunto(s)
Proteína de Dominio de Muerte Asociada a Fas/química , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Agregación de Receptores , Transducción de Señal , Receptor fas/química , Receptor fas/metabolismo , Cristalografía por Rayos X , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/química , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(46): 18785-90, 2012 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-23112176

RESUMEN

Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a crucial enzyme in carbon fixation and the most abundant protein on earth. It has been studied extensively by biochemical and structural methods; however, the most essential activation step has not yet been described. Here, we describe the mechanistic details of Lys carbamylation that leads to RuBisCO activation by atmospheric CO(2). We report two crystal structures of nitrosylated RuBisCO from the red algae Galdieria sulphuraria with O(2) and CO(2) bound at the active site. G. sulphuraria RuBisCO is inhibited by cysteine nitrosylation that results in trapping of these gaseous ligands. The structure with CO(2) defines an elusive, preactivation complex that contains a metal cation Mg(2+) surrounded by three H(2)O/OH molecules. Both structures suggest the mechanism for discriminating gaseous ligands by their quadrupole electric moments. We describe conformational changes that allow for intermittent binding of the metal ion required for activation. On the basis of these structures we propose the individual steps of the activation mechanism. Knowledge of all these elements is indispensable for engineering RuBisCO into a more efficient enzyme for crop enhancement or as a remedy to global warming.


Asunto(s)
Dióxido de Carbono/química , Lisina/química , Magnesio/química , Rhodophyta/enzimología , Ribulosa-Bifosfato Carboxilasa/química , Dióxido de Carbono/metabolismo , Dominio Catalítico , Activación Enzimática/fisiología , Lisina/metabolismo , Magnesio/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Relación Estructura-Actividad
9.
Biochemistry ; 53(3): 462-72, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24383815

RESUMEN

The mechanism of binding of two promising anticancer agents (the cytotoxic alkylphospholipids perifosine and miltefosine) to the Akt PH domain is investigated by high-resolution field-cycling (31)P nuclear magnetic resonance (NMR) spectroscopy using a spin-labeled recombinant PH domain. These results strongly indicate that there are two discrete amphiphile binding sites on the domain: (i) the cationic site that binds phosphoinositides and some alkylphospholipids and (ii) a second site that is occupied by only the alkylphospholipids. The identification of this second site for amphiphiles on the Akt1 PH domain provides a new target for drug development as well as insights into the regulation of the activity of the intact Akt1 protein. The field-cycling NMR methodology could be used to define discrete phospholipid or amphiphile binding sites on a wide variety of peripheral membrane proteins.


Asunto(s)
Fosfatidilinositoles/metabolismo , Fosforilcolina/análogos & derivados , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antineoplásicos/metabolismo , Sitios de Unión , Humanos , Micelas , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fosforilcolina/metabolismo , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/química , Marcadores de Spin
10.
J Biol Chem ; 288(21): 14863-73, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23576432

RESUMEN

Peripheral membrane proteins can be targeted to specific organelles or the plasma membrane by differential recognition of phospholipid headgroups. Although molecular determinants of specificity for several headgroups, including phosphatidylserine and phosphoinositides are well defined, specific recognition of the headgroup of the zwitterionic phosphatidylcholine (PC) is less well understood. In cytosolic proteins the cation-π box provides a suitable receptor for choline recognition and binding through the trimethylammonium moiety. In PC, this moiety might provide a sufficient handle to bind to peripheral proteins via a cation-π cage, where the π systems of two or more aromatic residues are within 4-5 Å of the quaternary amine. We prove this hypothesis by engineering the cation-π box into secreted phosphatidylinositol-specific phospholipase C from Staphylococcus aureus, which lacks specific PC recognition. The N254Y/H258Y variant selectively binds PC-enriched vesicles, and x-ray crystallography reveals N254Y/H258Y binds choline and dibutyroylphosphatidylcholine within the cation-π motif. Such simple PC recognition motifs could be engineered into a wide variety of secondary structures providing a generally applicable method for specific recognition of PC.


Asunto(s)
Proteínas Bacterianas/química , Membrana Celular/química , Fosfatidilcolinas/química , Receptores de Superficie Celular/química , Staphylococcus aureus/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cationes/química , Cationes/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Mutación Missense , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
11.
J Biol Chem ; 287(48): 40317-27, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23038258

RESUMEN

BACKGROUND: Bacterial phosphatidylinositol-specific phospholipase C targets PI and glycosylphosphatidylinositol-linked proteins of eukaryotic cells. RESULTS: Functional relevance of a homodimeric S. aureus PI-PLC crystal structure is supported by enzyme kinetics and mutagenesis. Nonsubstrate phosphatidylcholine increases activity by facilitating enzyme dimerization. CONCLUSION: Activating transient dimerization is antagonized by anions binding to a discrete site. SIGNIFICANCE: Interplay of protein oligomerization and anion binding controls enzyme activity. Staphylococcus aureus phosphatidylinositol-specific phospholipase C (PI-PLC) is a secreted virulence factor for this pathogenic bacterium. A novel crystal structure shows that this PI-PLC can form a dimer via helix B, a structural feature present in all secreted, bacterial PI-PLCs that is important for membrane binding. Despite the small size of this interface, it is critical for optimal enzyme activity. Kinetic evidence, increased enzyme specific activity with increasing enzyme concentration, supports a mechanism where the PI-PLC dimerization is enhanced in membranes containing phosphatidylcholine (PC). Mutagenesis of key residues confirm that the zwitterionic phospholipid acts not by specific binding to the protein, but rather by reducing anionic lipid interactions with a cationic pocket on the surface of the S. aureus enzyme that stabilizes monomeric protein. Despite its structural and sequence similarity to PI-PLCs from other Gram-positive pathogenic bacteria, S. aureus PI-PLC appears to have a unique mechanism where enzyme activity is modulated by competition between binding of soluble anions or anionic lipids to the cationic sensor and transient dimerization on the membrane.


Asunto(s)
Aniones/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fosfoinositido Fosfolipasa C/química , Fosfoinositido Fosfolipasa C/metabolismo , Staphylococcus aureus/enzimología , Proteínas Bacterianas/genética , Sitios de Unión , Dimerización , Cinética , Fosfoinositido Fosfolipasa C/genética , Unión Proteica , Staphylococcus aureus/química , Staphylococcus aureus/genética , Especificidad por Sustrato
12.
J Biol Chem ; 287(23): 19642-52, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22500023

RESUMEN

The complement membrane attack complex (MAC) forms transmembrane pores in pathogen membranes. The first step in MAC assembly is cleavage of C5 to generate metastable C5b, which forms a stable complex with C6, termed C5b-6. C5b-6 initiates pore formation via the sequential recruitment of homologous proteins: C7, C8, and 12-18 copies of C9, each of which comprises a central MAC-perforin domain flanked by auxiliary domains. We recently proposed a model of pore assembly, in which the auxiliary domains play key roles, both in stabilizing the closed conformation of the protomers and in driving the sequential opening of the MAC-perforin ß-sheet of each new recruit to the growing pore. Here, we describe an atomic model of C5b-6 at 4.2 Å resolution. We show that C5b provides four interfaces for the auxiliary domains of C6. The largest interface is created by the insertion of an interdomain linker from C6 into a hydrophobic groove created by a major reorganization of the α-helical domain of C5b. In combination with the rigid body docking of N-terminal elements of both proteins, C5b becomes locked into a stable conformation. Both C6 auxiliary domains flanking the linker pack tightly against C5b. The net effect is to induce the clockwise rigid body rotation of four auxiliary domains, as well as the opening/twisting of the central ß-sheet of C6, in the directions predicted by our model to activate or prime C6 for the subsequent steps in MAC assembly. The complex also suggests novel small molecule strategies for modulating pathological MAC assembly.


Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento/química , Proteínas del Sistema Complemento/química , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Proteínas del Sistema Complemento/metabolismo , Cristalografía por Rayos X , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
13.
J Biol Chem ; 287(13): 10210-10222, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22267737

RESUMEN

The complement membrane attack complex (MAC) is formed by the sequential assembly of C5b with four homologous proteins as follows: one copy each of C6, C7, and C8 and 12-14 copies of C9. Together these form a lytic pore in bacterial membranes. C6 through C9 comprise a MAC-perforin domain flanked by 4-9 "auxiliary" domains. Here, we report the crystal structure of C6, the first and longest of the pore proteins to be recruited by C5b. Comparisons with the structures of the C8αßγ heterodimer and perforin show that the central domain of C6 adopts a "closed" (perforin-like) state that is distinct from the "open" conformations in C8. We further show that C6, C8α, and C8ß contain three homologous subdomains ("upper," "lower," and "regulatory") related by rotations about two hinge points. In C6, the regulatory segment includes four auxiliary domains that stabilize the closed conformation, inhibiting release of membrane-inserting elements. In C8ß, rotation of the regulatory segment is linked to an opening of the central ß-sheet of its clockwise partner, C8α. Based on these observations, we propose a model for initiation and unidirectional propagation of the MAC in which the auxiliary domains play key roles: in the assembly of the C5b-8 initiation complex; in driving and regulating the opening of the ß-sheet of the MAC-performin domain of each new recruit as it adds to the growing pore; and in stabilizing the final pore. Our model of the assembled pore resembles those of the cholesterol-dependent cytolysins but is distinct from that recently proposed for perforin.


Asunto(s)
Complemento C6/química , Complejo de Ataque a Membrana del Sistema Complemento , Modelos Biológicos , Modelos Moleculares , Complemento C6/metabolismo , Proteínas del Sistema Complemento/química , Proteínas del Sistema Complemento/metabolismo , Cristalografía por Rayos X , Humanos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
14.
J Biol Chem ; 287(36): 30560-70, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22787148

RESUMEN

The enzyme QueF catalyzes the reduction of the nitrile group of 7-cyano-7-deazaguanine (preQ(0)) to 7-aminomethyl-7-deazaguanine (preQ(1)), the only nitrile reduction reaction known in biology. We describe here two crystal structures of Bacillus subtilis QueF, one of the wild-type enzyme in complex with the substrate preQ(0), trapped as a covalent thioimide, a putative intermediate in the reaction, and the second of the C55A mutant in complex with the substrate preQ(0) bound noncovalently. The QueF enzyme forms an asymmetric tunnel-fold homodecamer of two head-to-head facing pentameric subunits, harboring 10 active sites at the intersubunit interfaces. In both structures, a preQ(0) molecule is bound at eight sites, and in the wild-type enzyme, it forms a thioimide covalent linkage to the catalytic residue Cys-55. Both structural and transient kinetic data show that preQ(0) binding, not thioimide formation, induces a large conformational change in and closure of the active site. Based on these data, we propose a mechanism for the activation of the Cys-55 nucleophile and subsequent hydride transfer.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Nitrilos/química , Oxidorreductasas/química , Sustitución de Aminoácidos , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación Missense , Nitrilos/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo
15.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1808-17, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23999304

RESUMEN

The unique steps in the synthesis of an unusual osmolyte in hyperthermophiles, di-myo-inositol-1,1'-phosphate (DIP), involve the production of CDP-inositol and its condensation with an inositol-1-phosphate molecule to form phosphorylated DIP. While many organisms fuse both activities into a single enzyme, the two are separate in Thermotoga maritima. The crystal structure of the T. maritima inositol-1-phosphate cytidylyltransferase, which as a soluble protein may transiently associate with its membrane-embedded partner phospho-DIP synthase (P-DIPS), has now been obtained. The structure shows a conserved motif of sugar nucleotide transferases (COG1213) with a structurally reinforced C-terminal Cys bonded to the core of the protein. A bound arsenosugar identifies the location of the active site for inositol 1-phosphate. Based on homologous structures from several species and the identification of the crucial conserved aspartate residue, a catalytic mechanism for this enzyme is proposed as well as a mode for its association with P-DIPS. This structure imposes constraints on the mode of association, communication and temperature activation of two separate enzymes in T. maritima. For the first time, a working model for the membrane-bound P-DIPS unit has been constructed. This sheds light on the functioning of the phosphatidylserine and phosphatidylinositol synthases involved in many physiological processes that are homologous to P-DIPS. This work provides fresh insights into the synthesis of the unusual thermoprotective compound DIP in hyperthermophiles.


Asunto(s)
Fosfatos de Inositol/química , Nucleotidiltransferasas/química , Citidililtransferasa de Colina-Fosfato/química , Cristalografía por Rayos X , Thermotoga maritima/enzimología
16.
Biochemistry ; 51(12): 2579-87, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22390775

RESUMEN

Staphylococcus aureus secretes a phosphatidylinositol-specific phospholipase C (PI-PLC) as a virulence factor that is unusual in exhibiting higher activity at acidic pH values than other enzymes in this class. We have determined the crystal structure of this enzyme at pH 4.6 and pH 7.5. Under slightly basic conditions, the S. aureus PI-PLC structure closely follows the conformation of other bacterial PI-PLCs. However, when crystallized under acidic conditions, a large section of mobile loop at the αß-barrel rim in the vicinity of the active site shows ~10 Å shift. This loop displacement at acidic pH is the result of a titratable intramolecular π-cation interaction between His258 and Phe249. This was verified by a structure of the mutant protein H258Y crystallized at pH 4.6, which does not exhibit the large loop shift. The intramolecular π-cation interaction for S. aureus PI-PLC provides an explanation for the activity of the enzyme at acid pH and also suggests how phosphatidylcholine, as a competitor for Phe249, may kinetically activate this enzyme.


Asunto(s)
Dominio Catalítico , Fosfoinositido Fosfolipasa C/química , Fosfoinositido Fosfolipasa C/metabolismo , Staphylococcus aureus/enzimología , Concentración de Iones de Hidrógeno , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Fosfoinositido Fosfolipasa C/genética , Solubilidad , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/patogenicidad , Especificidad por Sustrato , Agua/química
17.
J Biol Chem ; 286(23): 21002-12, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21518756

RESUMEN

Because of their important function, matrix metalloproteinases (MMPs) are promising drug targets in multiple diseases, including malignancies. The structure of MMPs includes a catalytic domain, a hinge, and a hemopexin domain (PEX), which are followed by a transmembrane and cytoplasmic tail domains or by a glycosylphosphatidylinositol linker in membrane-type MMPs (MT-MMPs). TIMPs-1, -2, -3, and -4 are potent natural regulators of the MMP activity. These are the inhibitory N-terminal and the non-inhibitory C-terminal structural domains in TIMPs. Based on our structural modeling, we hypothesized that steric clashes exist between the non-inhibitory C-terminal domain of TIMPs and the PEX of MMPs. Conversely, a certain mobility of the PEX relative to the catalytic domain is required to avoid these obstacles. Because of its exceedingly poor association constant and, in contrast with TIMP-2, TIMP-1 is inefficient against MT1-MMP. We specifically selected an MT1-MMP·TIMP-1 pair to test our hypothesis, because any improvement of the inhibitory potency would be readily recorded. We characterized the domain-swapped MT1-MMP chimeras in which the PEX of MMP-2 (that forms a complex with TIMP-2) and of MMP-9 (that forms a complex with TIMP-1) replaced the original PEX in the MT1-MMP structure. In contrast with the wild-type MT1-MMP, the diverse proteolytic activities of the swapped-PEX chimeras were then inhibited by both TIMP-1 and TIMP-2. Overall, our studies suggest that the structural parameters of both domains of TIMPs have to be taken into account for their re-engineering to harness the therapeutic in vivo potential of the novel TIMP-based MMP antagonists with constrained selectivity.


Asunto(s)
Colagenasas/química , Inhibidores de la Metaloproteinasa de la Matriz , Modelos Moleculares , Inhibidores Tisulares de Metaloproteinasas/química , Animales , Células CHO , Colagenasas/genética , Colagenasas/metabolismo , Cricetinae , Cricetulus , Humanos , Ratones , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Inhibidores Tisulares de Metaloproteinasas/genética , Inhibidores Tisulares de Metaloproteinasas/metabolismo
18.
Proc Natl Acad Sci U S A ; 106(26): 10505-10, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19553204

RESUMEN

It is commonly accepted that proteins have evolutionarily conserved 3-dimensional structures, uniquely defined by their amino acid sequence. Here, we question the direct association of structure to sequence by comparing multiple models of identical proteins. Rapidly growing structural databases contain models of proteins determined independently multiple times. We have collected these models in the database of the redundant sets of protein structures and then derived their conformational states by clustering the models with low root-mean-square deviations (RMSDs). The distribution of conformational states represented in these sets is wider than commonly believed, in fact exceeding the possible range of structure determination errors, by at least an order of magnitude. We argue that differences among the models represent the natural distribution of conformational states. Our results suggest that we should change the common notion of a protein structure by augmenting a single 3-dimensional model by the width of the ensemble distribution. This width must become an indispensible attribute of the protein description. We show that every protein contains regions of high rigidity (solid-like) and regions of high mobility (liquid-like) in different and characteristic contribution. We also show that the extent of local flexibility is correlated with the functional class of the protein. This study suggests that the protein-folding problem has no unique solution and should be limited to defining the folding class of the solid-like fragments even though they may constitute only a small part of the protein. These results limit the capability of modeling protein structures with multiple conformational states.


Asunto(s)
Bases de Datos de Proteínas , Conformación Proteica , Proteínas/química , Análisis por Conglomerados , Cristalografía por Rayos X , Modelos Moleculares , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas/clasificación
19.
Protein J ; 41(1): 55-70, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35006498

RESUMEN

To shed light onto the activation mechanism of vinculin, we carried out a detailed refinement of chicken vinculin and compared it to the human protein which is greater than 95% identical. Refinement resulted in a complete and significantly improved model. This model includes important elements such as a pro-rich strap region (PRR) and C-terminus. The conformation of the PRR stabilized by its inter- and intra-molecular contacts shows a dynamic, but relatively stable motif that constitutes a docking platform for multiple molecules. The contact of the C-terminus with the PRR suggests that phosphorylation of Tyr1065 might control activation and membrane binding. Improved electron densities showed the presence of large solvent molecules such as phosphates/sulfates and a head-group of PIP2. The improved model allowed for a computational stability analysis to be performed by the program Corex/Best which located numerous hot-spots of increased and decreased stability. Proximity of the identified binding sites for regulatory partners involved in inducing or suppressing the activation of vinculin to the unstable elements sheds new light onto the activation pathway and differential activation. This stability analysis suggests that the activation pathway proceeds by unfurling of the super-bundle built from four bundles of helices without separation of the Vt region (840-1066) from the head. According to our mechanism, when activating proteins bind at the strap region a separation of N and C terminal bundles occurs, followed by unfurling of the super-bundle and flattening of the general shape of the molecule, which exposes the interaction sites for binding of auxiliary proteins.


Asunto(s)
Actinas , Vinculina , Actinas/química , Animales , Sitios de Unión , Pollos , Humanos , Unión Proteica , Conformación Proteica , Vinculina/química
20.
Biophys J ; 101(11): 2816-24, 2011 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-22261071

RESUMEN

1-L-myo-inositol-phosphate synthase (mIPS) catalyzes the first step of the unique, de novo pathway of inositol biosynthesis. However, details about the complex mIPS catalytic mechanism, which requires oxidation, enolization, intramolecular aldol cyclization, and reduction, are not fully known. To gain further insight into this mechanism, we determined the crystal structure of the wild-type mIPS from Archaeoglobus fulgidus at 1.7 Å, as well as the crystal structures of three active-site mutants. Additionally, we obtained the structure of mIPS with a trapped 5-keto-glucose-6-phosphate intermediate at 2 Å resolution by a novel (to our knowledge) process of activating the crystal at high temperature. A comparison of all of the crystal structures of mIPS described in this work suggests a novel type of catalytic mechanism that relies on the forced atomic proximity of functional groups. The lysine cluster is contained in a small volume in the active site, where random motions of these side chains are responsible for the progress of the complex multistep reaction as well as for the low rate of catalysis. The mechanism requires that functional groups of Lys-274, Lys-278, Lys-306, and Lys-367 assume differential roles in the protonation/deprotonation steps that must occur during the mIPS reaction. This mechanism is supported by the complete loss of activity of the enzyme caused by the Leu-257 mutation to Ala that releases the lysine containment.


Asunto(s)
Archaeoglobus fulgidus/enzimología , Biocatálisis , Mio-Inositol-1-Fosfato Sintasa/química , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Archaeoglobus fulgidus/efectos de los fármacos , Biocatálisis/efectos de los fármacos , Dominio Catalítico , Cationes Bivalentes/farmacología , Cristalografía por Rayos X , Glucosa-6-Fosfato/metabolismo , Lisina/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformación Proteica , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA