Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(W1): W132-W139, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38647044

RESUMEN

The possible effects of mutations on stability and function of a protein can only be understood in the context of protein 3D structure. The MutationExplorer webserver maps sequence changes onto protein structures and allows users to study variation by inputting sequence changes. As the user enters variants, the 3D model evolves, and estimated changes in energy are highlighted. In addition to a basic per-residue input format, MutationExplorer can also upload an entire replacement sequence. Previously the purview of desktop applications, such an upload can back-mutate PDB structures to wildtype sequence in a single step. Another supported variation source is human single nucelotide polymorphisms (SNPs), genomic coordinates input in VCF format. Structures are flexibly colorable, not only by energetic differences, but also by hydrophobicity, sequence conservation, or other biochemical profiling. Coloring by interface score reveals mutation impacts on binding surfaces. MutationExplorer strives for efficiency in user experience. For example, we have prepared 45 000 PDB depositions for instant retrieval and initial display. All modeling steps are performed by Rosetta. Visualizations leverage MDsrv/Mol*. MutationExplorer is available at: http://proteinformatics.org/mutation_explorer/.


Asunto(s)
Internet , Modelos Moleculares , Mutación , Conformación Proteica , Proteínas , Programas Informáticos , Proteínas/genética , Proteínas/química , Humanos , Gráficos por Computador , Termodinámica
2.
Cell Mol Life Sci ; 80(1): 32, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36609589

RESUMEN

Protein quality control (PQC) degrons are short protein segments that target misfolded proteins for proteasomal degradation, and thus protect cells against the accumulation of potentially toxic non-native proteins. Studies have shown that PQC degrons are hydrophobic and rarely contain negatively charged residues, features which are shared with chaperone-binding regions. Here we explore the notion that chaperone-binding regions may function as PQC degrons. When directly tested, we found that a canonical Hsp70-binding motif (the APPY peptide) functioned as a dose-dependent PQC degron both in yeast and in human cells. In yeast, Hsp70, Hsp110, Fes1, and the E3 Ubr1 target the APPY degron. Screening revealed that the sequence space within the chaperone-binding region of APPY that is compatible with degron function is vast. We find that the number of exposed Hsp70-binding sites in the yeast proteome correlates with a reduced protein abundance and half-life. Our results suggest that when protein folding fails, chaperone-binding sites may operate as PQC degrons, and that the sequence properties leading to PQC-linked degradation therefore overlap with those of chaperone binding.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteolisis , Pliegue de Proteína , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
3.
PLoS Genet ; 17(4): e1009539, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33914734

RESUMEN

Canavan disease is a severe progressive neurodegenerative disorder that is characterized by swelling and spongy degeneration of brain white matter. The disease is genetically linked to polymorphisms in the aspartoacylase (ASPA) gene, including the substitution C152W. ASPA C152W is associated with greatly reduced protein levels in cells, yet biophysical experiments suggest a wild-type like thermal stability. Here, we use ASPA C152W as a model to investigate the degradation pathway of a disease-causing protein variant. When we expressed ASPA C152W in Saccharomyces cerevisiae, we found a decreased steady state compared to wild-type ASPA as a result of increased proteasomal degradation. However, molecular dynamics simulations of ASPA C152W did not substantially deviate from wild-type ASPA, indicating that the native state is structurally preserved. Instead, we suggest that the C152W substitution interferes with the de novo folding pathway resulting in increased proteasomal degradation before reaching its stable conformation. Systematic mapping of the protein quality control components acting on misfolded and aggregation-prone species of C152W, revealed that the degradation is highly dependent on the molecular chaperone Hsp70, its co-chaperone Hsp110 as well as several quality control E3 ubiquitin-protein ligases, including Ubr1. In addition, the disaggregase Hsp104 facilitated refolding of aggregated ASPA C152W, while Cdc48 mediated degradation of insoluble ASPA protein. In human cells, ASPA C152W displayed increased proteasomal turnover that was similarly dependent on Hsp70 and Hsp110. Our findings underscore the use of yeast to determine the protein quality control components involved in the degradation of human pathogenic variants in order to identify potential therapeutic targets.


Asunto(s)
Amidohidrolasas/genética , Enfermedad de Canavan/genética , Proteínas del Choque Térmico HSP110/genética , Proteínas HSP70 de Choque Térmico/genética , Sustitución de Aminoácidos/genética , Enfermedad de Canavan/patología , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares/genética , Mutación/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética
4.
Trends Biochem Sci ; 44(7): 575-588, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30712981

RESUMEN

The rapid decrease in DNA sequencing cost is revolutionizing medicine and science. In medicine, genome sequencing has revealed millions of missense variants that change protein sequences, yet we only understand the molecular and phenotypic consequences of a small fraction. Within protein science, high-throughput deep mutational scanning experiments enable us to probe thousands of variants in a single, multiplexed experiment. We review efforts that bring together these topics via experimental and computational approaches to determine the consequences of missense variants in proteins. We focus on the role of changes in protein stability as a driver for disease, and how experiments, biophysical models, and computation are providing a framework for understanding and predicting how changes in protein sequence affect cellular protein stability.


Asunto(s)
Enfermedad/genética , Variación Genética/genética , Modelos Genéticos , Proteínas/genética , Biología Computacional , Humanos , Mutación Missense , Estabilidad Proteica
5.
Biophys J ; 122(11): 2176-2191, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36600598

RESUMEN

Next-generation sequencing of human genomes reveals millions of missense variants, some of which may lead to loss of protein function and ultimately disease. Here, we investigate missense variants in membrane proteins-key drivers in cell signaling and recognition. We find enrichment of pathogenic variants in the transmembrane region across 19,000 functionally classified variants in human membrane proteins. To accurately predict variant consequences, one fundamentally needs to understand the underlying molecular processes. A key mechanism underlying pathogenicity in missense variants of soluble proteins has been shown to be loss of stability. Membrane proteins, however, are widely understudied. Here, we interpret variant effects on a larger scale by performing structure-based estimations of changes in thermodynamic stability using a membrane-specific energy function and analyses of sequence conservation during evolution of 15 transmembrane proteins. We find evidence for loss of stability being the cause of pathogenicity in more than half of the pathogenic variants, indicating that this is a driving factor also in membrane-protein-associated diseases. Our findings show how computational tools aid in gaining mechanistic insights into variant consequences for membrane proteins. To enable broader analyses of disease-related and population variants, we include variant mappings for the entire human proteome.


Asunto(s)
Proteínas de la Membrana , Transducción de Señal , Humanos , Proteínas de la Membrana/genética , Mutación Missense
6.
Biochemistry ; 62(8): 1394-1405, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36976271

RESUMEN

Catechol-O-methyltransferase (COMT) is a key enzyme in the metabolism of catecholamines. Substrates of the enzyme include neurotransmitters such as dopamine and epinephrine, and therefore, COMT plays a central role in neurobiology. Since COMT also metabolizes catecholamine drugs such as L-DOPA, variation in COMT activity could affect pharmacokinetics and drug availability. Certain COMT missense variants have been shown to display decreased enzymatic activity. Additionally, studies have shown that such missense variants may lead to loss of function induced by impaired structural stability, which results in activation of the protein quality control system and degradation by the ubiquitin-proteasome system. Here, we demonstrate that two rare missense variants of COMT are ubiquitylated and targeted for proteasomal degradation as a result of structural destabilization and misfolding. This results in strongly reduced intracellular steady-state levels of the enzyme, which for the L135P variant is rescued upon binding to the COMT inhibitors entacapone and tolcapone. Our results reveal that the degradation is independent of the COMT isoform as both soluble (S-COMT) and ER membrane-bound (MB-COMT) variants are degraded. In silico structural stability predictions identify regions within the protein that are critical for stability overlapping with evolutionarily conserved residues, pointing toward other variants that are likely destabilized and degraded.


Asunto(s)
Catecol O-Metiltransferasa , Complejo de la Endopetidasa Proteasomal , Catecol O-Metiltransferasa/genética , Complejo de la Endopetidasa Proteasomal/genética , Tolcapona , Inhibidores de Catecol O-Metiltransferasa/farmacología , Levodopa , Catecolaminas/metabolismo
7.
Br J Cancer ; 128(5): 726-734, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36434153

RESUMEN

Patients with the heritable cancer disease, Lynch syndrome, carry germline variants in the MLH1, MSH2, MSH6 and PMS2 genes, encoding the central components of the DNA mismatch repair system. Loss-of-function variants disrupt the DNA mismatch repair system and give rise to a detrimental increase in the cellular mutational burden and cancer development. The treatment prospects for Lynch syndrome rely heavily on early diagnosis; however, accurate diagnosis is inextricably linked to correct clinical interpretation of individual variants. Protein variant classification traditionally relies on cumulative information from occurrence in patients, as well as experimental testing of the individual variants. The complexity of variant classification is due to (1) that variants of unknown significance are rare in the population and phenotypic information on the specific variants is missing, and (2) that individual variant testing is challenging, costly and slow. Here, we summarise recent developments in high-throughput technologies and computational prediction tools for the assessment of variants of unknown significance in Lynch syndrome. These approaches may vastly increase the number of interpretable variants and could also provide important mechanistic insights into the disease. These insights may in turn pave the road towards developing personalised treatment approaches for Lynch syndrome.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Humanos , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Predisposición Genética a la Enfermedad , Proteínas de Unión al ADN/genética , Homólogo 1 de la Proteína MutL/genética , Mutación de Línea Germinal , Reparación de la Incompatibilidad de ADN , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Proteína 2 Homóloga a MutS/genética
8.
Biochem J ; 479(4): 479-501, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35089310

RESUMEN

A genetic selection system for activity of HIV protease is described that is based on a synthetic substrate constructed as a modified AraC regulatory protein that when cleaved stimulate l-arabinose metabolism in an Escherichia coli araC strain. Growth stimulation on selective plates was shown to depend on active HIV protease and the scissile bond in the substrate. In addition, the growth of cells correlated well with the established cleavage efficiency of the sites in the viral polyprotein, Gag, when these sites were individually introduced into the synthetic substrate of the selection system. Plasmids encoding protease variants selected based on stimulation of cell growth in the presence of saquinavir or cleavage of a site not cleaved by wild-type protease, were indistinguishable with respect to both phenotypes. Also, both groups of selected plasmids encoded side chain substitutions known from clinical isolates or displayed different side chain substitutions but at identical positions. One highly frequent side chain substitution, E34V, not regarded as a major drug resistance substitution was found in variants obtained under both selective conditions and is suggested to improve protease processing of the synthetic substrate. This substitution is away from the substrate-binding cavity and together with other substitutions in the selected reading frames supports the previous suggestion of a substrate-binding site extended from the active site binding pocket itself.


Asunto(s)
Fármacos Anti-VIH/farmacocinética , Farmacorresistencia Viral/genética , Proteasa del VIH/genética , Sustitución de Aminoácidos , Factor de Transcripción de AraC/genética , Arabinosa/metabolismo , Quimosina/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Fusión gag-pol/metabolismo , Productos del Gen gag/metabolismo , Genes araC , Proteasa del VIH/química , Proteasa del VIH/aislamiento & purificación , Proteasa del VIH/metabolismo , Modelos Moleculares , Mutación Missense , Mutación Puntual , Conformación Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saquinavir/antagonistas & inhibidores , Saquinavir/farmacología , Selección Genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Especificidad por Sustrato
9.
PLoS Genet ; 16(11): e1009187, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33137092

RESUMEN

Germline mutations in the folliculin (FLCN) tumor suppressor gene are linked to Birt-Hogg-Dubé (BHD) syndrome, a dominantly inherited genetic disease characterized by predisposition to fibrofolliculomas, lung cysts, and renal cancer. Most BHD-linked FLCN variants include large deletions and splice site aberrations predicted to cause loss of function. The mechanisms by which missense variants and short in-frame deletions in FLCN trigger disease are unknown. Here, we present an integrated computational and experimental study that reveals that the majority of such disease-causing FLCN variants cause loss of function due to proteasomal degradation of the encoded FLCN protein, rather than directly ablating FLCN function. Accordingly, several different single-site FLCN variants are present at strongly reduced levels in cells. In line with our finding that FLCN variants are protein quality control targets, several are also highly insoluble and fail to associate with the FLCN-binding partners FNIP1 and FNIP2. The lack of FLCN binding leads to rapid proteasomal degradation of FNIP1 and FNIP2. Half of the tested FLCN variants are mislocalized in cells, and one variant (ΔE510) forms perinuclear protein aggregates. A yeast-based stability screen revealed that the deubiquitylating enzyme Ubp15/USP7 and molecular chaperones regulate the turnover of the FLCN variants. Lowering the temperature led to a stabilization of two FLCN missense proteins, and for one (R362C), function was re-established at low temperature. In conclusion, we propose that most BHD-linked FLCN missense variants and small in-frame deletions operate by causing misfolding and degradation of the FLCN protein, and that stabilization and resulting restoration of function may hold therapeutic potential of certain disease-linked variants. Our computational saturation scan encompassing both missense variants and single site deletions in FLCN may allow classification of rare FLCN variants of uncertain clinical significance.


Asunto(s)
Síndrome de Birt-Hogg-Dubé/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Síndrome de Birt-Hogg-Dubé/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Biología Computacional , Mutación de Línea Germinal , Humanos , Mutación con Pérdida de Función , Mutación Missense , Agregado de Proteínas , Unión Proteica/genética , Pliegue de Proteína , Estabilidad Proteica , Proteolisis , Proteínas Proto-Oncogénicas/genética , Saccharomyces cerevisiae , Proteínas Supresoras de Tumor/genética , Peptidasa Específica de Ubiquitina 7/metabolismo
10.
Mol Biol Evol ; 38(8): 3235-3246, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-33779753

RESUMEN

Understanding and predicting how amino acid substitutions affect proteins are keys to our basic understanding of protein function and evolution. Amino acid changes may affect protein function in a number of ways including direct perturbations of activity or indirect effects on protein folding and stability. We have analyzed 6,749 experimentally determined variant effects from multiplexed assays on abundance and activity in two proteins (NUDT15 and PTEN) to quantify these effects and find that a third of the variants cause loss of function, and about half of loss-of-function variants also have low cellular abundance. We analyze the structural and mechanistic origins of loss of function and use the experimental data to find residues important for enzymatic activity. We performed computational analyses of protein stability and evolutionary conservation and show how we may predict positions where variants cause loss of activity or abundance. In this way, our results link thermodynamic stability and evolutionary conservation to experimental studies of different properties of protein fitness landscapes.


Asunto(s)
Sustitución de Aminoácidos , Fosfohidrolasa PTEN/genética , Estabilidad Proteica , Pirofosfatasas/genética , Relación Estructura-Actividad , Humanos , Fosfohidrolasa PTEN/metabolismo , Pliegue de Proteína , Pirofosfatasas/metabolismo
11.
Cell Mol Life Sci ; 78(5): 2263-2278, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32936312

RESUMEN

Understanding the interplay between sequence, structure and function of proteins has been complicated in recent years by the discovery of intrinsically disordered proteins (IDPs), which perform biological functions in the absence of a well-defined three-dimensional fold. Disordered protein sequences account for roughly 30% of the human proteome and in many proteins, disordered and ordered domains coexist. However, few studies have assessed how either feature affects the properties of the other. In this study, we examine the role of a disordered tail in the overall properties of the two-domain, calcium-sensing protein neuronal calcium sensor 1 (NCS-1). We show that loss of just six of the 190 residues at the flexible C-terminus is sufficient to severely affect stability, dynamics, and folding behavior of both ordered domains. We identify specific hydrophobic contacts mediated by the disordered tail that may be responsible for stabilizing the distal N-terminal domain. Moreover, sequence analyses indicate the presence of an LSL-motif in the tail that acts as a mimic of native ligands critical to the observed order-disorder communication. Removing the disordered tail leads to a shorter life-time of the ligand-bound complex likely originating from the observed destabilization. This close relationship between order and disorder may have important implications for how investigations into mixed systems are designed and opens up a novel avenue of drug targeting exploiting this type of behavior.


Asunto(s)
Proteínas Portadoras/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas Sensoras del Calcio Neuronal/química , Neuropéptidos/química , Dominios Proteicos , Secuencia de Aminoácidos , Sitios de Unión/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Ligandos , Modelos Moleculares , Mutación , Proteínas Sensoras del Calcio Neuronal/genética , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Estabilidad Proteica , Termodinámica
12.
PLoS Genet ; 13(4): e1006739, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28422960

RESUMEN

Accurate methods to assess the pathogenicity of mutations are needed to fully leverage the possibilities of genome sequencing in diagnosis. Current data-driven and bioinformatics approaches are, however, limited by the large number of new variations found in each newly sequenced genome, and often do not provide direct mechanistic insight. Here we demonstrate, for the first time, that saturation mutagenesis, biophysical modeling and co-variation analysis, performed in silico, can predict the abundance, metabolic stability, and function of proteins inside living cells. As a model system, we selected the human mismatch repair protein, MSH2, where missense variants are known to cause the hereditary cancer predisposition disease, known as Lynch syndrome. We show that the majority of disease-causing MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather than inherent loss of function, and accordingly our in silico modeling data accurately identifies disease-causing mutations and outperforms the traditionally used genetic disease predictors. Thus, in conclusion, in silico biophysical modeling should be considered for making genotype-phenotype predictions and for diagnosis of Lynch syndrome, and perhaps other hereditary diseases.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Proteínas de Unión al ADN/genética , Proteína 2 Homóloga a MutS/genética , Pliegue de Proteína , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Simulación por Computador , Proteínas de Unión al ADN/química , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inestabilidad de Microsatélites , Proteína 2 Homóloga a MutS/química , Mutación Missense/genética , Conformación Proteica
13.
Hum Mutat ; 40(4): 444-457, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30648773

RESUMEN

Phenylketonuria (PKU) is a genetic disorder caused by variants in the gene encoding phenylalanine hydroxylase (PAH), resulting in accumulation of phenylalanine to neurotoxic levels. Here, we analyzed the cellular stability, localization, and interaction with wild-type PAH of 20 selected PKU-linked PAH protein missense variants. Several were present at reduced levels in human cells, and the levels increased in the presence of a proteasome inhibitor, indicating that proteins are proteasome targets. We found that all the tested PAH variants retained their ability to associate with wild-type PAH, and none formed aggregates, suggesting that they are only mildly destabilized in structure. In all cases, PAH variants were stabilized by the cofactor tetrahydrobiopterin (BH4 ), a molecule known to alleviate symptoms in certain PKU patients. Biophysical calculations on all possible single-site missense variants using the full-length structure of PAH revealed a strong correlation between the predicted protein stability and the observed stability in cells. This observation rationalizes previously observed correlations between predicted loss of protein destabilization and disease severity, a correlation that we also observed using new calculations. We thus propose that many disease-linked PAH variants are structurally destabilized, which in turn leads to proteasomal degradation and insufficient amounts of cellular PAH protein.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/diagnóstico , Fenilcetonurias/genética , Alelos , Línea Celular , Activación Enzimática , Estudios de Asociación Genética/métodos , Humanos , Modelos Moleculares , Mutación , Fenilalanina Hidroxilasa/sangre , Fenilalanina Hidroxilasa/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Conformación Proteica , Estabilidad Proteica , Relación Estructura-Actividad
15.
Biochemistry ; 57(41): 5957-5968, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30230310

RESUMEN

The influenza M2 proton channel is a major drug target, but unfortunately, the acquisition of resistance mutations greatly reduces the functional life span of a drug in influenza treatment. New M2 inhibitors that inhibit mutant M2 channels otherwise resistant to the early adamantine-based drugs have been reported, but it remains unclear whether and how easy resistance could arise to such inhibitors. We have combined a newly developed proton conduction assay with an established method for selection and screening, both Escherichia coli-based, to enable the study of M2 function and inhibition. Combining this platform with two groups of structurally different M2 inhibitors allowed us to isolate drug resistant M2 channels from a mutant library. Two groups of M2 variants emerged from this analysis. A first group appeared almost unaffected by the inhibitor, M_089 (N13I, I35L, and F47L) and M_272 (G16C and D44H), and the single-substitution variants derived from these (I35L, L43P, D44H, and L46P). Functionally, these resemble the known drug resistant M2 channels V27A, S31N, and swine flu. In addition, a second group of tested M2 variants were all still inhibited by drugs but to a lesser extent than wild type M2. Molecular dynamics simulations aided in distinguishing the two groups where drug binding to the wild type and the less resistant M2 group showed a stable positioning of the ligand in the canonical binding pose, as opposed to the drug resistant group in which the ligand rapidly dissociated from the complex during the simulations.


Asunto(s)
Antivirales , Farmacorresistencia Viral/genética , Subtipo H2N2 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Canales Iónicos , Mutación Missense , Proteínas de la Matriz Viral , Sustitución de Aminoácidos , Antivirales/química , Antivirales/farmacología , Escherichia coli , Humanos , Subtipo H2N2 del Virus de la Influenza A/química , Subtipo H2N2 del Virus de la Influenza A/genética , Subtipo H2N2 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/química , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/química , Canales Iónicos/genética , Canales Iónicos/metabolismo , Mutagénesis , Proteínas de la Matriz Viral/antagonistas & inhibidores , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo
16.
Genes Chromosomes Cancer ; 56(12): 823-831, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28779490

RESUMEN

Inhibitors of molecular chaperones and the ubiquitin-proteasome system have already been clinically implemented to counter certain cancers, including multiple myeloma and mantle cell lymphoma. The efficacy of this treatment relies on genomic alterations in cancer cells causing a proteostatic imbalance, which makes them more dependent on protein quality control (PQC) mechanisms than normal cells. Accordingly, blocking PQC, e.g. by proteasome inhibitors, may cause a lethal proteotoxic crisis in cancer cells, while leaving normal cells unaffected. Evidence, however, suggests that the PQC system operates by following a better-safe-than-sorry principle and is thus prone to target proteins that are only slightly structurally perturbed, but still functional. Accordingly, implementing PQC inhibitors may also, through an entirely different mechanism, hold potential for other cancers. Several inherited cancer susceptibility syndromes, such as Lynch syndrome and von Hippel-Lindau disease, are caused by missense mutations in tumor suppressor genes, and in some cases, the resulting amino acid substitutions in the encoded proteins cause the cellular PQC system to target them for degradation, although they may still retain function. As a consequence of this over-meticulous PQC mechanism, the cell may end up with an insufficient amount of the abnormal, but functional, protein, which in turn leads to a loss-of-function phenotype and manifestation of the disease. Increasing the amounts of such proteins by stabilizing with chemical chaperones, or by targeting molecular chaperones or the ubiquitin-proteasome system, may thus avert or delay the disease onset. Here, we review the potential of targeting the PQC system in hereditary cancer susceptibility syndromes.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales Hereditarias sin Poliposis/tratamiento farmacológico , Inhibidores de Proteasoma/farmacología , Proteostasis , Enfermedad de von Hippel-Lindau/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/metabolismo , Humanos , Inhibidores de Proteasoma/uso terapéutico , Proteolisis , Ubiquitinación , Enfermedad de von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/metabolismo
17.
Nucleic Acids Res ; 42(Database issue): D374-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24081580

RESUMEN

The database of 3D interacting domains (3did, available online for browsing and bulk download at http://3did.irbbarcelona.org) is a catalog of protein-protein interactions for which a high-resolution 3D structure is known. 3did collects and classifies all structural templates of domain-domain interactions in the Protein Data Bank, providing molecular details for such interactions. The current version also includes a pipeline for the discovery and annotation of novel domain-motif interactions. For every interaction, 3did identifies and groups different binding modes by clustering similar interfaces into 'interaction topologies'. By maintaining a constantly updated collection of domain-based structural interaction templates, 3did is a reference source of information for the structural characterization of protein interaction networks. 3did is updated every 6 months.


Asunto(s)
Bases de Datos de Proteínas , Dominios y Motivos de Interacción de Proteínas , Internet , Modelos Moleculares , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas
18.
Proc Natl Acad Sci U S A ; 109(14): 5277-82, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22403064

RESUMEN

Signaling pathways depend on regulatory protein-protein interactions; controlling these interactions in cells has important applications for reengineering biological functions. As many regulatory proteins are modular, considerable progress in engineering signaling circuits has been made by recombining commonly occurring domains. Our ability to predictably engineer cellular functions, however, is constrained by complex crosstalk observed in naturally occurring domains. Here we demonstrate a strategy for improving and simplifying protein network engineering: using computational design to create orthogonal (non-crossreacting) protein-protein interfaces. We validated the design of the interface between a key signaling protein, the GTPase Cdc42, and its activator, Intersectin, biochemically and by solving the crystal structure of the engineered complex. The designed GTPase (orthoCdc42) is activated exclusively by its engineered cognate partner (orthoIntersectin), but maintains the ability to interface with other GTPase signaling circuit components in vitro. In mammalian cells, orthoCdc42 activity can be regulated by orthoIntersectin, but not wild-type Intersectin, showing that the designed interaction can trigger complex processes. Computational design of protein interfaces thus promises to provide specific components that facilitate the predictable engineering of cellular functions.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas/metabolismo , Transducción de Señal , Animales , Cristalografía , GTP Fosfohidrolasas/química , Factores de Intercambio de Guanina Nucleótido/química , Ratones , Modelos Moleculares , Células 3T3 NIH
19.
Genome Biol ; 25(1): 98, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627865

RESUMEN

BACKGROUND: Amino acid substitutions can perturb protein activity in multiple ways. Understanding their mechanistic basis may pinpoint how residues contribute to protein function. Here, we characterize the mechanisms underlying variant effects in human glucokinase (GCK) variants, building on our previous comprehensive study on GCK variant activity. RESULTS: Using a yeast growth-based assay, we score the abundance of 95% of GCK missense and nonsense variants. When combining the abundance scores with our previously determined activity scores, we find that 43% of hypoactive variants also decrease cellular protein abundance. The low-abundance variants are enriched in the large domain, while residues in the small domain are tolerant to mutations with respect to abundance. Instead, many variants in the small domain perturb GCK conformational dynamics which are essential for appropriate activity. CONCLUSIONS: In this study, we identify residues important for GCK metabolic stability and conformational dynamics. These residues could be targeted to modulate GCK activity, and thereby affect glucose homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucoquinasa , Humanos , Sustitución de Aminoácidos , Diabetes Mellitus Tipo 2/genética , Glucoquinasa/genética , Glucoquinasa/química , Glucoquinasa/metabolismo , Mutación
20.
Nat Commun ; 15(1): 1541, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378758

RESUMEN

Proteostasis can be disturbed by mutations affecting folding and stability of the encoded protein. An example is the ubiquitin ligase Parkin, where gene variants result in autosomal recessive Parkinsonism. To uncover the pathological mechanism and provide comprehensive genotype-phenotype information, variant abundance by massively parallel sequencing (VAMP-seq) is leveraged to quantify the abundance of Parkin variants in cultured human cells. The resulting mutational map, covering 9219 out of the 9300 possible single-site amino acid substitutions and nonsense Parkin variants, shows that most low abundance variants are proteasome targets and are located within the structured domains of the protein. Half of the known disease-linked variants are found at low abundance. Systematic mapping of degradation signals (degrons) reveals an exposed degron region proximal to the so-called "activation element". This work provides examples of how missense variants may cause degradation either via destabilization of the native protein, or by introducing local signals for degradation.


Asunto(s)
Trastornos Parkinsonianos , Proteostasis , Humanos , Proteostasis/genética , Ubiquitina-Proteína Ligasas/metabolismo , Mutación , Trastornos Parkinsonianos/genética , Mutación Missense , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA