Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 35(2): 202-215, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38082486

RESUMEN

SIGNIFICANCE STATEMENT: SGLT2 inhibitors reduce risk of kidney progression, AKI, and cardiovascular disease, but the mechanisms of benefit are incompletely understood. Bioimpedance spectroscopy can estimate body water and fat mass. One quarter of the EMPA-KIDNEY bioimpedance substudy CKD population had clinically significant levels of bioimpedance-derived "Fluid Overload" at recruitment. Empagliflozin induced a prompt and sustained reduction in "Fluid Overload," irrespective of sex, diabetes, and baseline N-terminal pro B-type natriuretic peptide or eGFR. No significant effect on bioimpedance-derived fat mass was observed. The effects of SGLT2 inhibitors on body water may be one of the contributing mechanisms by which they mediate effects on cardiovascular risk. BACKGROUND: CKD is associated with fluid excess that can be estimated by bioimpedance spectroscopy. We aimed to assess effects of sodium glucose co-transporter 2 inhibition on bioimpedance-derived "Fluid Overload" and adiposity in a CKD population. METHODS: EMPA-KIDNEY was a double-blind placebo-controlled trial of empagliflozin 10 mg once daily in patients with CKD at risk of progression. In a substudy, bioimpedance measurements were added to the main trial procedures at randomization and at 2- and 18-month follow-up visits. The substudy's primary outcome was the study-average difference in absolute "Fluid Overload" (an estimate of excess extracellular water) analyzed using a mixed model repeated measures approach. RESULTS: The 660 substudy participants were broadly representative of the 6609-participant trial population. Substudy mean baseline absolute "Fluid Overload" was 0.4±1.7 L. Compared with placebo, the overall mean absolute "Fluid Overload" difference among those allocated empagliflozin was -0.24 L (95% confidence interval [CI], -0.38 to -0.11), with similar sized differences at 2 and 18 months, and in prespecified subgroups. Total body water differences comprised between-group differences in extracellular water of -0.49 L (95% CI, -0.69 to -0.30, including the -0.24 L "Fluid Overload" difference) and a -0.30 L (95% CI, -0.57 to -0.03) difference in intracellular water. There was no significant effect of empagliflozin on bioimpedance-derived adipose tissue mass (-0.28 kg [95% CI, -1.41 to 0.85]). The between-group difference in weight was -0.7 kg (95% CI, -1.3 to -0.1). CONCLUSIONS: In a broad range of patients with CKD, empagliflozin resulted in a sustained reduction in a bioimpedance-derived estimate of fluid overload, with no statistically significant effect on fat mass. TRIAL REGISTRATION: Clinicaltrials.gov: NCT03594110 ; EuDRACT: 2017-002971-24 ( https://eudract.ema.europa.eu/ ).


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucósidos , Insuficiencia Renal Crónica , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Desequilibrio Hidroelectrolítico , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Presión Sanguínea , Compuestos de Bencidrilo/efectos adversos , Insuficiencia Renal Crónica/tratamiento farmacológico , Agua , Método Doble Ciego
2.
Vox Sang ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740559

RESUMEN

BACKGROUND AND OBJECTIVES: Initial therapeutic efforts to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) included the use of plasma from convalescent donors containing anti-SARS-CoV-2 antibodies. High-neutralizing antibody titres are required for therapeutic efficacy. This study aims to show that immunoadsorption followed by tangential flow filtration can be used to obtain antibody concentrates with high-neutralizing capacities. MATERIALS AND METHODS: Eligible donors (n = 10, five males and three females) underwent immunoadsorption using adsorber columns specific for human antibodies. Glycine-washed out eluates of 1.5 L volume were further concentrated by tangential flow filtration using 30 kDa ultrafiltration membranes. The same membranes were applied for diafiltrations to exchange residual glycine for 0.9% normal saline. RESULTS: Antibody concentrates were obtained within 8 h from the start of donation and had 4.58 ± 1.95, 3.28 ± 1.28 and 2.02 ± 0.92 times higher total IgG, IgA and IgM concentrations, 3.29 ± 1.62 and 3.74 ± 0.6 times higher SARS-CoV-2 N and S antibody concentrations and 3.85 ± 1.71 times higher SARS-CoV-2 S-specific IgG concentrations compared to the donors' peripheral blood. The specific SARS-CoV-2 virus neutralization capacities increased in all but one concentrate. All antibody concentrates (50-70 mL final volume) passed microbiological tests, were free of hazardous glycine levels and could be stored at -80°C and 4°C for 1 year with 20 ± 3% antibody loss. CONCLUSION: Immunoadsorption followed by tangential flow filtration is a feasible procedure to collect IgG, IgA and IgM as well as SARS-CoV-2 N- and S-specific antibody concentrates of low volume, free of albumin and coagulation factors. Whether these concentrates can be used as passive immunisation in infected patients remains to be elucidated.

3.
J Infect Dis ; 227(5): 641-650, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36408631

RESUMEN

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important prophylactic measure in kidney transplant recipients (KTRs), but the immune response is often impaired. Here, we examined the T-cell immune response against SARS-CoV-2 in 148 KTRs after 3 or 4 vaccine doses, including 35 KTRs with subsequent SARS-CoV-2 infection. The frequency of spike-specific T cells was lower in KTRs than in immunocompetent controls and was correlated with the level of spike-specific antibodies. Positive predictors for detection of vaccine-induced T cells were detection of spike-specific antibodies, heterologous immunization with messenger RNA and a vector vaccine, and longer time after transplantation. In vaccinated KTRs with subsequent SARS-CoV-2 infection, the T-cell response was greatly enhanced and was significantly higher than in vaccinated KTRs without SARS-CoV-2 infection. Overall, the data show a correlation between impaired humoral and T-cell immunity to SARS-CoV-2 vaccination and provide evidence for greater robustness of hybrid immunity in KTRs.


Asunto(s)
COVID-19 , Trasplante de Riñón , Vacunas , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , Linfocitos T , Receptores de Trasplantes , Anticuerpos , Inmunidad
4.
Infection ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38017344

RESUMEN

PURPOSE: Prolonged shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been observed in immunocompromised hosts. Early monotherapy with direct-acting antivirals or monoclonal antibodies, as recommended by the international guidelines, does not prevent this with certainty. Dual therapies may therefore have a synergistic effect. METHODS: This retrospective, multicentre study compared treatment strategies for corona virus disease-19 (COVID-19) with combinations of nirmatrelvir/ritonavir, remdesivir, molnupiravir, and/ or mABs during the Omicron surge. Co-primary endpoints were prolonged viral shedding (≥ 106 copies/ml at day 21 after treatment initiation) and days with SARS-CoV-2 viral load ≥ 106 copies/ml. Therapeutic strategies and risk groups were compared using odds ratios and Fisher's tests or Kaplan-Meier analysis and long-rank tests. Multivariable regression analysis was performed. RESULTS: 144 patients were included with a median duration of SARS-CoV-2 viral load ≥ 106 copies/ml of 8.0 days (IQR 6.0-15.3). Underlying haematological malignancies (HM) (p = 0.03) and treatment initiation later than five days after diagnosis (p < 0.01) were significantly associated with longer viral shedding. Prolonged viral shedding was observed in 14.6% (n = 21/144), particularly in patients with underlying HM (OR 3.5; 95% CI 1.2-9.9; p = 0.02). Clinical courses of COVID-19 were mild to moderate with only few adverse effects potentially related to combination treatment. CONCLUSION: Early combination treatment of COVID-19 effectively prevented prolonged viral shedding in 85.6% of cases. Considering the rapid viral clearance rates and low toxicity, individualized dual therapy approaches may be beneficial in high-risk patients.

5.
Cell Mol Life Sci ; 79(5): 235, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35397686

RESUMEN

The contribution of the shear stress-sensitive epithelial Na+ channel (ENaC) to the mechanical properties of the endothelial cell surface under (patho)physiological conditions is unclear. This issue was addressed in in vivo and in vitro models for endothelial dysfunction. Cultured human umbilical vein endothelial cells (HUVEC) were exposed to laminar (LSS) or non-laminar shear stress (NLSS). ENaC membrane insertion was quantified using Quantum-dot-based immunofluorescence staining and the mechanical properties of the cell surface were probed with the Atomic Force Microscope (AFM) in vitro and ex vivo in isolated aortae of C57BL/6 and ApoE/LDLR-/- mice. Flow- and acetylcholine-mediated vasodilation was measured in vivo using magnetic resonance imaging. Acute LSS led to a rapid mineralocorticoid receptor (MR)-dependent membrane insertion of ENaC and subsequent stiffening of the endothelial cortex caused by actin polymerization. Of note, NLSS stress further augmented the cortical stiffness of the cells. These effects strongly depend on the presence of the endothelial glycocalyx (eGC) and could be prevented by functional inhibition of ENaC and MR in vitro endothelial cells and ex vivo endothelial cells derived from C57BL/6, but not ApoE/LDLR-/- vessel. In vivo In C57BL/6 vessels, ENaC- and MR inhibition blunted flow- and acetylcholine-mediated vasodilation, while in the dysfunctional ApoE/LDLR-/- vessels, this effect was absent. In conclusion, under physiological conditions, endothelial ENaC, together with the glycocalyx, was identified as an important shear stress sensor and mediator of endothelium-dependent vasodilation. In contrast, in pathophysiological conditions, ENaC-mediated mechanotransduction and endothelium-dependent vasodilation were lost, contributing to sustained endothelial stiffening and dysfunction.


Asunto(s)
Canales Epiteliales de Sodio , Glicocálix , Receptores de Mineralocorticoides , Estrés Mecánico , Acetilcolina/metabolismo , Animales , Células Cultivadas , Endotelio Vascular/metabolismo , Canales Epiteliales de Sodio/metabolismo , Glicocálix/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Mecanotransducción Celular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Receptores de Mineralocorticoides/metabolismo
6.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36768814

RESUMEN

(1) Background: Sympathetic overactivity is a major contributor to resistant hypertension (RH). According to animal studies, sympathetic overactivity increases immune responses, thereby aggravating hypertension and cardiovascular outcomes. Renal denervation (RDN) reduces sympathetic nerve activity in RH. Here, we investigate the effect of RDN on T-cell signatures in RH. (2) Methods: Systemic inflammation and T-cell subsets were analyzed in 17 healthy individuals and 30 patients with RH at baseline and 6 months after RDN. (3) Results: The patients with RH demonstrated higher levels of pro-inflammatory cytokines and higher frequencies of CD4+ effector memory (TEM), CD4+ effector memory residential (TEMRA) and CD8+ central memory (TCM) cells than the controls. After RDN, systolic automated office blood pressure (BP) decreased by -17.6 ± 18.9 mmHg. Greater BP reductions were associated with higher CD4+ TEM (r -0.421, p = 0.02) and CD8+ TCM (r -0.424, p = 0.02) frequencies at baseline. The RDN responders, that is, the patients with ≥10mmHg systolic BP reduction, showed reduced pro-inflammatory cytokine levels, whereas the non-responders had unchanged inflammatory activity and higher CD8+ TEMRA frequencies with increased cellular cytokine production. (4) Conclusions: The pro-inflammatory state of patients with RH is characterized by altered T-cell signatures, especially in non-responders. A detailed analysis of T cells might be useful in selecting patients for RDN.


Asunto(s)
Hipertensión , Hipotensión , Humanos , Simpatectomía , Resultado del Tratamiento , Linfocitos T , Riñón , Presión Sanguínea/fisiología , Citocinas
7.
Circulation ; 144(11): 870-889, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34229449

RESUMEN

BACKGROUND: Current paradigms suggest that nitric oxide (NO) produced by endothelial cells (ECs) through endothelial nitric oxide synthase (eNOS) in the vessel wall is the primary regulator of blood flow and blood pressure. However, red blood cells (RBCs) also carry a catalytically active eNOS, but its role is controversial and remains undefined. This study aimed to elucidate the functional significance of RBC eNOS compared with EC eNOS for vascular hemodynamics and nitric oxide metabolism. METHODS: We generated tissue-specific loss- and gain-of-function models for eNOS by using cell-specific Cre-induced gene inactivation or reactivation. We created 2 founder lines carrying a floxed eNOS (eNOSflox/flox) for Cre-inducible knockout (KO), and gene construct with an inactivated floxed/inverted exon (eNOSinv/inv) for a Cre-inducible knock-in (KI), which respectively allow targeted deletion or reactivation of eNOS in erythroid cells (RBC eNOS KO or RBC eNOS KI mice) or in ECs (EC eNOS KO or EC eNOS KI mice). Vascular function, hemodynamics, and nitric oxide metabolism were compared ex vivo and in vivo. RESULTS: The EC eNOS KOs exhibited significantly impaired aortic dilatory responses to acetylcholine, loss of flow-mediated dilation, and increased systolic and diastolic blood pressure. RBC eNOS KO mice showed no alterations in acetylcholine-mediated dilation or flow-mediated dilation but were hypertensive. Treatment with the nitric oxide synthase inhibitor Nγ-nitro-l-arginine methyl ester further increased blood pressure in RBC eNOS KOs, demonstrating that eNOS in both ECs and RBCs contributes to blood pressure regulation. Although both EC eNOS KOs and RBC eNOS KOs had lower plasma nitrite and nitrate concentrations, the levels of bound NO in RBCs were lower in RBC eNOS KOs than in EC eNOS KOs. Reactivation of eNOS in ECs or RBCs rescues the hypertensive phenotype of the eNOSinv/inv mice, whereas the levels of bound NO were restored only in RBC eNOS KI mice. CONCLUSIONS: These data reveal that eNOS in ECs and RBCs contribute independently to blood pressure homeostasis.


Asunto(s)
Presión Sanguínea/fisiología , Células Endoteliales/metabolismo , Eritrocitos/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Acetilcolina/farmacología , Animales , Enfermedades de la Aorta/tratamiento farmacológico , Arginina/análogos & derivados , Arginina/farmacología , Presión Sanguínea/efectos de los fármacos , Recuento de Eritrocitos/métodos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Ratones
8.
Circulation ; 144(2): 144-158, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-33906377

RESUMEN

BACKGROUND: Dietary high salt (HS) is a leading risk factor for mortality and morbidity. Serum sodium transiently increases postprandially but can also accumulate at sites of inflammation affecting differentiation and function of innate and adaptive immune cells. Here, we focus on how changes in extracellular sodium, mimicking alterations in the circulation and tissues, affect the early metabolic, transcriptional, and functional adaption of human and murine mononuclear phagocytes. METHODS: Using Seahorse technology, pulsed stable isotope-resolved metabolomics, and enzyme activity assays, we characterize the central carbon metabolism and mitochondrial function of human and murine mononuclear phagocytes under HS in vitro. HS as well as pharmacological uncoupling of the electron transport chain under normal salt is used to analyze mitochondrial function on immune cell activation and function (as determined by Escherichiacoli killing and CD4+ T cell migration capacity). In 2 independent clinical studies, we analyze the effect of a HS diet during 2 weeks (URL: http://www.clinicaltrials.gov. Unique identifier: NCT02509962) and short-term salt challenge by a single meal (URL: http://www.clinicaltrials.gov. Unique identifier: NCT04175249) on mitochondrial function of human monocytes in vivo. RESULTS: Extracellular sodium was taken up into the intracellular compartment, followed by the inhibition of mitochondrial respiration in murine and human macrophages. Mechanistically, HS reduces mitochondrial membrane potential, electron transport chain complex II activity, oxygen consumption, and ATP production independently of the polarization status of macrophages. Subsequently, cell activation is altered with improved bactericidal function in HS-treated M1-like macrophages and diminished CD4+ T cell migration in HS-treated M2-like macrophages. Pharmacological uncoupling of the electron transport chain under normal salt phenocopies HS-induced transcriptional changes and bactericidal function of human and murine mononuclear phagocytes. Clinically, also in vivo, rise in plasma sodium concentration within the physiological range reversibly reduces mitochondrial function in human monocytes. In both a 14-day and single meal HS challenge, healthy volunteers displayed a plasma sodium increase of [Formula: see text] and [Formula: see text] respectively, that correlated with decreased monocytic mitochondrial oxygen consumption. CONCLUSIONS: Our data identify the disturbance of mitochondrial respiration as the initial step by which HS mechanistically influences immune cell function. Although these functional changes might help to resolve bacterial infections, a shift toward proinflammation could accelerate inflammatory cardiovascular disease.


Asunto(s)
Mitocondrias/metabolismo , Fagocitos/metabolismo , Cloruro de Sodio Dietético/efectos adversos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
9.
Am J Transplant ; 22(2): 634-639, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34551181

RESUMEN

Kidney transplant recipients (KTRs) are extremely vulnerable to SARS-CoV-2 infection and show an impaired immune response to SARS-CoV-2 vaccination. We analyzed factors related to vaccination efficiency in KTRs. In a multicenter prospective observational study (NCT04743947), IgG antibodies levels against SARS-CoV-2 spike S1 subunit and their neutralization capacity after SARS-CoV-2 vaccination were analyzed in 225 KTRs and compared to 176 controls. After the vaccination, 56 (24.9%) KTRs became seropositive of whom 68% had neutralizing antibodies. This immune response was significantly lower compared to controls (239 [78-519] BAU/ml versus 1826 [560-3180] BAU/ml for KTRs and controls, p < .0001). The strongest predictor for an impaired response was mycophenolate mofetil (MMF) treatment. Multivariate regression analysis revealed that MMF-free regimen was highly associated with seroconversion (OR 13.25, 95% CI 3.22-54.6; p < .001). In contrast, other immunosuppressive drugs had no significant influence. 187 out of 225 KTRs were treated with MMF of whom 26 (13.9%) developed antibodies. 23 of these seropositive KTRs had a daily MMF dose ≤1 g. Furthermore, higher trough MMF concentrations correlated with lower antibody titers (R -0.354, p < .001) supporting a dose-dependent unfavorable effect of MMF. Our data indicate that MMF dose modification could lead to an improved immune response.


Asunto(s)
COVID-19 , Trasplante de Riñón , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Humanos , Inmunidad , Trasplante de Riñón/efectos adversos , Ácido Micofenólico/uso terapéutico , SARS-CoV-2 , Receptores de Trasplantes , Vacunación
10.
Basic Res Cardiol ; 117(1): 48, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36205817

RESUMEN

Although p38 MAP Kinase α (p38 MAPKα) is generally accepted to play a central role in the cardiac stress response, to date its function in maladaptive cardiac hypertrophy is still not unambiguously defined. To induce a pathological type of cardiac hypertrophy we infused angiotensin II (AngII) for 2 days via osmotic mini pumps in control and tamoxifen-inducible, cardiomyocyte (CM)-specific p38 MAPKα KO mice (iCMp38αKO) and assessed cardiac function by echocardiography, complemented by transcriptomic, histological, and immune cell analysis. AngII treatment after inactivation of p38 MAPKα in CM results in left ventricular (LV) dilatation within 48 h (EDV: BL: 83.8 ± 22.5 µl, 48 h AngII: 109.7 ± 14.6 µl) and an ectopic lipid deposition in cardiomyocytes, reflecting a metabolic dysfunction in pressure overload (PO). This was accompanied by a concerted downregulation of transcripts for oxidative phosphorylation, TCA cycle, and fatty acid metabolism. Cardiac inflammation involving neutrophils, macrophages, B- and T-cells was significantly enhanced. Inhibition of adipose tissue lipolysis by the small molecule inhibitor of adipocytetriglyceride lipase (ATGL) Atglistatin reduced cardiac lipid accumulation by 70% and neutrophil infiltration by 30% and went along with an improved cardiac function. Direct targeting of neutrophils by means of anti Ly6G-antibody administration in vivo led to a reduced LV dilation in iCMp38αKO mice and an improved systolic function (EF: 39.27 ± 14%). Thus, adipose tissue lipolysis and CM lipid accumulation augmented cardiac inflammation in iCMp38αKO mice. Neutrophils, in particular, triggered the rapid left ventricular dilatation. We provide the first evidence that p38 MAPKα acts as an essential switch in cardiac adaptation to PO by mitigating metabolic dysfunction and inflammation. Moreover, we identified a heart-adipose tissue-immune cell crosstalk, which might serve as new therapeutic target in cardiac pathologies.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Tejido Adiposo/metabolismo , Angiotensina II/metabolismo , Animales , Cardiomegalia/metabolismo , Ácidos Grasos/metabolismo , Inflamación/metabolismo , Lipasa/metabolismo , Lipasa/uso terapéutico , Lípidos/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Neutrófilos/metabolismo , Tamoxifeno/metabolismo , Tamoxifeno/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/uso terapéutico
11.
Circ Res ; 127(5): 593-606, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32418507

RESUMEN

RATIONALE: Kidney homeostasis is critically determined by the coordinated activity of the renin-angiotensin system (RAS), including the balanced synthesis of its main effector peptides Ang (angiotensin) II and Ang (1-7). The condition of enzymatic overproduction of Ang II relative to Ang (1-7) is termed RAS dysregulation and leads to cellular signals, which promote hypertension and organ damage, and ultimately progressive kidney failure. ACE2 (angiotensin-converting enzyme 2) and NEP (neprilysin) induce the alternative, and potentially reno-protective axis by enhancing Ang (1-7) production. However, their individual contribution to baseline RAS balance and whether their activities change in chronic kidney disease (CKD) has not yet been elucidated. OBJECTIVE: To examine whether NEP-mediated Ang (1-7) generation exceeds Ang II formation in the healthy kidney compared with diseased kidney. METHODS AND RESULTS: In this exploratory study, we used liquid chromatography-tandem mass spectrometry to measure Ang II and Ang (1-7) synthesis rates of ACE, chymase and NEP, ACE2, PEP (prolyl-endopeptidase), PCP (prolyl-carboxypeptidase) in kidney biopsy homogenates in 11 healthy living kidney donors, and 12 patients with CKD. The spatial expression of RAS enzymes was determined by immunohistochemistry. Healthy kidneys showed higher NEP-mediated Ang (1-7) synthesis than Ang II formation, thus displaying a strong preference towards the reno-protective alternative RAS axis. In contrast, in CKD kidneys higher levels of Ang II were recorded, which originated from mast cell chymase activity. CONCLUSIONS: Ang (1-7) is the dominant RAS peptide in healthy human kidneys with NEP rather than ACE2 being essential for its generation. Severe RAS dysregulation is present in CKD dictated by high chymase-mediated Ang II formation. Kidney RAS enzyme analysis might lead to novel therapeutic approaches for CKD.


Asunto(s)
Angiotensina II/metabolismo , Angiotensina I/metabolismo , Riñón/enzimología , Neprilisina/metabolismo , Fragmentos de Péptidos/metabolismo , Insuficiencia Renal Crónica/enzimología , Sistema Renina-Angiotensina , Anciano , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Estudios de Casos y Controles , Quimasas/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Riñón/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neprilisina/antagonistas & inhibidores
12.
Clin Transplant ; 36(11): e14790, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35997031

RESUMEN

Modification of vaccination strategies is necessary to improve the immune response to SARS-CoV-2 vaccination in kidney transplant recipients (KTRs). This multicenter observational study analyzed the effects of the third SARS-CoV-2 vaccination in previously seronegative KTRs with the focus on temporary mycophenolate mofetil (MMF) dose reduction within propensity matched KTRs. 56 out of 174 (32%) previously seronegative KTRs became seropositive after the third vaccination with only three KTRs developing neutralizing antibodies against the omicron variant. Multivariate logistic regression revealed that initial antibody levels, graft function, time after transplantation and MMF trough levels had an influence on seroconversion (P < .05). After controlling for confounders, the effect of MMF dose reduction before the third vaccination was calculated using propensity score matching. KTRs with a dose reduction of ≥33% showed a significant decrease in MMF trough levels to 1.8 (1.2-2.5) µg/ml and were more likely to seroconvert than matched controls (P = .02). Therefore, a MMF dose reduction of 33% or more before vaccination is a promising approach to improve success of SARS-CoV-2 vaccination in KTRs.


Asunto(s)
COVID-19 , Trasplante de Riñón , Humanos , Ácido Micofenólico/uso terapéutico , Vacunas contra la COVID-19 , Rechazo de Injerto , Inmunosupresores/uso terapéutico , Inmunosupresores/farmacología , SARS-CoV-2 , COVID-19/prevención & control , Receptores de Trasplantes , Inmunidad
13.
Transfus Apher Sci ; 60(5): 103193, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34147358

RESUMEN

For more than a year the whole world is suffering from the COVID-19 pandemic with no treatment option in sight. Administration of plasma from convalescent donors containing anti-SARS-CoV-2 antibodies, though promising according to case reports, failed to show a clear benefit in a greater number of trials. One reason could be varying and low antibody contents in a majority of plasma units hampering standardization and clinical efficacy. Besides, other plasma components unnecessarily transfused like coagulation factors might promote hypercoagulation seen in severe COVID-19 etiopathology. We therefore hypothesized that instead of collecting whole plasma units, convalescent donors could donate solely immunoglobulins by undergoing immunoadsorption, a mode of therapy regularly applied in autoimmune diseases. Here, we report the results of the first two antibody donations performed at the University Hospital Düsseldorf. In both cases, immunoadsorptions were very well tolerated with no side effects. Collected and neutralized eluates were concentrated using tangential flow filtration increasing the concentration of immunoglobulins 10fold as compared to peripheral blood and leading to probably eight times more neutralizing antibodies than in one plasma unit. Therefore, immunoadsorption can be used as a method of antibody donation. Whether these donated antibodies can be used as passive immunization in acutely infected patients remains to be elucidated.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/terapia , Técnicas de Inmunoadsorción , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , COVID-19/inmunología , Convalecencia , Humanos , Inmunización Pasiva/métodos , Sueroterapia para COVID-19
14.
J Am Soc Nephrol ; 31(4): 783-798, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32086277

RESUMEN

BACKGROUND: Increased nerve activity causes hypertension and kidney disease. Recent studies suggest that renal denervation reduces BP in patients with hypertension. Renal NE release is regulated by prejunctional α2A-adrenoceptors on sympathetic nerves, and α2A-adrenoceptors act as autoreceptors by binding endogenous NE to inhibit its own release. However, the role of α2A-adrenoceptors in the pathogenesis of hypertensive kidney disease is unknown. METHODS: We investigated effects of α2A-adrenoceptor-regulated renal NE release on the development of angiotensin II-dependent hypertension and kidney disease. In uninephrectomized wild-type and α2A-adrenoceptor-knockout mice, we induced hypertensive kidney disease by infusing AngII for 28 days. RESULTS: Urinary NE excretion and BP did not differ between normotensive α2A-adrenoceptor-knockout mice and wild-type mice at baseline. However, NE excretion increased during AngII treatment, with the knockout mice displaying NE levels that were significantly higher than those of wild-type mice. Accordingly, the α2A-adrenoceptor-knockout mice exhibited a systolic BP increase, which was about 40 mm Hg higher than that found in wild-type mice, and more extensive kidney damage. In isolated kidneys, AngII-enhanced renal nerve stimulation induced NE release and pressor responses to a greater extent in kidneys from α2A-adrenoceptor-knockout mice. Activation of specific sodium transporters accompanied the exaggerated hypertensive BP response in α2A-adrenoceptor-deficient kidneys. These effects depend on renal nerves, as demonstrated by reduced severity of AngII-mediated hypertension and improved kidney function observed in α2A-adrenoceptor-knockout mice after renal denervation. CONCLUSIONS: Our findings reveal a protective role of prejunctional inhibitory α2A-adrenoceptors in pathophysiologic conditions with an activated renin-angiotensin system, such as hypertensive kidney disease, and support the concept of sympatholytic therapy as a treatment.


Asunto(s)
Hipertensión Renal/etiología , Hipertensión Renal/prevención & control , Nefritis/etiología , Nefritis/prevención & control , Receptores Adrenérgicos alfa 2/fisiología , Sistema Nervioso Simpático/fisiopatología , Transmisión Sináptica/fisiología , Angiotensina II , Animales , Modelos Animales de Enfermedad , Hipertensión Renal/fisiopatología , Ratones , Ratones Noqueados , Nefritis/fisiopatología , Simpatectomía
15.
Circulation ; 139(11): 1407-1421, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30586752

RESUMEN

BACKGROUND: Arterial hypertension and its organ sequelae show characteristics of T cell-mediated inflammatory diseases. Experimental anti-inflammatory therapies have been shown to ameliorate hypertensive end-organ damage. Recently, the CANTOS study (Canakinumab Antiinflammatory Thrombosis Outcome Study) targeting interleukin-1ß demonstrated that anti-inflammatory therapy reduces cardiovascular risk. The gut microbiome plays a pivotal role in immune homeostasis and cardiovascular health. Short-chain fatty acids (SCFAs) are produced from dietary fiber by gut bacteria and affect host immune homeostasis. Here, we investigated effects of the SCFA propionate in 2 different mouse models of hypertensive cardiovascular damage. METHODS: To investigate the effect of SCFAs on hypertensive cardiac damage and atherosclerosis, wild-type NMRI or apolipoprotein E knockout-deficient mice received propionate (200 mmol/L) or control in the drinking water. To induce hypertension, wild-type NMRI mice were infused with angiotensin II (1.44 mg·kg-1·d-1 subcutaneous) for 14 days. To accelerate the development of atherosclerosis, apolipoprotein E knockout mice were infused with angiotensin II (0.72 mg·kg-1·d-1 subcutaneous) for 28 days. Cardiac damage and atherosclerosis were assessed using histology, echocardiography, in vivo electrophysiology, immunofluorescence, and flow cytometry. Blood pressure was measured by radiotelemetry. Regulatory T cell depletion using PC61 antibody was used to examine the mode of action of propionate. RESULTS: Propionate significantly attenuated cardiac hypertrophy, fibrosis, vascular dysfunction, and hypertension in both models. Susceptibility to cardiac ventricular arrhythmias was significantly reduced in propionate-treated angiotensin II-infused wild-type NMRI mice. Aortic atherosclerotic lesion area was significantly decreased in propionate-treated apolipoprotein E knockout-deficient mice. Systemic inflammation was mitigated by propionate treatment, quantified as a reduction in splenic effector memory T cell frequencies and splenic T helper 17 cells in both models, and a decrease in local cardiac immune cell infiltration in wild-type NMRI mice. Cardioprotective effects of propionate were abrogated in regulatory T cell-depleted angiotensin II-infused mice, suggesting the effect is regulatory T cell-dependent. CONCLUSIONS: Our data emphasize an immune-modulatory role of SCFAs and their importance for cardiovascular health. The data suggest that lifestyle modifications leading to augmented SCFA production could be a beneficial nonpharmacological preventive strategy for patients with hypertensive cardiovascular disease.


Asunto(s)
Antiinflamatorios/farmacología , Enfermedades de la Aorta/tratamiento farmacológico , Arritmias Cardíacas/prevención & control , Aterosclerosis/tratamiento farmacológico , Cardiomegalia/prevención & control , Hipertensión/tratamiento farmacológico , Propionatos/farmacología , Angiotensina II , Animales , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/inmunología , Enfermedades de la Aorta/patología , Arritmias Cardíacas/inmunología , Arritmias Cardíacas/fisiopatología , Presión Arterial/efectos de los fármacos , Aterosclerosis/genética , Aterosclerosis/inmunología , Aterosclerosis/patología , Cardiomegalia/inmunología , Cardiomegalia/fisiopatología , Modelos Animales de Enfermedad , Hipertensión/inducido químicamente , Hipertensión/inmunología , Hipertensión/fisiopatología , Masculino , Ratones Noqueados para ApoE , Placa Aterosclerótica , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Células Th17/efectos de los fármacos , Células Th17/inmunología
16.
J Thromb Thrombolysis ; 49(1): 168-172, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31691067

RESUMEN

End stage renal disease requiring hemodialysis (HD) is frequent and coronary artery disease (CAD) is a common comorbidity. It is associated with bleeding and ischemic events. Platelet reactivity is a well-known determinant of both. However, the impact of HD due to end stage chronic kidney disease (CKD) on platelet reactivity is unknown. Therefore in this study, we evaluated platelet reactivity during hemodialysis in patients with CKD and coronary artery disease. 22 patients with CKD, HD and CAD were included in this study. Light transmission aggregometry (LTA) and flow cytometry were used for evaluating platelet function immediately before and 2 h after initiation of HD. Arachidonic acid-induced maximum of aggregation (MoApre HD: 27.36% ± 25.23% vs. MoAduring HD: 28.05% ± 23.50%, p value = 0.822), adenosine diphosphate (ADP)-induced platelet aggregation (MoApre HD: 65.36% ± 12.88% vs. MoAduring HD: 61.55% ± 17.17%, p-value = 0.09) and collagen-induced platelet aggregation (MoApre HD: 62.18% ± 18.14% vs. MoAduring HD: 64.82% ± 18.31%, p-value = 0.375) were not affected by HD. P-selectin expression was significantly lower after 2 h of HD (pre HD: 31.56% ± 18.99%, during HD: 23.97% ± 15.28%, p = 0.026). In this pilot study, HD did not enhance platelet aggregation. Baseline platelet reactivity was decreased during HD.


Asunto(s)
Plaquetas/metabolismo , Hemorragia , Activación Plaquetaria , Diálisis Renal , Insuficiencia Renal Crónica , Femenino , Hemorragia/sangre , Hemorragia/etiología , Humanos , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/terapia
17.
J Vasc Surg ; 70(5): 1658-1668.e1, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30850299

RESUMEN

OBJECTIVE: Previous studies demonstrated that deficiency of angiotensin-converting enzyme 2 (ACE2) augmented angiotensin II (AngII)-induced atherosclerosis and abdominal aortic aneurysm (AAA) formation in hypercholesterolemic mice. Effects of ACE2 deficiency could arise from increased concentrations of its substrate, AngII, or decreased concentrations of its product, angiotensin-(1-7) [Ang-(1-7)]. Infusion of Ang-(1-7), a Mas receptor (MasR) ligand, to hypercholesterolemic male mice reduced AngII-induced atherosclerosis, suggesting a protective role of the Ang-(1-7)/MasR axis. However, it is unclear whether endogenous Ang-(1-7) acts at MasR to influence AngII-induced vascular diseases. The purpose of this study was to define the role of MasR deficiency in AngII-induced atherosclerosis and AAA formation and severity in hypercholesterolemic male mice. METHODS: MasR+/+ and MasR-/- male mice on a low-density lipoprotein receptor-deficient (Ldlr-/-) or apolipoprotein E-deficient (Apoe-/-) background were infused with AngII at either 600 or 1000 ng/kg/min by osmotic minipump for 28 days. Atherosclerosis was quantified at study end point as percentage lesion surface area of the aortic arch in Ldlr-/- mice. Abdominal aortic internal diameters were quantified by ultrasound, and maximal external AAA diameters were quantified at study end point. Blood pressure was quantified by radiotelemetry and a tail cuff-based technique. Serum cholesterol concentrations and vascular tissue characterization were examined at study end point. RESULTS: MasR deficiency did not influence body weight, systolic blood pressure at baseline and during AngII infusion, or serum cholesterol concentrations in either Apoe-/- or Ldlr-/- mice. MasR deficiency increased AngII-induced atherosclerosis in aortic arches of Ldlr-/- mice (P < .05), associated with increased oxidative stress and apoptosis in aortic root sections (P < .05). MasR deficiency also augmented internal and external AAA diameters and increased aortic ruptures of both Ldlr-/- and Apoe-/- mice (P < .05). These effects were associated with increased elastin breaks and T-lymphocyte and macrophage accumulation into abdominal aortas of AngII-infused MasR-deficient mice (P < .05). CONCLUSIONS: These results demonstrate that MasR deficiency augmented AngII-induced atherosclerosis and AAA rupture through mechanisms involving increased oxidative stress, inflammation, and apoptosis, suggesting that MasR activation may provide therapeutic efficacy against vascular diseases.


Asunto(s)
Angiotensina II/metabolismo , Aneurisma de la Aorta Abdominal/patología , Rotura de la Aorta/patología , Aterosclerosis/complicaciones , Proteínas Proto-Oncogénicas/deficiencia , Receptores Acoplados a Proteínas G/deficiencia , Angiotensina I/metabolismo , Angiotensina II/administración & dosificación , Animales , Aorta/patología , Aneurisma de la Aorta Abdominal/sangre , Aneurisma de la Aorta Abdominal/etiología , Rotura de la Aorta/sangre , Rotura de la Aorta/etiología , Apoptosis/genética , Aterosclerosis/sangre , Colesterol , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Noqueados para ApoE , Estrés Oxidativo/genética , Fragmentos de Péptidos/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/genética , Receptores Acoplados a Proteínas G/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo
18.
Proc Natl Acad Sci U S A ; 113(49): 14109-14114, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27872279

RESUMEN

Recently, an alternative renin-angiotensin system pathway has been described, which involves binding of angiotensin-(1-7) to its receptor Mas. The Mas axis may counterbalance angiotensin-II-mediated proinflammatory effects, likely by affecting macrophage function. Here we investigate the role of Mas in murine models of autoimmune neuroinflammation and atherosclerosis, which both involve macrophage-driven pathomechanisms. Mas signaling affected macrophage polarization, migration, and macrophage-mediated T-cell activation. Mas deficiency exacerbated the course of experimental autoimmune encephalomyelitis and increased macrophage infiltration as well as proinflammatory gene expression in the spleen and spinal cord. Furthermore, Mas deficiency promoted atherosclerosis by affecting macrophage infiltration and migration and led to increased oxidative stress as well as impaired endothelial function in ApoE-deficient mice. In summary, we identified the Mas axis as an important factor in macrophage function during inflammation of the central nervous and vascular system in vivo. Modulating the Mas axis may constitute an interesting therapeutic target in multiple sclerosis and/or atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Macrófagos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Aterosclerosis/inmunología , Aterosclerosis/fisiopatología , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Encefalomielitis Autoinmune Experimental/inmunología , Endotelio Vascular/fisiopatología , Femenino , Expresión Génica , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo , Proto-Oncogenes Mas , Médula Espinal/metabolismo , Bazo/metabolismo , Linfocitos T/fisiología
19.
Pflugers Arch ; 470(4): 661-667, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29352340

RESUMEN

Angiotensin (Ang)-(1-7) ameliorates vascular injury by increasing nitric oxide (NO) bioavailability. Evidence that Ang-(1-7) attenuates the development of atherosclerosis through a NO-dependent mechanism is still missing. Moreover, it has been postulated that Ang-(1-7) may mediate its effects by other mechanisms than Mas receptor activation. To investigate Ang-(1-7)-dependent Mas receptor function, we treated apoE-KO and apoE/Mas-KO mice chronically with Ang-(1-7) (82 µg/kg per hour) or saline for 6 weeks. Flow-mediated dilation (FMD), a measure for NO-dependent vasodilation and the most accepted prognostic marker for the development of atherosclerosis, was measured in vivo. Chronic Ang-(1-7) treatment improved FMD and attenuated the development of atherosclerosis in apolipoproteinE (apoE)-KO but not in apoE/Mas-KO mice. These effects were accompanied by increased aortic nitrite and cGMP levels. To test whether Ang-(1-7) modulates atherosclerosis through a NO-dependent mechanism, apoE-KO mice were treated with the NO synthase inhibitor L-NAME (20 mg/kg/day) in the presence or absence of Ang-(1-7). L-NAME treatment reduced aortic nitrite content and increased blood pressure and exaggerated atherosclerosis compared to untreated apoE-KO mice. In L-NAME-treated apoE-KO mice, chronic Ang-(1-7) treatment did not increase aortic nitrite content and consequently showed no effect on blood pressure and the development of atherosclerosis. The present study proves that Ang-(1-7) mediates its protective vascular effects through Mas receptor activation. Moreover, Ang-(1-7)-mediated NO generation is essential for improving vascular function and prevents atherosclerosis in apoE-KO mice.


Asunto(s)
Angiotensina I/farmacología , Apolipoproteínas E/genética , Aterosclerosis/tratamiento farmacológico , Óxido Nítrico/metabolismo , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aterosclerosis/metabolismo , Presión Sanguínea/efectos de los fármacos , GMP Cíclico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/metabolismo , Proto-Oncogenes Mas , Vasodilatación/efectos de los fármacos
20.
Int J Mol Sci ; 19(4)2018 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-29570672

RESUMEN

Nitric oxide (NO) modulates renal blood flow (RBF) and kidney function and is involved in blood pressure (BP) regulation predominantly via stimulation of the NO-sensitive guanylyl cyclase (NO-GC), existing in two isoforms, NO-GC1 and NO-GC2. Here, we used isoform-specific knockout (KO) mice and investigated their contribution to renal hemodynamics under normotensive and angiotensin II-induced hypertensive conditions. Stimulation of the NO-GCs by S-nitrosoglutathione (GSNO) reduced BP in normotensive and hypertensive wildtype (WT) and NO-GC2-KO mice more efficiently than in NO-GC1-KO. NO-induced increase of RBF in normotensive mice did not differ between the genotypes, but the respective increase under hypertensive conditions was impaired in NO-GC1-KO. Similarly, inhibition of endogenous NO increased BP and reduced RBF to a lesser extent in NO-GC1-KO than in NO-GC2-KO. These findings indicate NO-GC1 as a target of NO to normalize RBF in hypertension. As these effects were not completely abolished in NO-GC1-KO and renal cyclic guanosine monophosphate (cGMP) levels were decreased in both NO-GC1-KO and NO-GC2-KO, the results suggest an additional contribution of NO-GC2. Hence, NO-GC1 plays a predominant role in the regulation of BP and RBF, especially in hypertension. However, renal NO-GC2 appears to compensate the loss of NO-GC1, and is able to regulate renal hemodynamics under physiological conditions.


Asunto(s)
Guanilil Ciclasa Soluble/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , GMP Cíclico/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Ratones , Ratones Noqueados , NG-Nitroarginina Metil Éster/metabolismo , Óxido Nítrico/metabolismo , Circulación Renal/efectos de los fármacos , S-Nitrosoglutatión/farmacología , Vasodilatación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA