Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochemistry ; 52(2): 295-309, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23256685

RESUMEN

Insulin degludec, an engineered acylated insulin, was recently reported to form a soluble depot after subcutaneous injection with a subsequent slow release of insulin and an ultralong glucose-lowering effect in excess of 40 h in humans. We describe the structure, ligand binding properties, and self-assemblies of insulin degludec using orthogonal structural methods. The protein fold adopted by insulin degludec is very similar to that of human insulin. Hexamers in the R(6) state similar to those of human insulin are observed for insulin degludec in the presence of zinc and resorcinol. However, under conditions comparable to the pharmaceutical formulation comprising zinc and phenol, insulin degludec forms finite dihexamers that are composed of hexamers in the T(3)R(3) state that interact to form an R(3)T(3)-T(3)R(3) structure. When the phenolic ligand is depleted and the solvent condition thereby mimics that of the injection site, the quaternary structure changes from dihexamers to a supramolecular structure composed of linear arrays of hundreds of hexamers in the T(6) state and an average molar mass, M(0), of 59.7 × 10(3) kg/mol. This novel concept of self-assemblies of insulin controlled by zinc and phenol provides the basis for the slow action profile of insulin degludec. To the best of our knowledge, this report for the first time describes a tight linkage between quaternary insulin structures of hexamers, dihexamers, and multihexamers and their allosteric state and its origin in the inherent propensity of the insulin hexamer for allosteric half-site reactivity.


Asunto(s)
Insulina de Acción Prolongada/química , Insulina de Acción Prolongada/metabolismo , Fenol/metabolismo , Zinc/metabolismo , Acetilación , Secuencia de Aminoácidos , Dicroismo Circular , Cristalografía por Rayos X , Humanos , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Resorcinoles/metabolismo , Dispersión del Ángulo Pequeño , Ultracentrifugación , Difracción de Rayos X
2.
bioRxiv ; 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36778223

RESUMEN

Glucagon-like peptide-1 (GLP-1) is an incretin hormone and neurotransmitter secreted from intestinal L-cells in response to nutrients to stimulate insulin and block glucagon secretion in a glucose-dependent manner. GLP-1 in itself is rapidly degraded, but long-acting GLP-1 receptor agonists (GLP-1 RAs) have become central in the treatment of T2D because of the beneficial effects extending also beyond glucose control. Currently, these therapeutics must be injected either daily or weekly or taken daily orally, leaving room for technological innovations that enable less frequent administrations, which will reduce patient burden and increase patient compliance. An ideal GLP-1 RA drug product would provide continuous therapy for upwards of four months from a single administration to match the cadence with which T2D patients typically visit their physician. In this work, we leveraged an injectable hydrogel depot technology to develop a long-acting GLP-1 RA drug product. By modulating the hydrogel properties to tune GLP-1 RA retention within the hydrogel depot, we engineered formulations capable of months-long GLP-1 RA delivery. Using a rat model of T2D, we confirmed that a single injection of hydrogel-based therapies exhibits sustained exposure of GLP-1 RA over 42 days, corresponding to a once-every four month therapy in humans. Moreover, these hydrogel therapies maintained optimal management of blood glucose and weight comparable to daily injections of a leading GLP-1 RA drug molecule. The pharmacokinetics and pharmacodynamics of these hydrogel-based long-acting GLP-1 RA treatments are promising for development of novel therapies reducing treatment burden for more effective management of T2D. Progress and Potential: While insufficient access to quality healthcare is problematic for consistent management of Type II diabetes (T2D), poor adherence to burdensome treatment regimens is one of the greatest challenges for disease management. Glucagon-like peptide 1 (GLP1) drugs have become central to the treatment of T2D due to their many beneficial effects beyond improving glucose control. Unfortunately, while optimization of GLP1 drugs has reduced treatment frequency from daily to weekly, significant patient burden still leads to poor patience compliance. In this work we developed an injectable hydrogel technology to enable GLP1 drugs only requiring administration once every four months. We showed in a rat model of T2D that one injection of a hydrogel-based therapy improves management of blood glucose and weight when compared with daily injections of the leading drug used clinically. These hydrogel-based GLP1 treatments are promising for reducing treatment burden and more effectively managing T2D. Future Impact: A GLP-1-based drug product providing four months of continuous therapy per administration could be transformational for the management of Type II diabetes (T2D). One of the most challenging aspects of diabetes management with GLP-1 mimics is maintenance of consistent levels of the drugs in the body, which is complicated by poor patient compliance on account of the high frequency of dosing required for current treatments. By leveraging a unique sustained release hydrogel depot technology we develop a months-long GLP-1 drug product candidate that has the potential to reduce patient burden and improving diabetes management. Overall, the hydrogel technology we describe here can dramatically reduce the frequency of therapeutic interventions, significantly increasing patient quality of life and reducing complications of diabetes management.Our next steps will focus on optimization of the drug formulations in a swine model of T2D, which is the most advanced and translationally-relevant animal model for these types of therapeutics. The long-term vision for this work is to translate lead candidate drug products towards clinical evaluation, which will also require comprehensive safety evaluation in multiple species and manufacturing our these materials according to Good Manufacturing Practices. The months-long-acting GLP-1 drug product that will come from this work has the potential to afford thus far unrealized therapeutic impact for the hundreds of millions of people with diabetes worldwide.

3.
Cell Rep Med ; 4(11): 101292, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37992687

RESUMEN

Glucagon-like peptide-1 (GLP-1) is an incretin hormone and neurotransmitter secreted from intestinal L cells in response to nutrients to stimulate insulin and block glucagon secretion in a glucose-dependent manner. Long-acting GLP-1 receptor agonists (GLP-1 RAs) have become central to treating type 2 diabetes (T2D); however, these therapies are burdensome, as they must be taken daily or weekly. Technological innovations that enable less frequent administrations would reduce patient burden and increase patient compliance. Herein, we leverage an injectable hydrogel depot technology to develop a GLP-1 RA drug product capable of months-long GLP-1 RA delivery. Using a rat model of T2D, we confirm that one injection of hydrogel-based therapy sustains exposure of GLP-1 RA over 42 days, corresponding to a once-every-4-months therapy in humans. Hydrogel therapy maintains management of blood glucose and weight comparable to daily injections of a leading GLP-1 RA drug. This long-acting GLP-1 RA treatment is a promising therapy for more effective T2D management.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Animales , Ratas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hidrogeles/uso terapéutico , Biomimética , Péptido 1 Similar al Glucagón
4.
Phys Chem Chem Phys ; 12(34): 9999-10011, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20697659

RESUMEN

We have explored the adsorption of zinc-free human insulin on the three low-index single-crystalline Au(111)-, Au(100)- and Au(110)-surfaces in aqueous buffer (KH(2)PO(4), pH 5) by a combination of electrochemical scanning tunnelling microscopy (in situ STM) at single-molecule resolution and linear sweep, LSV, cyclic, CV, and square wave (SQWV) voltammetry.Multifarious electrochemical patterns were observed. Most attention was given to reductive desorption caused by insulin binding to the Au-surfaces via up to three disulfide groups per insulin monomer, presumably converted to single Au-S links. SQWV suggested the Au-S bond strength order Au(111) > Au(110) > Au(100) based on the reductive desorption potentials. The voltammetric diversity was paralleled by different in situ STM insulin adsorption modes on the three surfaces. Single-molecule resolution was achieved in all cases. The coverage followed the order Au(110) > Au(100) > Au(111) and differs from the reductive desorption order that records the Au-S bonding element. Evenly distributed single molecules were scattered over large Au(111)-terraces, with intriguing molecular arrays disclosed near the terrace edges. In comparison, high-density molecular scale structures were observed both over the terraces and across terrace edges on Au(100). Larger rectangular structures also appeared (8-12% coverage). These are Au-islands from the lift of the reconstruction. Notably, 10 x 10 nm(2) patches of highly ordered much smaller structures, possibly from insulin decomposition emerged sporadically within the dense insulin adlayer. Insulin adsorbed in highest coverage on the Au(110) and followed the directional surface topology with insulin molecules aligned in the Au(110)-surface grooves, occasionally "spilling over" and merging into larger structures.Adsorption, Au-S binding, and insulin unfolding are all parts of insulin surface behaviour and reflected in both voltammetry and in situ STM. In spite of these complications, the data show that molecular scale resolution has been achieved and offer other perspectives of insulin surface science such as single-molecule mapping of the insulin monomer/dimer-hexamer interconversion.


Asunto(s)
Oro/química , Insulina/química , Microscopía de Túnel de Rastreo , Adsorción , Electroquímica , Electrodos , Humanos , Insulina/metabolismo , Modelos Moleculares , Oxidación-Reducción , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Desplegamiento Proteico , Azufre/química , Propiedades de Superficie
5.
J Pharm Sci ; 105(4): 1376-86, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26921119

RESUMEN

A specific covalently linked dimeric species of insulin high molecular weight products (HMWPs), formed during prolonged incubation of a neutral pharmaceutical formulation of human insulin, were characterized in terms of tertiary structure, self-association, biological activity, and fibrillation properties. The dimer was formed by a covalent link between A21Asn and B29Lys. It was analyzed using static and dynamic light scattering and small-angle X-ray scattering to evaluate its self-association behavior. The tertiary structure was obtained using nuclear magnetic resonance and X-ray crystallography. The biological activity of HMWP was determined using 2 in vitro assays, and its influence on fibrillation was investigated using Thioflavin T assays. The dimer's tertiary structure was nearly identical to that of the noncovalent insulin dimer, and it was able to form hexamers in the presence of zinc. The dimer exhibited reduced propensity for self-association in the absence of zinc but significantly postponed the onset of fibrillation in insulin formulations. Consistent with its dimeric state, the tested species of HMWP showed little to no biological activity in the used assays. This study is the first detailed characterization of a specific type of human insulin HMWP formed during storage of a marketed pharmaceutical formulation. These results indicate that this specific type of HMWP is unlikely to antagonize the physical stability of the formulation, as HMWP retained a tertiary structure similar to the noncovalent dimer and participated in hexamer assembly in the presence of zinc. In addition, increasing amounts of HMWP reduce the rate of insulin fibrillation.


Asunto(s)
Hipoglucemiantes/química , Insulina/química , Cristalografía por Rayos X , Almacenaje de Medicamentos , Humanos , Modelos Moleculares , Agregado de Proteínas , Multimerización de Proteína , Estructura Terciaria de Proteína , Zinc/química
6.
Protein Sci ; 24(5): 779-88, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25627966

RESUMEN

The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cß cut-off distance had to be increased in many instances and single X-ray structures as well as structures from MD simulations had to be used. The analogues that were identified by the algorithm without extensive adjustments of the prediction parameters were more thermally stable as assessed by DSC and CD and expressed in higher yields in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus activity and fibrillation propensity did not correlate with the results from the prediction algorithm. Statement: A fourth disulfide bond has recently been introduced into insulin, a small two-chain protein containing three native disulfide bonds. Here we show that a prediction algorithm predicts four additional four disulfide insulin analogues which could be expressed. Although the location of the additional disulfide bonds is only slightly shifted, this shift impacts both stability and activity of the resulting insulin analogues.


Asunto(s)
Disulfuros/química , Insulina/química , Conformación Proteica , Secuencia de Aminoácidos , Dicroismo Circular , Regulación de la Expresión Génica , Humanos , Insulina/biosíntesis , Insulina/genética , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Pliegue de Proteína
7.
Protein Sci ; 22(3): 296-305, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23281053

RESUMEN

Insulin is a key hormone controlling glucose homeostasis. All known vertebrate insulin analogs have a classical structure with three 100% conserved disulfide bonds that are essential for structural stability and thus the function of insulin. It might be hypothesized that an additional disulfide bond may enhance insulin structural stability which would be highly desirable in a pharmaceutical use. To address this hypothesis, we designed insulin with an additional interchain disulfide bond in positions A10/B4 based on Cα-Cα distances, solvent exposure, and side-chain orientation in human insulin (HI) structure. This insulin analog had increased affinity for the insulin receptor and apparently augmented glucodynamic potency in a normal rat model compared with HI. Addition of the disulfide bond also resulted in a 34.6°C increase in melting temperature and prevented insulin fibril formation under high physical stress even though the C-terminus of the B-chain thought to be directly involved in fibril formation was not modified. Importantly, this analog was capable of forming hexamer upon Zn addition as typical for wild-type insulin and its crystal structure showed only minor deviations from the classical insulin structure. Furthermore, the additional disulfide bond prevented this insulin analog from adopting the R-state conformation and thus showing that the R-state conformation is not a prerequisite for binding to insulin receptor as previously suggested. In summary, this is the first example of an insulin analog featuring a fourth disulfide bond with increased structural stability and retained function.


Asunto(s)
Antígenos CD/metabolismo , Cistina/química , Glucosa/metabolismo , Hipoglucemiantes/química , Insulina Regular Humana/análogos & derivados , Receptor de Insulina/metabolismo , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Sustitución de Aminoácidos , Animales , Transporte Biológico/efectos de los fármacos , Glucemia/análisis , Células Cultivadas , Cistina/metabolismo , Relación Dosis-Respuesta a Droga , Estabilidad de Medicamentos , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/metabolismo , Hipoglucemiantes/farmacología , Insulina Regular Humana/química , Insulina Regular Humana/genética , Insulina Regular Humana/metabolismo , Insulina Regular Humana/farmacología , Proteínas Mutantes/administración & dosificación , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Mutantes/farmacología , Conformación Proteica , Estabilidad Proteica , Ratas , Ratas Mutantes , Ratas Wistar , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Zinc/metabolismo
8.
Biochemistry ; 47(5): 1435-41, 2008 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-18177020

RESUMEN

Green sulfur bacteria possess two light-harvesting antenna systems, the chlorosome and the Fenna-Matthews-Olson (FMO) protein. In addition to self-aggregated bacteriochlorophyll (BChl) c, chlorosomes of Chlorobium tepidum contain a small amount of BChl a (ratio 100:1). The chlorosomal BChl a is associated with CsmA, a 6.2 kDa protein that accounts for more than 50% of the protein content of chlorosomes. This CsmA-BChl a complex is located in the chlorosome baseplate with the hydrophilic C-terminal part of CsmA in contact with the FMO protein. CsmA was purified from Chl. tepidum. Isolated chlorosomes were lyophilized and extracted with chloroform/methanol (1:1, v/v). The extract was further purified using gel filtration and reverse-phase HPLC and the purity of the preparation confirmed by SDS-PAGE. Mass spectrometric analysis showed an m/z of 6154.8, in agreement with the calculated mass of the csmA gene product after C-terminal processing. CD spectroscopy of the isolated protein showed that the main structural motif was an alpha-helix. We have reconstituted the isolated CsmA protein with BChl a in micelles of n-octyl beta-d-glucopyranoside. The resulting preparation reproduced the spectral characteristics of the CsmA-BChl a complex present in the chlorosome baseplate.


Asunto(s)
Proteínas Bacterianas/química , Bacterioclorofila A/química , Complejos de Proteína Captadores de Luz/química , Proteínas Bacterianas/aislamiento & purificación , Chlorobium/química , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Micelas , Espectrofotometría Infrarroja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA