Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36233113

RESUMEN

The receptor tyrosine kinase inhibitor imatinib improves patient cancer survival but is linked to cardiotoxicity. This study investigated imatinib's effects on cell viability, apoptosis, autophagy, and necroptosis in human cardiac progenitor cells in vitro. Imatinib reduced cell viability (75.9 ± 2.7% vs. 100.0 ± 0.0%) at concentrations comparable to peak plasma levels (10 µM). Imatinib reduced cells' TMRM fluorescence (74.6 ± 6.5% vs. 100.0 ± 0.0%), consistent with mitochondrial depolarisation. Imatinib increased lysosome and autophagosome content as indicated by LAMP2 expression (2.4 ± 0.3-fold) and acridine orange fluorescence (46.0 ± 5.4% vs. 9.0 ± 3.0), respectively. Although imatinib increased expression of autophagy-associated proteins and also impaired autophagic flux, shown by proximity ligation assay staining for LAMP2 and LC3II (autophagosome marker): 48 h of imatinib treatment reduced visible puncta to 2.7 ± 0.7/cell from 11.3 ± 2.1 puncta/cell in the control. Cell viability was partially recovered by autophagosome inhibition by wortmannin, with the viability increasing 91.8 ± 8.2% after imatinib-wortmannin co-treatment (84 ± 1.5% after imatinib). Imatinib-induced necroptosis was associated with an 8.5 ± 2.5-fold increase in mixed lineage kinase domain-like pseudokinase activation. Imatinib-induced toxicity was rescued by RIP1 inhibition: 88.6 ± 3.0% vs. 100.0 ± 0.0% in the control. Imatinib applied to human cardiac progenitor cells depolarises mitochondria and induces cell death through necroptosis, recoverable by RIP1 inhibition, with a partial role for autophagy.


Asunto(s)
Naranja de Acridina , Autofagia , Apoptosis , Muerte Celular , Humanos , Mesilato de Imatinib/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Células Madre , Wortmanina
2.
Int J Mol Sci ; 20(8)2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31013688

RESUMEN

Pulmonary arterial hypertension (PAH) results in hypertrophic remodeling of the right ventricle (RV) to overcome increased pulmonary pressure. This increases the O2 consumption of the myocardium, and without a concomitant increase in energy generation, a mismatch with demand may occur. Eventually, RV function can no longer be sustained, and RV failure occurs. Beta-adrenergic blockers (BB) are thought to improve survival in left heart failure, in part by reducing energy expenditure and hypertrophy, however they are not currently a therapy for PAH. The monocrotaline (MCT) rat model of PAH was used to investigate the consequence of RV failure on myocardial oxygenation and mitochondrial function. A second group of MCT rats was treated daily with the beta-1 blocker metoprolol (MCT + BB). Histology confirmed reduced capillary density and increased capillary supply area without indications of capillary rarefaction in MCT rats. A computer model of O2 flux was applied to the experimentally recorded capillary locations and predicted a reduction in mean tissue PO2 in MCT rats. The fraction of hypoxic tissue (defined as PO2 < 0.5 mmHg) was reduced following beta-1 blocker (BB) treatment. The functionality of the creatine kinase (CK) energy shuttle was measured in permeabilized RV myocytes by sequential ADP titrations in the presence and absence of creatine. Creatine significantly decreased the KmADP in cells from saline-injected control (CON) rats, but not MCT rats. The difference in KmADP with or without creatine was not different in MCT + BB cells compared to CON or MCT cells. Improved myocardial energetics could contribute to improved survival of PAH with chronic BB treatment.


Asunto(s)
Metabolismo Energético , Disfunción Ventricular Derecha/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Animales , Creatina Quinasa/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/metabolismo , Hipoxia/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Monocrotalina/metabolismo , Monocrotalina/farmacología , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Oxígeno/metabolismo , Ratas
3.
J Mol Cell Cardiol ; 120: 74-83, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29807024

RESUMEN

Right heart failure is the major cause of death in Pulmonary Artery Hypertension (PAH) patients but is not a current, specific therapeutic target. Pre-clinical studies have shown that adrenoceptor blockade can improve cardiac function but the mechanisms of action within right ventricular (RV) myocytes are unknown. We tested whether the ß1-adrenoceptor blocker metoprolol could improve RV myocyte function in an animal model of PAH, by attenuating adverse excitation-contraction coupling remodeling. PAH with RV failure was induced in rats by monocrotaline injection. When PAH was established, animals were given 10 mg/kg/day metoprolol (MCT + BB) or vehicle (MCT). The median time to the onset of heart failure signs was delayed from 23 days (MCT), to 31 days (MCT + BB). At 23 ±â€¯1 days post-injection, MCT + BB showed improved in vivo cardiac function, measured by echocardiography. RV hypertrophy was reduced despite persistent elevated afterload. RV myocyte contractility during field stimulation was improved at higher pacing frequencies in MCT + BB. Preserved t-tubule structure, more uniform evoked Ca2+ release, increased SERCA2a expression and faster ventricular repolarization (measured in vivo by telemetry) may account for the improved contractile function. Sarcoplasmic reticulum Ca2+ overload was prevented in MCT + BB myocytes resulting in fewer spontaneous Ca2+ waves, with a lower pro-arrhythmic potential. Our novel finding of attenuation of defects in excitation contraction coupling by ß1-adrenoceptor blockade with delays in the onset of HF, identifies the RV as a promising therapeutic target in PAH. Moreover, our data suggest existing therapies for left ventricular failure may also be beneficial in PAH induced RV failure.


Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 1/uso terapéutico , Calcio/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Metoprolol/uso terapéutico , Miocitos Cardíacos/metabolismo , Arteria Pulmonar/fisiopatología , Disfunción Ventricular Derecha/tratamiento farmacológico , Antagonistas de Receptores Adrenérgicos beta 1/administración & dosificación , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Ecocardiografía , Electrocardiografía , Insuficiencia Cardíaca/metabolismo , Hipertensión Pulmonar/diagnóstico por imagen , Hipertrofia Ventricular Derecha/tratamiento farmacológico , Masculino , Metoprolol/administración & dosificación , Ratas , Ratas Wistar , Volumen Sistólico/efectos de los fármacos , Disfunción Ventricular Derecha/diagnóstico por imagen
4.
FASEB J ; 31(11): 4845-4854, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28743763

RESUMEN

Exposure to CO causes early afterdepolarization arrhythmias. Previous studies in rats have indicated that arrhythmias arose as a result of augmentation of the late Na+ current. The purpose of the present study was to examine the basis for CO-induced arrhythmias in guinea pig myocytes in which action potentials (APs) more closely resemble those of human myocytes. Whole-cell current- and voltage-clamp recordings were made from isolated guinea pig myocytes as well as from human embryonic kidney 293 (HEK293) cells that express wild-type or a C723S mutant form of ether-a-go-go-related gene (ERG; Kv11.1). We also monitored the formation of peroxynitrite (ONOO-) in HEK293 cells fluorimetrically. CO-applied as the CO-releasing molecule, CORM-2-prolonged the APs and induced early afterdepolarizations in guinea pig myocytes. In HEK293 cells, CO inhibited wild-type, but not C723S mutant, Kv11.1 K+ currents. Inhibition was prevented by an antioxidant, mitochondrial inhibitors, or inhibition of NO formation. CO also raised ONOO- levels, an effect that was reversed by the ONOO- scavenger, FeTPPS [5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrinato-iron(III)], which also prevented the CO inhibition of Kv11.1 currents and abolished the effects of CO on Kv11.1 tail currents and APs in guinea pig myocytes. Our data suggest that CO induces arrhythmias in guinea pig cardiac myocytes via the ONOO--mediated inhibition of Kv11.1 K+ channels.-Al-Owais, M. M., Hettiarachchi, N. T., Kirton, H. M., Hardy, M. E., Boyle, J. P., Scragg, J. L., Steele, D. S., Peers, C. A key role for peroxynitrite-mediated inhibition of cardiac ERG (Kv11.1) K+ channels in carbon monoxide-induced proarrhythmic early afterdepolarizations.


Asunto(s)
Arritmias Cardíacas/metabolismo , Monóxido de Carbono/toxicidad , Canal de Potasio ERG1/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ácido Peroxinitroso/metabolismo , Animales , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Canal de Potasio ERG1/genética , Cobayas , Células HEK293 , Humanos , Metaloporfirinas/farmacología , Miocitos Cardíacos/patología , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Compuestos Organometálicos/farmacología , Ácido Peroxinitroso/genética
5.
J Mol Cell Cardiol ; 86: 1-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26116865

RESUMEN

Our objective was to investigate the role of creatine kinase in the contractile dysfunction of right ventricular failure caused by pulmonary artery hypertension. Pulmonary artery hypertension and right ventricular failure were induced in rats by monocrotaline and compared to saline-injected control animals. In vivo right ventricular diastolic pressure-volume relationships were measured in anesthetized animals; diastolic force-length relationships in single enzymatically dissociated myocytes and myocardial creatine kinase levels by Western blot. We observed diastolic dysfunction in right ventricular failure indicated by significantly steeper diastolic pressure-volume relationships in vivo and diastolic force-length relationships in single myocytes. There was a significant reduction in creatine kinase protein expression in failing right ventricle. Dysfunction also manifested as a shorter diastolic sarcomere length in failing myocytes. This was associated with a Ca(2+)-independent mechanism that was sensitive to cross-bridge cycling inhibition. In saponin-skinned failing myocytes, addition of exogenous creatine kinase significantly lengthened sarcomeres, while in intact healthy myocytes, inhibition of creatine kinase significantly shortened sarcomeres. Creatine kinase inhibition also changed the relatively flat contraction amplitude-stimulation frequency relationship of healthy myocytes into a steeply negative, failing phenotype. Decreased creatine kinase expression leads to diastolic dysfunction. We propose that this is via local reduction in ATP:ADP ratio and thus to Ca(2+)-independent force production and diastolic sarcomere shortening. Creatine kinase inhibition also mimics a definitive characteristic of heart failure, the inability to respond to increased demand. Novel therapies for pulmonary artery hypertension are needed. Our data suggest that cardiac energetics would be a potential ventricular therapeutic target.


Asunto(s)
Creatina Quinasa/metabolismo , Insuficiencia Cardíaca/enzimología , Hipertensión Pulmonar/enzimología , Disfunción Ventricular Derecha/enzimología , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Creatina Quinasa/biosíntesis , Diástole , Insuficiencia Cardíaca/patología , Humanos , Hipertensión Pulmonar/patología , Miocardio/enzimología , Miocardio/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Arteria Pulmonar/enzimología , Arteria Pulmonar/patología , Ratas , Sarcómeros/enzimología , Sarcómeros/patología , Disfunción Ventricular Derecha/patología
6.
J Biol Chem ; 289(23): 16421-9, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24719320

RESUMEN

Sublethal carbon monoxide (CO) exposure is frequently associated with myocardial arrhythmias, and our recent studies have demonstrated that these may be attributable to modulation of cardiac Na(+) channels, causing an increase in the late current and an inhibition of the peak current. Using a recombinant expression system, we demonstrate that CO inhibits peak human Nav1.5 current amplitude without activation of the late Na(+) current observed in native tissue. Inhibition was associated with a hyperpolarizing shift in the steady-state inactivation properties of the channels and was unaffected by modification of channel gating induced by anemone toxin (rATX-II). Systematic pharmacological assessment indicated that no recognized CO-sensitive intracellular signaling pathways appeared to mediate CO inhibition of Nav1.5. Inhibition was, however, markedly suppressed by inhibition of NO formation, but NO donors did not mimic or occlude channel inhibition by CO, indicating that NO alone did not account for the actions of CO. Exposure of cells to DTT immediately before CO exposure also dramatically reduced the magnitude of current inhibition. Similarly, l-cysteine and N-ethylmaleimide significantly attenuated the inhibition caused by CO. In the presence of DTT and the NO inhibitor N(ω)-nitro-L-arginine methyl ester hydrochloride, the ability of CO to inhibit Nav1.5 was almost fully prevented. Our data indicate that inhibition of peak Na(+) current (which can lead to Brugada syndrome-like arrhythmias) occurs via a mechanism distinct from induction of the late current, requires NO formation, and is dependent on channel redox state.


Asunto(s)
Monóxido de Carbono/farmacología , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Células HEK293 , Humanos , Oxidación-Reducción
7.
Biophys J ; 106(3): 566-76, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24507597

RESUMEN

Previous studies have used analysis of Ca(2+) sparks extensively to investigate both normal and pathological Ca(2+) regulation in cardiac myocytes. The great majority of these studies used line-scan confocal imaging. In part, this is because the development of open-source software for automatic detection of Ca(2+) sparks in line-scan images has greatly simplified data analysis. A disadvantage of line-scan imaging is that data are collected from a single row of pixels, representing only a small fraction of the cell, and in many instances x-y confocal imaging is preferable. However, the limited availability of software for Ca(2+) spark analysis in two-dimensional x-y image stacks presents an obstacle to its wider application. This study describes the development and characterization of software to enable automatic detection and analysis of Ca(2+) sparks within x-y image stacks, implemented as a plugin within the open-source image analysis platform ImageJ. The program includes methods to enable precise identification of cells within confocal fluorescence images, compensation for changes in background fluorescence, and options that allow exclusion of events based on spatial characteristics.


Asunto(s)
Algoritmos , Señalización del Calcio , Animales , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Ratas , Ratas Wistar , Programas Informáticos
8.
Curr Res Toxicol ; 6: 100167, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659494

RESUMEN

Sunitinib malate is known to cause cardiotoxicity in a sub-population of patients, with heart failure seen in more severe cases. Cardiac progenitor cells (CPCs) have been identified in adult human myocardium and contribute to overall tissue maintenance, with previous work identifying negative impacts of sunitinib on these cells. This study aimed to characterise the toxic effects of sunitinib in human CPCs, applying sunitinib concentrations equivalent to clinical plasma levels to these cells in vitro. Cell viability was reduced by 26.5 ± 6.6 % by 2 µM sunitinib for 24 h (p < 0.01); this concentration also induced fold-change increases in gene expression of: calpain (3.1 ± 0.73, p < 0.05), FAS (2.3 ± 0.8, p < 0.05) and BAX (1.9 ± 0.2, p < 0.05), and a decrease in BCL-2 (3.5 ± 0.0, p < 0.001), vs. control (1.0 ± 0.0). This was affirmed by sunitinib inducing fold changes in protein expression of: calpain-1 (2.5 ± 0.5, p < 0.05); FAS receptor (2.1 ± 0.2, p < 0.05) and BAX (2.1 ± 0.2, p < 0.05) vs. control (1.0 ± 0.0). These results indicated that sunitinib induced apoptosis in CPCs, but negative annexin V staining and lack of protection by caspase inhibitors indicated this was not the cell death pathway activated. Further investigation found sunitinib was concentrated in the lysosomes and autophagosomes within CPCs, but did not induce accumulation of acidic organelles. In conclusion, these data confirm that cell death is caused by sunitinib in CPCs at concentrations equivalent to clinical plasma levels, inducing cell death pathway signals that lead to non-apoptotic cell death.

9.
Am J Respir Crit Care Med ; 186(7): 648-56, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22822026

RESUMEN

RATIONALE: Clinical reports describe life-threatening cardiac arrhythmias after environmental exposure to carbon monoxide (CO) or accidental CO poisoning. Numerous case studies describe disruption of repolarization and prolongation of the QT interval, yet the mechanisms underlying CO-induced arrhythmias are unknown. OBJECTIVES: To understand the cellular basis of CO-induced arrhythmias and to identify an effective therapeutic approach. METHODS: Patch-clamp electrophysiology and confocal Ca(2+) and nitric oxide (NO) imaging in isolated ventricular myocytes was performed together with protein S-nitrosylation to investigate the effects of CO at the cellular and molecular levels, whereas telemetry was used to investigate effects of CO on electrocardiogram recordings in vivo. MEASUREMENTS AND MAIN RESULTS: CO increased the sustained (late) component of the inward Na(+) current, resulting in prolongation of the action potential and the associated intracellular Ca(2+) transient. In more than 50% of myocytes these changes progressed to early after-depolarization-like arrhythmias. CO elevated NO levels in myocytes and caused S-nitrosylation of the Na(+) channel, Na(v)1.5. All proarrhythmic effects of CO were abolished by the NO synthase inhibitor l-NAME, and reversed by ranolazine, an inhibitor of the late Na(+) current. Ranolazine also corrected QT variability and arrhythmias induced by CO in vivo, as monitored by telemetry. CONCLUSIONS: Our data indicate that the proarrhythmic effects of CO arise from activation of NO synthase, leading to NO-mediated nitrosylation of Na(V)1.5 and to induction of the late Na(+) current. We also show that the antianginal drug ranolazine can abolish CO-induced early after-depolarizations, highlighting a novel approach to the treatment of CO-induced arrhythmias.


Asunto(s)
Arritmias Cardíacas/etiología , Intoxicación por Monóxido de Carbono/complicaciones , Monóxido de Carbono/farmacología , Miocitos Cardíacos/efectos de los fármacos , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Acetanilidas/uso terapéutico , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/fisiopatología , Señalización del Calcio/efectos de los fármacos , Monóxido de Carbono/efectos adversos , Intoxicación por Monóxido de Carbono/fisiopatología , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Exposición a Riesgos Ambientales/efectos adversos , Inhibidores Enzimáticos/uso terapéutico , Masculino , Miocitos Cardíacos/fisiología , Técnicas de Placa-Clamp , Piperazinas/uso terapéutico , Ranolazina , Ratas , Ratas Wistar , Canales de Sodio Activados por Voltaje/fisiología
10.
Front Pharmacol ; 14: 1155601, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124209

RESUMEN

Background and purpose: While flecainide is now an accepted treatment for arrhythmias associated with catecholaminergic polymorphic ventricular tachycardia (CPVT), its mechanism of action remains controversial. In studies on myocytes from CPVT mice, inhibition of proarrhythmic Ca2+ waves was initially attributed to a novel action on the type-2 ryanodine receptor (RyR2). However, subsequent work on wild type (WT) myocytes questioned the conclusion that flecainide has a direct action on RyR2. In the present study, the effects of flecainide were compared in intact and permeabilized WT myocytes. Experimental approach: Intracellular Ca2+ was measured using confocal microscopy in intact or saponin permeabilized adult rat ventricular myocytes (ARVM). In some experiments on permeabilized cells, flecainide was studied following partial inhibition of the sarcoplasmic reticulum (SR) counter-current. Key results: Flecainide induced sustained changes Ca2+ sparks and waves in permeabilized ARVM, which were comparable to those reported in intact or permeabilized myocytes from CPVT mice. However, a relatively high level of flecainide (25 µM) was required to induce these effects. Inhibition of the SR counter-current potentiated the effects of flecainide on SR Ca2+ waves. In intact field stimulated ARVM, prolonged exposure to 15 µM flecainide decreased wave frequency but RyR2 dependent effects on Ca2+ sparks were absent; higher drug concentrations blocked field stimulation, consistent with inhibition of Nav1.5. Conclusions and implications: In intact ARVM, the absence of effects on Ca2+ sparks suggests that the intracellular flecainide concentration was insufficient to influence RyR2. Wave inhibition in intact ARVM may reflect secondary effects of Nav1.5 inhibition. Potentiation of flecainide's action by counter-current inhibition can be explained if transient polarization of the SR membrane during SR Ca2+ release facilitates its action on RyR2.

11.
Commun Biol ; 6(1): 651, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336943

RESUMEN

The voltage-gated K+ channel plays a key role in atrial excitability, conducting the ultra-rapid rectifier K+ current (IKur) and contributing to the repolarization of the atrial action potential. In this study, we examine its regulation by hydrogen sulfide (H2S) in HL-1 cardiomyocytes and in HEK293 cells expressing human Kv1.5. Pacing induced remodeling resulted in shorting action potential duration, enhanced both Kv1.5 channel and H2S producing enzymes protein expression in HL-1 cardiomyocytes. H2S supplementation reduced these remodeling changes and restored action potential duration through inhibition of Kv1.5 channel. H2S also inhibited recombinant hKv1.5, lead to nitric oxide (NO) mediated S-nitrosylation and activated endothelial nitric oxide synthase (eNOS) by increased phosphorylation of Ser1177, prevention of NO formation precluded these effects. Regulation of Ikur by H2S has important cardiovascular implications and represents a novel and potential therapeutic target.


Asunto(s)
Fibrilación Atrial , Sulfuro de Hidrógeno , Canales de Potasio con Entrada de Voltaje , Humanos , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Fibrilación Atrial/metabolismo , Células HEK293 , Canal de Potasio Kv1.5/genética , Canal de Potasio Kv1.5/metabolismo , Miocitos Cardíacos/metabolismo
12.
Cells ; 13(1)2023 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-38201242

RESUMEN

Coordinated events of calcium (Ca2+) released from the endoplasmic reticulum (ER) are key second messengers in excitable cells. In pain-sensing dorsal root ganglion (DRG) neurons, these events can be observed as Ca2+ sparks, produced by a combination of ryanodine receptors (RyR) and inositol 1,4,5-triphosphate receptors (IP3R1). These microscopic signals offer the neuronal cells with a possible means of modulating the subplasmalemmal Ca2+ handling, initiating vesicular exocytosis. With super-resolution dSTORM and expansion microscopies, we visualised the nanoscale distributions of both RyR and IP3R1 that featured loosely organised clusters in the subplasmalemmal regions of cultured rat DRG somata. We adapted a novel correlative microscopy protocol to examine the nanoscale patterns of RyR and IP3R1 in the locality of each Ca2+ spark. We found that most subplasmalemmal sparks correlated with relatively small groups of RyR whilst larger sparks were often associated with larger groups of IP3R1. These data also showed spontaneous Ca2+ sparks in <30% of the subplasmalemmal cell area but consisted of both these channel species at a 3.8-5 times higher density than in nonactive regions of the cell. Taken together, these observations reveal distinct patterns and length scales of RyR and IP3R1 co-clustering at contact sites between the ER and the surface plasmalemma that encode the positions and the quantity of Ca2+ released at each Ca2+ spark.


Asunto(s)
Calcio , Ganglios Espinales , Animales , Ratas , Sistemas de Mensajero Secundario , Retículo Endoplásmico , Neuronas , Canal Liberador de Calcio Receptor de Rianodina
13.
J Mol Cell Cardiol ; 52(2): 359-65, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21640728

RESUMEN

Endogenous carbon monoxide (CO) is generated through the heme oxygenase-catalysed degradation of heme and is now established as an important, biologically active molecule capable of modulating a number of signalling pathways. Such pathways include those involving nitric oxide/guanylate cyclase, reactive oxygen species (ROS) and MAP kinases. In the heart, up-regulation of the inducible form of heme oxygenase (HO-1) following stresses such as ischemia/reperfusion provides cardioprotection, and much evidence indicates that CO accounts for many of these beneficial effects. One target of CO appears to be the L-type Ca(2+) channel; CO inhibits recombinant and native forms of this cardiac channel via mitochondria-derived ROS, which likely contributes to the protective effects of CO. In stark contrast, exposure to exogenous CO is toxic: chronic, low-level exposure can lead to myocardial injury and fibrosis, whereas acute exposure is associated with life-threatening arrhythmias. The molecular mechanisms accounting for such effects remain to be elucidated, but require future study before the potentially beneficial effects of CO therapy can be safely exploited. This article is part of a Special Issue entitled "Local Signaling in Myocytes".


Asunto(s)
Monóxido de Carbono/metabolismo , Miocardio/metabolismo , Transducción de Señal , Animales , Monóxido de Carbono/toxicidad , Cardiotónicos/metabolismo , Cardiotónicos/farmacología , Corazón/efectos de los fármacos , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo Oxigenasa (Desciclizante)/farmacología , Humanos , Canales Iónicos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Am J Physiol Heart Circ Physiol ; 302(11): H2381-95, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22427523

RESUMEN

Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension. Rats were injected with monocrotaline to induce either RV hypertrophy or failure or with saline (control). ECGs were measured in conscious, unrestrained animals by telemetry. In isolated hearts, electrical activity was measured by optical mapping and myofiber orientation by diffusion tensor-MRI. Sarcoplasmic reticular Ca(2+) handling was studied in single myocytes. Compared with control animals, the T-wave of the ECG was prolonged and in three of seven heart failure animals, prominent T-wave alternans occurred. Discordant action potential (AP) alternans occurred in isolated failing hearts and Ca(2+) transient alternans in failing myocytes. In failing hearts, AP duration and dispersion were increased; conduction velocity and AP restitution were steeper. The latter was intrinsic to failing single myocytes. Failing hearts had greater fiber angle disarray; this correlated with AP duration. Failing myocytes had reduced sarco(endo)plasmic reticular Ca(2+)-ATPase activity, increased sarcoplasmic reticular Ca(2+)-release fraction, and increased Ca(2+) spark leak. In hypertrophied hearts and myocytes, dysfunctional adaptation had begun, but alternans did not develop. We conclude that increased electrical and structural heterogeneity and dysfunctional sarcoplasmic reticular Ca(2+) handling increased the probability of alternans, a proarrhythmic predictor of sudden cardiac death. These mechanisms are potential therapeutic targets for the correction of arrhythmias in hypertensive, failing RVs.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , Hipertensión Pulmonar/complicaciones , Disfunción Ventricular Derecha/fisiopatología , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Electrocardiografía , Masculino , Modelos Animales , Miocitos Cardíacos/patología , Ratas , Ratas Wistar , Retículo Sarcoplasmático/metabolismo
15.
J Biol Chem ; 285(33): 25645-53, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20566647

RESUMEN

In malignant hyperthermia (MH), mutations in RyR1 underlie direct activation of the channel by volatile anesthetics, leading to muscle contracture and a life-threatening increase in core body temperature. The aim of the present study was to establish whether the associated depletion of sarcoplasmic reticulum (SR) Ca(2+) triggers sarcolemmal Ca(2+) influx via store-operated Ca(2+) entry (SOCE). Samples of vastus medialis muscle were obtained from patients undergoing assessment for MH susceptibility using the in vitro contracture test. Single fibers were mechanically skinned, and confocal microscopy was used to detect changes in [Ca(2+)] either within the resealed t-system ([Ca(2+)](t-sys)) or within the cytosol. In normal fibers, halothane (0.5 mM) failed to initiate SR Ca(2+) release or Ca(2+)(t-sys) depletion. However, in MH-susceptible (MHS) fibers, halothane induced both SR Ca(2+) release and Ca(2+)(t-sys) depletion, consistent with SOCE. In some MHS fibers, halothane-induced SR Ca(2+) release took the form of a propagated wave, which was temporally coupled to a wave of Ca(2+)(t-sys) depletion. SOCE was potently inhibited by "extracellular" application of a STIM1 antibody trapped within the t-system but not when the antibody was denatured by heating. In conclusion, (i) in human MHS muscle, SR Ca(2+) depletion induced by a level of volatile anesthetic within the clinical range is sufficient to induce SOCE, which is tightly coupled to SR Ca(2+) release; (ii) sarcolemmal STIM1 has an important role in regulating SOCE; and (iii) sustained SOCE from an effectively infinite extracellular Ca(2+) pool may contribute to the maintained rise in cytosolic [Ca(2+)] that underlies MH.


Asunto(s)
Calcio/metabolismo , Hipertermia Maligna/metabolismo , Músculo Esquelético/metabolismo , Western Blotting , Halotano/farmacología , Humanos , Técnicas In Vitro , Microscopía Confocal , Músculo Esquelético/efectos de los fármacos , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo
16.
Front Pharmacol ; 12: 651050, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995065

RESUMEN

Chronic exposure to low levels of Carbon Monoxide is associated with an increased risk of cardiac arrhythmia. Microelectrode recordings from rat and guinea pig single isolated ventricular myocytes exposed to CO releasing molecule CORM-2 and excited at 0.2/s show repolarisation changes that develop over hundreds of seconds: action potential prolongation by delayed repolarisation, EADs, multiple EADs and oscillations around the plateau, leading to irreversible repolarisation failure. The measured direct effects of CO on currents in these cells, and ion channels expressed in mammalian systems showed an increase in prolonged late Na+, and a decrease in the maximal T- and L-type Ca++. peak and late Na+, ultra-rapid delayed, delayed rectifier, and the inward rectifier K+ currents. Incorporation of these CO induced changes in maximal currents in ventricular cell models; (Gattoni et al., J. Physiol., 2016, 594, 4193-4224) (rat) and (Luo and Rudy, Circ. Res., 1994, 74, 1071-1096) (guinea-pig) and human endo-, mid-myo- and epi-cardial (O'Hara et al., PLoS Comput. Biol., 2011, 7, e1002061) models, by changes in maximal ionic conductance reproduces these repolarisation abnormalities. Simulations of cell populations with Gaussian distributions of maximal conductance parameters predict a CO induced increase in APD and its variability. Incorporation of these predicted CO induced conductance changes in human ventricular cell electrophysiology into ventricular tissue and wall models give changes in indices for the probability of the initiation of re-entrant arrhythmia.

17.
J Mol Cell Cardiol ; 48(2): 293-301, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19835880

RESUMEN

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is linked to mutations in the cardiac ryanodine receptor (RyR2) or calsequestrin. We recently found that the drug flecainide inhibits RyR2 channels and prevents CPVT in mice and humans. Here we compared the effects of flecainide and tetracaine, a known RyR2 inhibitor ineffective in CPVT myocytes, on arrhythmogenic Ca(2+) waves and elementary sarcoplasmic reticulum (SR) Ca(2+) release events, Ca(2+) sparks. In ventricular myocytes isolated from a CPVT mouse model, flecainide significantly reduced spark amplitude and spark width, resulting in a 40% reduction in spark mass. Surprisingly, flecainide significantly increased spark frequency. As a result, flecainide had no significant effect on spark-mediated SR Ca(2+) leak or SR Ca(2+) content. In contrast, tetracaine decreased spark frequency and spark-mediated SR Ca(2+) leak, resulting in a significantly increased SR Ca(2+) content. Measurements in permeabilized rat ventricular myocytes confirmed the different effects of flecainide and tetracaine on spark frequency and Ca(2+) waves. In lipid bilayers, flecainide inhibited RyR2 channels by open state block, whereas tetracaine primarily prolonged RyR2 closed times. The differential effects of flecainide and tetracaine on sparks and RyR2 gating can explain why flecainide, unlike tetracaine, does not change the balance of SR Ca(2+) fluxes. We suggest that the smaller spark mass contributes to flecainide's antiarrhythmic action by reducing the probability of saltatory wave propagation between adjacent Ca(2+) release units. Our results indicate that inhibition of the RyR2 open state provides a new therapeutic strategy to prevent diastolic Ca(2+) waves resulting in triggered arrhythmias, such as CPVT.


Asunto(s)
Arritmias Cardíacas/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Flecainida/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Humanos , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Tetracaína/farmacología
18.
Circ Res ; 100(6): 874-83, 2007 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-17322175

RESUMEN

Ca(2+) release via type 2 ryanodine receptors (RyR2) regulates cardiac function. Molecular cloning of human RyR2 identified 2 alternatively spliced variants, comprising 30- and 24-bp sequence insertions; yet their role in shaping cardiomyocyte Ca(2+) signaling and cell phenotype is unknown. We profiled the developmental regulation and the tissue and species specificity of these variants and showed that their recombinant expression in HL-1 cardiomyocytes profoundly modulated nuclear and cytoplasmic Ca(2+) release. All splice variants localized to the sarcoplasmic reticulum, perinuclear Golgi apparatus, and to finger-like invaginations of the nuclear envelope (nucleoplasmic reticulum). Strikingly, the 24-bp splice insertion that was present at low levels in embryonic and adult hearts was essential for targeting RyR2 to an intranuclear Golgi apparatus and promoted the intracellular segregation of this variant. The amplitude variability of nuclear and cytoplasmic Ca(2+) fluxes were reduced in nonstimulated cardiomyocytes expressing both 30- and 24-bp splice variants and were associated with lower basal levels of apoptosis. Expression of RyR2 containing the 24-bp insertion also suppressed intracellular Ca(2+) fluxes following prolonged caffeine exposure (1 mmol/L, 16 hours) that protected cells from apoptosis. The antiapoptotic effects of this variant were linked to increased levels of Bcl-2 phosphorylation. In contrast, RyR2 containing the 30-bp insertion, which was abundant in human embryonic heart but was decreased during cardiac development, did not protect cardiomyocytes from caffeine-evoked apoptosis. Thus, we provide the first evidence that RyR2 splice variants exquisitely modulate intracellular Ca(2+) signaling and are key determinants of cardiomyocyte apoptotic susceptibility.


Asunto(s)
Empalme Alternativo/genética , Apoptosis/genética , Señalización del Calcio/fisiología , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Cafeína/farmacología , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Transferencia de Gen , Humanos , Ratones , Datos de Secuencia Molecular , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Mensajero/metabolismo , Especificidad de la Especie
19.
Cell Calcium ; 44(4): 411-21, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19230144

RESUMEN

Single mechanically skinned extensor digitorum Longus (EDL) rat fibres were used as a model to study the influence of functional t-tubules on the properties of RyR1 in adult skeletal muscle. Fibres were superfused with solutions approximating to the intracellular milieu. Following skinning, the t-tubules re-seal and repolarise, allowing the sarcoplasmic reticulum (SR) Ca2+ release to be activated by field stimulation. However, in the present study, some fibres exhibited localised regions where depolarisation-induced SR Ca2+ release was absent, due to failure of the t-tubules to re-seal. When these fibres were exposed to caffeine to directly activate RyR1, regions with re-sealed t-tubules exhibited greater sensitivity to submaximal (2-5 mM) levels of caffeine (n = 8), while the response to a supramaximal SR Ca2+ release stimulus was uniform (n = 8, p < 0.05). This difference in RyR1 sensitivity was unaffected by sustained depolarisation of the t-tubule network. However, after saponin permeabilization of the t-tubules or withdrawal of Ca2+ from the t-tubules before skinning, the difference in agonist sensitivity was abolished. These results suggest that in adult skeletal muscle fibres, the presence of a functional t-tubule network increases the sensitivity of RyR1 to agonists via a mechanism that involves binding of Ca2+ to an extracellular regulatory site.


Asunto(s)
Calcio/metabolismo , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Cafeína/farmacología , Músculo Esquelético/efectos de los fármacos , Ratas , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Retículo Sarcoplasmático/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA