RESUMEN
Intratumor heterogeneity as a clinical challenge becomes most evident after several treatment lines, when multidrug-resistant subclones accumulate. To address this challenge, the characterization of resistance mechanisms at the subclonal level is key to identify common vulnerabilities. In this study, we integrate whole-genome sequencing, single-cell (sc) transcriptomics (scRNA sequencing), and chromatin accessibility (scATAC sequencing) together with mitochondrial DNA mutations to define subclonal architecture and evolution for longitudinal samples from 15 patients with relapsed or refractory multiple myeloma. We assess transcriptomic and epigenomic changes to resolve the multifactorial nature of therapy resistance and relate it to the parallel occurrence of different mechanisms: (1) preexisting epigenetic profiles of subclones associated with survival advantages, (2) converging phenotypic adaptation of genetically distinct subclones, and (3) subclone-specific interactions of myeloma and bone marrow microenvironment cells. Our study showcases how an integrative multiomics analysis can be applied to track and characterize distinct multidrug-resistant subclones over time for the identification of molecular targets against them.
Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Multiómica , Mutación , Transcriptoma , Microambiente Tumoral/genéticaRESUMEN
Seabirds play critical roles on islands. By catalysing terrestrial and marine productivity through guano nutrient input, seabirds support natural island functioning. In the Indo-Pacific, atolls comprise one-third of all islands but only ~0.02% of island area. The importance of atolls as seabird nesting grounds has been historically neglected except on a few key atolls. We compiled a global dataset of seabird surveys on atolls and modelled seabird distribution and nutrient deposition on all Indo-Pacific atolls. We found that atolls are breeding sites for 37 species, ranging from a few dozen to more than 3 million individuals per atoll. In total, an estimated 31.2 million seabirds nest on atolls, or ~25% of the tropical seabirds of the world. For 14 species, more than half of their global populations nest on atolls. Seabirds forage more than 10,000-100,000 km² around an atoll and deposit, on average, 65,000 kg N and 11,000 kg P per atoll per year, thus acting as major nutrient pumps within the tropical Indo-Pacific. Our findings reveal the global importance of atolls for tropical seabirds. Given global change, conservation will have to leverage atoll protection and restoration to preserve a relevant fraction of the tropical seabirds of the world.
Asunto(s)
Aves , Animales , Aves/fisiología , Comportamiento de Nidificación , Clima Tropical , Ecosistema , IslasRESUMEN
In January 2021, the monitoring of circulating variants of SARS-CoV-2 was initiated in Germany under the Corona Surveillance Act, which was discontinued after July 2023. This initiative aimed to enhance pandemic containment, as specific amino acid changes, particularly in the spike protein, were associated with increased transmission and reduced vaccine efficacy. Our group conducted whole genome sequencing using the ARTIC protocol (currently V4) on Illumina's NextSeq 500 platform (and, starting in May 2023, on the MiSeq DX platform) for SARS-CoV-2 positive specimen from patients at Heidelberg University Hospital, associated hospitals, and the public health office in the Rhine-Neckar/Heidelberg region. In total, we sequenced 26,795 SARS-CoV-2-positive samples between January 2021 and July 2023. Valid sequences, meeting the requirements for upload to the German electronic sequencing data hub (DESH) operated by the Robert Koch Institute (RKI), were determined for 24,852 samples, and the lineage/clade could be identified for 25,912 samples. The year 2021 witnessed significant dynamics in the circulating variants in the Rhine-Neckar/Heidelberg region, including A.27.RN, followed by the emergence of B.1.1.7 (Alpha), subsequently displaced by B.1.617.2 (Delta), and the initial occurrences of B.1.1.529 (Omicron). By January 2022, B.1.1.529 had superseded B.1.617.2, dominating with over 90%. The years 2022 and 2023 were then characterized by the dominance of B.1.1.529 and its sublineages, particularly BA.5 and BA.2, and more recently, the emergence of recombinant variants like XBB.1.5. Since the global dominance of B.1.617.2, the identified variant distribution in our local study, apart from a time delay in the spread of new variants, can be considered largely representative of the global distribution. om a time delay in the spread of new variants, can be considered largely representative of the global distribution.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Alemania/epidemiología , Hospitales UniversitariosRESUMEN
The glandular stomach is composed of two regenerative compartments termed corpus and antrum, and our understanding of the transcriptional networks that maintain these tissues is incomplete. Here we show that cell types with equivalent functional roles in the corpus and antrum share similar transcriptional states including the poorly characterized stem cells of the isthmus region. To further study the isthmus, we developed a monolayer two-dimensional (2D) culture system that is continually maintained by Wnt-responsive isthmus-like cells capable of differentiating into several gastric cell types. Importantly, 2D cultures can be converted into conventional three-dimensional organoids, modelling the plasticity of gastric epithelial cells in vivo. Finally, we utilized the 2D culture system to show that Sox2 is both necessary and sufficient to generate enterochromaffin cells. Together, our data provide important insights into gastric homeostasis, establish a tractable culture system to capture isthmus cells and uncover a role for Sox2 in enterochromaffin cells.
Asunto(s)
Mucosa Gástrica , Estómago , Mucosa Gástrica/metabolismo , Diferenciación Celular , Células Madre/metabolismo , HomeostasisRESUMEN
Bispecific T cell engagers (TCEs) have shown promise in the treatment of various cancers, but the immunological mechanism and molecular determinants of primary and acquired resistance to TCEs remain poorly understood. Here, we identify conserved behaviors of bone marrow-residing T cells in multiple myeloma patients undergoing BCMAxCD3 TCE therapy. We show that the immune repertoire reacts to TCE therapy with cell state-dependent clonal expansion and find evidence supporting the coupling of tumor recognition via major histocompatibility complex class I (MHC class I), exhaustion, and clinical response. We find the abundance of exhausted-like CD8+ T cell clones to be associated with clinical response failure, and we describe loss of target epitope and MHC class I as tumor-intrinsic adaptations to TCEs. These findings advance our understanding of the in vivo mechanism of TCE treatment in humans and provide the rationale for predictive immune-monitoring and conditioning of the immune repertoire to guide future immunotherapy in hematological malignancies.
Asunto(s)
Anticuerpos Biespecíficos , Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Linfocitos T CD8-positivos , Inmunoterapia , Células Clonales/patología , Anticuerpos Biespecíficos/uso terapéuticoRESUMEN
In multiple myeloma spatial differences in the subclonal architecture, molecular signatures and composition of the microenvironment remain poorly characterized. To address this shortcoming, we perform multi-region sequencing on paired random bone marrow and focal lesion samples from 17 newly diagnosed patients. Using single-cell RNA- and ATAC-seq we find a median of 6 tumor subclones per patient and unique subclones in focal lesions. Genetically identical subclones display different levels of spatial transcriptional plasticity, including nearly identical profiles and pronounced heterogeneity at different sites, which can include differential expression of immunotherapy targets, such as CD20 and CD38. Macrophages are significantly depleted in the microenvironment of focal lesions. We observe proportional changes in the T-cell repertoire but no site-specific expansion of T-cell clones in intramedullary lesions. In conclusion, our results demonstrate the relevance of considering spatial heterogeneity in multiple myeloma with potential implications for models of cell-cell interactions and disease progression.
Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Comunicación Celular , Secuenciación de Inmunoprecipitación de Cromatina , Células Clonales , Progresión de la Enfermedad , Microambiente Tumoral/genéticaRESUMEN
Multiple myeloma (MM) is a hematological malignancy originating from malignant and clonally expanding plasma cells. MM can be molecularly stratified, and its clonal evolution deciphered based on the Ig heavy and light chains of the respective malignant plasma cell clone. Of all MM subtypes, IgE type MM accounts for only <0.1% of cases and is associated with an aggressive clinical course and consequentially dismal prognosis. In such malignancies, adoptive transfer of autologous lymphocytes specifically targeting presented (neo)epitopes encoded by either somatically mutated or specifically overexpressed genes has resulted in substantial objective clinical regressions even in relapsed/refractory disease. However, there are no data on the genetic and immunological characteristics of this rare and aggressive entity. Here, we comprehensively profiled IgE type kappa MM on a genomic and immune repertoire level by integrating DNA- and single-cell RNA sequencing and comparative profiling against non-IgE type MM samples. We demonstrate distinct pathophysiological mechanisms as well as novel opportunities for targeting IgE type MM. Our data further provides the rationale for patient-individualized neoepitope-targeting cell therapy in high tumor mutation burden MM.
Asunto(s)
Mieloma Múltiple , ADN , Epítopos , Humanos , Mieloma Múltiple/genética , Fenotipo , Linfocitos TRESUMEN
Virtually all patients with multiple myeloma become unresponsive to treatment over time. Relapsed/refractory multiple myeloma (RRMM) is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations and profound changes of the bone marrow microenvironment (BME). However, the molecular mechanisms that drive drug resistance remain elusive. Here, we analyze the heterogeneous tumor cell population and its complex interaction network with the BME of 20 RRMM patients by single cell RNA-sequencing before/after treatment. Subclones with chromosome 1q-gain express a specific transcriptomic signature and frequently expand during treatment. Furthermore, RRMM cells shape an immune suppressive BME by upregulation of inflammatory cytokines and close interaction with the myeloid compartment. It is characterized by the accumulation of PD1+ γδ T-cells and tumor-associated macrophages as well as the depletion of hematopoietic progenitors. Thus, our study resolves transcriptional features of subclones in RRMM and mechanisms of microenvironmental reprogramming with implications for clinical decision-making.
Asunto(s)
Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple/genética , Transcriptoma , Microambiente Tumoral/genética , Antineoplásicos/uso terapéutico , Médula Ósea/efectos de los fármacos , Médula Ósea/inmunología , Médula Ósea/patología , Citocinas/genética , Citocinas/inmunología , Resistencia a Antineoplásicos/inmunología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/patología , Humanos , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/patología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/inmunología , Mieloma Múltiple/patología , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Recurrencia , Análisis de Secuencia de ARN , Transducción de Señal , Análisis de la Célula Individual , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunologíaRESUMEN
Patient-derived 3D cell culture systems are currently advancing cancer research since they potentiate the molecular analysis of tissue-like properties and drug response under well-defined conditions. However, our understanding of the relationship between the heterogeneity of morphological phenotypes and the underlying transcriptome is still limited. To address this issue, we here introduce "pheno-seq" to directly link visual features of 3D cell culture systems with profiling their transcriptome. As prototypic applications breast and colorectal cancer (CRC) spheroids were analyzed by pheno-seq. We identified characteristic gene expression signatures of epithelial-to-mesenchymal transition that are associated with invasive growth behavior of clonal breast cancer spheroids. Furthermore, we linked long-term proliferative capacity in a patient-derived model of CRC to a lowly abundant PROX1-positive cancer stem cell subtype. We anticipate that the ability to integrate transcriptome analysis and morphological patho-phenotypes of cancer cells will provide novel insight on the molecular origins of intratumor heterogeneity.