Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Br J Cancer ; 128(12): 2270-2282, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024667

RESUMEN

BACKGROUND: Type II testicular germ cell tumours (TGCT) are the most prevalent tumours in young men. Patients suffering from cisplatin-resistant TGCTs are facing very poor prognosis demanding novel therapeutic options. Neddylation is a known posttranslational modification mediating many important biological processes, including tumorigenesis. Overactivation of the neddylation pathway promotes carcinogenesis and tumour progression in various entities by inducing proteasomal degradation of tumour suppressors (e.g., p21, p27). METHODS: We used a genome-scale CRISPR/Cas9 activation screen to identify cisplatin resistance factors. TGCT cell lines were treated with the neddylation inhibitor (MLN4924)/cisplatin/combination and investigated for changes in viability (XTT assay), apoptosis/cell cycle (flow cytometry) as well as in the transcriptome (3'mRNA sequencing). RESULTS: NAE1 overexpression was detected in cisplatin-resistant colonies from the CRISPR screen. Inhibition of neddylation using MLN4924 increased cisplatin cytotoxicity in TGCT cell lines and sensitised cisplatin-resistant cells towards cisplatin. Apoptosis, G2/M-phase cell cycle arrest, γH2A.X/P27 accumulation and mesoderm/endoderm differentiation were observed in TGCT cells, while fibroblast cells were unaffected. CONCLUSIONS: We identified overactivation of neddylation as a factor for cisplatin resistance in TGCTs and highlighted the additive effect of NAE1 inhibition by MLN4924 in combination with cisplatin as a novel treatment option for TGCTs.


Asunto(s)
Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Masculino , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias Testiculares/tratamiento farmacológico , Neoplasias Testiculares/genética , Neoplasias Testiculares/patología , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Neoplasias de Células Germinales y Embrionarias/genética , Apoptosis , Línea Celular Tumoral
2.
Cell Mol Life Sci ; 78(4): 1163-1189, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32997200

RESUMEN

Humans and animals live in social relationships shaped by actions of approach and avoidance. Both are crucial for normal physical and mental development, survival, and well-being. Active withdrawal from social interaction is often induced by the perception of threat or unpleasant social experience and relies on adaptive mechanisms within neuronal networks associated with social behavior. In case of confrontation with overly strong or persistent stressors and/or dispositions of the affected individual, maladaptive processes in the neuronal circuitries and its associated transmitters and modulators lead to pathological social avoidance. This review focuses on active, fear-driven social avoidance, affected circuits within the mesocorticolimbic system and associated regions and a selection of molecular modulators that promise translational potential. A comprehensive review of human research in this field is followed by a reflection on animal studies that offer a broader and often more detailed range of analytical methodologies. Finally, we take a critical look at challenges that could be addressed in future translational research on fear-driven social avoidance.


Asunto(s)
Ansiedad/fisiopatología , Reacción de Prevención/fisiología , Miedo/fisiología , Red Nerviosa/fisiopatología , Animales , Ansiedad/psicología , Miedo/psicología , Humanos , Neuronas/patología , Neuronas/fisiología , Conducta Social
3.
Circ Res ; 123(9): 1039-1052, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30355161

RESUMEN

RATIONALE: New strategies in the field of cardiac regeneration are directed at identifying proliferation-inducing substances to induce regrowth of myocardium. Current screening assays utilize neonatal cardiomyocytes and markers for cytokinesis, such as Aurora B-kinase. However, detection of cardiomyocyte division is complicated because of cell cycle variants, in particular, binucleation. OBJECTIVE: To analyze the process of cardiomyocyte binucleation to identify definitive discriminators for cell cycle variants and authentic cardiomyocyte division. METHODS AND RESULTS: Herein, we demonstrate by direct visualization of the contractile ring and midbody in Myh6 (myosin, heavy chain 6)-eGFP (enhanced green fluorescent protein)-anillin transgenic mice that cardiomyocyte binucleation starts by formation of a contractile ring. This is followed by irregular positioning of the midbody and movement of the 2 nuclei into close proximity to each other. In addition, the widespread used marker Aurora B-kinase was found to also label binucleating cardiomyocytes, complicating the interpretation of existing screening assays. Instead, atypical midbody positioning and the distance of daughter nuclei on karyokinesis are bona fide markers for cardiomyocyte binucleation enabling to unequivocally discern such events from cardiomyocyte division in vitro and in vivo. CONCLUSIONS: The 2 criteria provide a new method for identifying cardiomyocyte division and should be considered in future studies investigating cardiomyocyte turnover and regeneration after injury, in particular in the postnatal heart to prevent the assignment of false positive proliferation events.


Asunto(s)
División del Núcleo Celular , Núcleo Celular/fisiología , Proliferación Celular , Miocitos Cardíacos/fisiología , Animales , Aurora Quinasa B/metabolismo , Biomarcadores/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , Regeneración , Factores de Tiempo
4.
Nanomedicine ; 29: 102244, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32561256

RESUMEN

Polymeric nanoparticles can passively target inflamed tissues. How their physicochemical properties affect their distribution pattern among the infiltrating immune cells is unknown. Polyvinyl acetate nanoparticles with different particle size (100 and 300 nm) and surface charge (cationic, non-ionic, and anionic) were prepared and incubated with either LPS-activated or unactivated murine splenocytes. Nanoparticle association with macrophages, dendritic cells, neutrophils, B and T cells was investigated using flow cytometry. Cells associated with nanoparticles as follows: cationic>anionic>non-ionic and 300 nm > 100 nm. 40% of ionic nanoparticles were distributed among unactivated macrophages, reduced to 25% for activated macrophages. 60% of 100 nm and 40% of 300 nm non-ionic nanoparticles were distributed among unactivated and LPS-activated macrophages. This study highlights that particles' physicochemical properties impact the number of nanoparticles associating with immune cells more than their distribution pattern, which is principally determined by the cell activation state. This suggests a disease-dependent distribution pattern for therapeutic nanoparticles.


Asunto(s)
Sistema Inmunológico/efectos de los fármacos , Macrófagos/efectos de los fármacos , Nanopartículas/efectos adversos , Bazo/efectos de los fármacos , Animales , Línea Celular , Citometría de Flujo , Humanos , Macrófagos/patología , Macrófagos/ultraestructura , Ratones , Nanopartículas/uso terapéutico , Tamaño de la Partícula , Polímeros/efectos adversos , Polímeros/uso terapéutico , Bazo/citología , Propiedades de Superficie
5.
Mol Pharm ; 16(11): 4507-4518, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31532690

RESUMEN

Despite holding promise for cancer immunotherapy, the strong pro-inflammatory properties of lipopolysaccharide (LPS) also account for severe localized and systemic side effects, restricting its administrable dosage and the possibility of chronic dosing. Herein, we exploited the surface-active properties of LPS molecules to develop pathogen-mimicking LPS-decorated nanostructures with different compositions (lipid nanoemulsion vs polymeric nanospheres) and sizes (volumetric mean diameters of 100 nm vs 700 nm). The formulations were tested in cell culture for their immunostimulatory properties and in vivo against a murine subcutaneous colorectal cancer model. While all nanostructures resulted in similar levels of apoptotic cell death in tumor cells cultured with splenocytes, both the size and the composition of the nanostructures were found to govern the short- and long-term tolerability of LPS-based immunotherapy in vivo. The toxicity-related end point of the animal trials was decided upon in the case of a body condition score (BCS) of 1 and poor hair coat, or more than 15% loss of the original body weight, while in the absence of long-term intolerability, the experiments were terminated in the case of full remission or once the tumor surpassed a volume of 1000 mm3. Size was an important determinant of short-term tolerability, with larger particles being associated with higher incidence and extent of localized necrosis (3-6% necrotic surface area). Nanostructure composition, on the other hand, predominantly governed the long-term systemic tolerability. Within this context, the higher affinity of LPS molecules to the triglyceride core of the nanoemulsion compared to the polymeric matrix significantly improved the tolerability of the former over time. In fact, the mean survival estimate of the animals treated with small LPS nanoemulsion (LPS-NE (small)) was at least 42 days longer than that of the LPS and the LPS-decorated polymeric nanoparticle (LPS-NP) groups. Unlike other treatment groups, the experiments on 80% of the animals in LPS-NE (small) were terminated due to complete remission or tumor volume >1000 mm3. While a better understanding of these findings requires a larger scale, mechanistic-oriented trial on larger animal models, they indicate the role of nanostructures as beyond the carriers of the incorporated immunotherapeutic cargos. This highlights the importance of a wise selection of nanoparticle composition and a purposeful tuning of their physicochemical properties to enhance the safety profile and improve the eventual immunotherapeutic outcome.


Asunto(s)
Lipopolisacáridos/química , Lipopolisacáridos/inmunología , Nanoestructuras/química , Neoplasias/inmunología , Neoplasias/terapia , Animales , Línea Celular , Línea Celular Tumoral , Factores Inmunológicos/inmunología , Inmunoterapia/métodos , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Células RAW 264.7
6.
Hippocampus ; 26(3): 319-28, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26332750

RESUMEN

The survival of adult-born dentate gyrus granule cells critically depends on their synaptic integration into the existing neuronal network. Excitatory inputs are thought to increase the survival rate of adult born neurons. Therefore, whether enhancing the stability of newly formed excitatory synapses by overexpressing the synaptic cell adhesion molecule SynCAM 1 improves the survival of adult-born neurons was tested. Here it is shown that overexpression of SynCAM 1 improves survival of adult-born neurons, but has no effect on the proliferation rate of precursor cells. As expected, overexpression of SynCAM 1 increased the synapse density in adult-born granule neurons. While adult-born granule neurons have very few functional synapses 15 days after birth, it was found that at this age adult-born neurons in SynCAM 1 overexpressing mice exhibited around three times more excitatory synapses, which were stronger than synapses of adult-born neurons of control littermates. In summary, the data indicated that additional SynCAM 1 accelerated synapse maturation, which improved the stability of newly formed synapses and in turn increased the likelihood of survival of adult-born neurons.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Giro Dentado/citología , Inmunoglobulinas/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Sinapsis/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Molécula 1 de Adhesión Celular , Moléculas de Adhesión Celular/genética , Muerte Celular/genética , Dendritas/metabolismo , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunoglobulinas/genética , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Transgénicos , Mutación/genética , Neuronas/ultraestructura , Fosfopiruvato Hidratasa/metabolismo
7.
Mol Cell Neurosci ; 68: 331-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26363416

RESUMEN

Hepatic encephalopathy (HE) is the most common neuropsychiatric complication of acute or chronic liver failure. Clinical symptoms include cognitive and intellectual dysfunction as well as impaired motor activity and coordination. There is general consensus that increased levels of ammonia play a central role in the pathogenesis of HE. However, it is still elusive how cognitive performance including the ability to learn and memorize information is affected by ammonia at molecular levels. In the present study, we have employed a neuroglial co-culture model, which preserves neuroglial interplay but allows for cell-type specific molecular and functional analyses, to investigate glutamatergic neurotransmission under conditions of high ammonia. Chronic exposure to ammonia significantly reduced neuronal mRNA and protein expression of AMPA-subtype glutamate receptors (AMPARs), which mediate most fast excitatory neurotransmission in the brain. Surprisingly, neurons were able to fully maintain basal glutamatergic neurotransmission as recorded by AMPAR-mediated miniature excitatory postsynaptic currents (mEPSCs) even when >50% of total AMPARs were lost. However, long-lasting, activity-dependent changes in the efficacy of synaptic communication, which model the capability of the brain to learn and store information, were severely constrained. Whereas synaptic efficacy could still be depressed, an increase in synaptic strength was abolished. We conclude that neurons retain basal glutamatergic transmission at the expense of the extrasynaptic population of AMPARs, which is revealed when the extrasynaptic reserve pool is recruited in vain for synaptic potentiation. Our findings thus offer a molecular model, which might not only explain impaired synaptic plasticity in HE but also in other neurological diseases accompanied by a decrease in extrasynaptic AMPAR expression.


Asunto(s)
Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Amoníaco/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/fisiología , Canales de Calcio/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Agonistas de Aminoácidos Excitadores/farmacología , Hipocampo/citología , L-Lactato Deshidrogenasa/metabolismo , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , ARN Mensajero/metabolismo , Ratas , Receptores AMPA/genética , Transmisión Sináptica/efectos de los fármacos
8.
J Neurosci ; 34(12): 4187-99, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24647940

RESUMEN

Normal brain function requires balanced development of excitatory and inhibitory synapses. An imbalance in synaptic transmission underlies many brain disorders such as epilepsy, schizophrenia, and autism. Compared with excitatory synapses, relatively little is known about the molecular control of inhibitory synapse development. We used a genetic approach in mice to identify the Ig superfamily member IgSF9/Dasm1 as a candidate homophilic synaptic adhesion protein that regulates inhibitory synapse development. IgSF9 is expressed in pyramidal cells and subsets of interneurons in the CA1 region of hippocampus. Electrophysiological recordings of acute hippocampal slices revealed that genetic inactivation of the IgSF9 gene resulted in fewer functional inhibitory synapses; however, the strength of the remaining synapses was unaltered. These physiological abnormalities were correlated with decreased expression of inhibitory synapse markers in IgSF9(-/-) mice, providing anatomical evidence for a reduction in inhibitory synapse numbers, whereas excitatory synapse development was normal. Surprisingly, knock-in mice expressing a mutant isoform of IgSF9 lacking the entire cytoplasmic domain (IgSF9(ΔC/ΔC) mice) had no defects in inhibitory synapse development, providing genetic evidence that IgSF9 regulates synapse development via ectodomain interactions rather than acting itself as a signaling receptor. Further, we found that IgSF9 mediated homotypic binding and cell aggregation, but failed to induce synapse formation, suggesting that IgSF9 acts as a cell adhesion molecule (CAM) to maintain synapses. Juvenile IgSF9(-/-) mice exhibited increased seizure susceptibility indicative of an imbalance in synaptic excitation and inhibition. These results provide genetic evidence for a specific role of IgSF9 in inhibitory synapse development/maintenance, presumably by its CAM-like activity.


Asunto(s)
Inmunoglobulinas/genética , Interneuronas/metabolismo , Proteínas del Tejido Nervioso/genética , Inhibición Neural/genética , Células Piramidales/metabolismo , Sinapsis/genética , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Interneuronas/citología , Ratones , Ratones Noqueados , Células Piramidales/citología , Sinapsis/metabolismo , Transmisión Sináptica/genética
9.
Sci Signal ; 17(834): eadj6603, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687825

RESUMEN

The localization, number, and function of postsynaptic AMPA-type glutamate receptors (AMPARs) are crucial for synaptic plasticity, a cellular correlate for learning and memory. The Hippo pathway member WWC1 is an important component of AMPAR-containing protein complexes. However, the availability of WWC1 is constrained by its interaction with the Hippo pathway kinases LATS1 and LATS2 (LATS1/2). Here, we explored the biochemical regulation of this interaction and found that it is pharmacologically targetable in vivo. In primary hippocampal neurons, phosphorylation of LATS1/2 by the upstream kinases MST1 and MST2 (MST1/2) enhanced the interaction between WWC1 and LATS1/2, which sequestered WWC1. Pharmacologically inhibiting MST1/2 in male mice and in human brain-derived organoids promoted the dissociation of WWC1 from LATS1/2, leading to an increase in WWC1 in AMPAR-containing complexes. MST1/2 inhibition enhanced synaptic transmission in mouse hippocampal brain slices and improved cognition in healthy male mice and in male mouse models of Alzheimer's disease and aging. Thus, compounds that disrupt the interaction between WWC1 and LATS1/2 might be explored for development as cognitive enhancers.


Asunto(s)
Hipocampo , Péptidos y Proteínas de Señalización Intracelular , Plasticidad Neuronal , Fosfoproteínas , Proteínas Serina-Treonina Quinasas , Receptores AMPA , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Masculino , Humanos , Receptores AMPA/metabolismo , Receptores AMPA/genética , Ratones , Plasticidad Neuronal/fisiología , Hipocampo/metabolismo , Vía de Señalización Hippo , Serina-Treonina Quinasa 3 , Transducción de Señal , Memoria/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Factor de Crecimiento de Hepatocito/metabolismo , Ratones Endogámicos C57BL , Enfermedad de Alzheimer/metabolismo , Fosforilación , Neuronas/metabolismo
10.
Nat Commun ; 15(1): 2635, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528004

RESUMEN

High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. Here we show that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1ß release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in male mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1ß release, contributing to an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of male and female postmortem human brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing mechanistic insight into the biology of neuroinflammation.


Asunto(s)
Enfermedad de Alzheimer , Autofagia , Proteínas Cromosómicas no Histona , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Autofagia/genética , Proteínas Cromosómicas no Histona/metabolismo , Citocinas/metabolismo , Inflamasomas/metabolismo , Microglía/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
11.
Sci Rep ; 13(1): 1390, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36697430

RESUMEN

Cognitive functions decline during aging. This decline could be caused by changes in dendritic spine stability and altered spine dynamics. Previously, we have shown that a low dose chronic THC treatment improves learning abilities in old whereas impairs learning abilities in young mice. The mechanism underlying this age-dependent effect is not known. Dendritic spine stability is a key for memory formation, therefore we hypothesized that THC affects spine dynamics in an age-dependent manner. We applied longitudinal 2-photon in vivo imaging to 3- and 18-month-old mice treated with 3 mg/kg/day of THC for 28 days via an osmotic pump. We imaged the same dendritic segments before, during and after the treatment and assessed changes in spine density and stability. We now show that in old mice THC improved spine stability resulting in a long-lasting increase in spine density. In contrast, in young mice THC transiently increased spine turnover and destabilized the spines.


Asunto(s)
Espinas Dendríticas , Dronabinol , Ratones , Animales , Dronabinol/farmacología , Envejecimiento , Cognición , Ratones Transgénicos
12.
bioRxiv ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37066393

RESUMEN

High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. We demonstrate that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1ß release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1ß release, initiating an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D (GSDMD)-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of postmortem brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing new mechanistic insight into the biology of neuroinflammation.

13.
Front Psychiatry ; 13: 946719, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966477

RESUMEN

Chronic stress is a major risk factor for developing mental illnesses and cognitive deficiencies although stress-susceptibility varies individually. In a recent study, we established the connection between chronic social defeat stress (CSDS) and impaired motor learning abilities accompanied by chronically disturbed structural neuroplasticity in the primary motor cortex (M1) of mice. In this study, we further investigated the long-term effects of CSDS exposure on M1, focusing on the interneuronal cell population. We used repeated CSDS to elicit effects across behavioral, endocrinological, and metabolic parameters in mice. Susceptible and resilient phenotypes were discriminated by symptom load and motor learning abilities were assessed on the rotarod. Structural changes in interneuronal circuits of M1 were studied by immunohistochemistry using parvalbumin (PV+) and somatostatin (SST+) markers. Stress-susceptible mice had a blunted stress hormone response and impaired motor learning skills. These mice presented reduced numbers of both interneuron populations in M1 with layer-dependent distribution, while alterations in cell size and immunoreactivity were found in both susceptible and resilient individuals. These results, together with our previous data, suggest that stress-induced cell loss and degeneration of the GABAergic interneuronal network of M1 could underlay impaired motor learning, due to their role in controlling the excitatory output and spine dynamics of principal neurons required for this task. Our study further highlights the importance of long-term outcomes of chronically stressed individuals which are translationally important due to the long timecourses of stress-induced neuropsychiatric disorders.

14.
Transl Psychiatry ; 12(1): 91, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246507

RESUMEN

Chronic stress is a major cause of neuropsychiatric conditions such as depression. Stress vulnerability varies individually in mice and humans, measured by behavioral changes. In contrast to affective symptoms, motor retardation as a consequence of stress is not well understood. We repeatedly imaged dendritic spines of the motor cortex in Thy1-GFP M mice before and after chronic social defeat stress. Susceptible and resilient phenotypes were discriminated by symptom load and their motor learning abilities were assessed by a gross and fine motor task. Stress phenotypes presented individual short- and long-term changes in the hypothalamic-pituitary-adrenal axis as well as distinct patterns of altered motor learning. Importantly, stress was generally accompanied by a marked reduction of spine density in the motor cortex and spine dynamics depended on the stress phenotype. We found astrogliosis and altered microglia morphology along with increased microglia-neuron interaction in the motor cortex of susceptible mice. In cerebrospinal fluid, proteomic fingerprints link the behavioral changes and structural alterations in the brain to neurodegenerative disorders and dysregulated synaptic homeostasis. Our work emphasizes the importance of synaptic integrity and the risk of neurodegeneration within depression as a threat to brain health.


Asunto(s)
Corteza Motora , Animales , Espinas Dendríticas/fisiología , Sistema Hipotálamo-Hipofisario , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Sistema Hipófiso-Suprarrenal , Proteómica , Estrés Psicológico
15.
Cell Rep ; 41(10): 111766, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36476872

RESUMEN

Learning and memory rely on changes in postsynaptic glutamergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type receptor (AMPAR) number, spatial organization, and function. The Hippo pathway component WW and C2 domain-containing protein 1 (WWC1) regulates AMPAR surface expression and impacts on memory performance. However, synaptic binding partners of WWC1 and its hierarchical position in AMPAR complexes are largely unclear. Using cell-surface proteomics in hippocampal tissue of Wwc1-deficient mice and by generating a hippocampus-specific interactome, we show that WWC1 is a major regulatory platform in AMPAR signaling networks. Under basal conditions, the Hippo pathway members WWC1 and large tumor-suppressor kinase (LATS) are associated, which might prevent WWC1 effects on synaptic proteins. Reduction of WWC1/LATS binding through a point mutation at WWC1 elevates the abundance of WWC1 in AMPAR complexes and improves hippocampal-dependent learning and memory. Thus, uncoupling of WWC1 from the Hippo pathway to AMPAR-regulatory complexes provides an innovative strategy to enhance synaptic transmission.


Asunto(s)
Proteómica , Receptores AMPA , Animales , Ratones
16.
J Neurosci ; 30(13): 4776-86, 2010 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-20357128

RESUMEN

The function of voltage-gated chloride channels in neurons is essentially unknown. The voltage-gated chloride channel ClC-2 mediates a chloride current in pyramidal cells of the hippocampus. We directly show that ClC-2 assists chloride extrusion after high chloride load. Furthermore, the loss of this chloride channel leads to a dramatic increase of the input resistance of CA1 pyramidal cells, making these cells more excitable. Surprisingly, basal synaptic transmission, as judged from recordings of field EPSPs, was decreased. This difference was eliminated when GABAergic inhibition was blocked. Recordings from hippocampal interneurons revealed ClC-2-mediated currents in a subset of these cells. An observed increase in GABAergic inhibition could thus be explained by an increase in the excitability of interneurons, caused by the loss of ClC-2. Together, we suggest a dual role for ClC-2 in neurons, providing an additional efflux pathway for chloride and constituting a substantial part of the background conductance, which regulates excitability. In ClC-2 knock-out mice, an increased inhibition seemingly balances the hyperexcitability of the network and thereby prevents epilepsy.


Asunto(s)
Canales de Cloruro/fisiología , Cloruros/metabolismo , Hipocampo/fisiología , Animales , Canales de Cloruro CLC-2 , Canales de Cloruro/genética , Conductividad Eléctrica , Potenciales Postsinápticos Excitadores , Hipocampo/citología , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores , Interneuronas/fisiología , Potenciales de la Membrana , Ratones , Ratones Noqueados , Potenciales Postsinápticos Miniatura , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Transmisión Sináptica , Ácido gamma-Aminobutírico/fisiología
17.
Chemistry ; 17(21): 5939-48, 2011 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-21472799

RESUMEN

The products of base-catalyzed liquid-phase hydrolysis of lignin depend markedly on the operating conditions. By varying temperature, pressure, catalyst concentration, and residence time, the yield of monomers and oligomers from depolymerized lignin can be adjusted. It is shown that monomers of phenolic derivatives are the only primary products of base-catalyzed hydrolysis and that oligomers form as secondary products. Oligomerization and polymerization of these highly reactive products, however, limit the amount of obtainable product oil containing low-molecular-weight phenolic products. Therefore, inhibition of concurrent oligomerization and polymerization reactions during hydrothermal lignin depolymerization is important to enhance product yields. Applying boric acid as a capping agent to suppress addition and condensation reactions of initially formed products is presented as a successful approach in this direction. Combination of base-catalyzed lignin hydrolysis with addition of boric acid protecting agent shifts the product distribution to lower molecular weight compounds and increases product yields beyond 85%.

18.
Nat Commun ; 12(1): 4643, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330919

RESUMEN

The stress response is an essential mechanism for maintaining homeostasis, and its disruption is implicated in several psychiatric disorders. On the cellular level, stress activates, among other mechanisms, autophagy that regulates homeostasis through protein degradation and recycling. Secretory autophagy is a recently described pathway in which autophagosomes fuse with the plasma membrane rather than with lysosomes. Here, we demonstrate that glucocorticoid-mediated stress enhances secretory autophagy via the stress-responsive co-chaperone FK506-binding protein 51. We identify the matrix metalloproteinase 9 (MMP9) as one of the proteins secreted in response to stress. Using cellular assays and in vivo microdialysis, we further find that stress-enhanced MMP9 secretion increases the cleavage of pro-brain-derived neurotrophic factor (proBDNF) to its mature form (mBDNF). BDNF is essential for adult synaptic plasticity and its pathway is associated with major depression and posttraumatic stress disorder. These findings unravel a cellular stress adaptation mechanism that bears the potential of opening avenues for the understanding of the pathophysiology of stress-related disorders.


Asunto(s)
Autofagia/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dexametasona/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Animales , Autofagosomas/metabolismo , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Glucocorticoides/farmacología , Células HEK293 , Humanos , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico
19.
Neuron ; 52(2): 307-20, 2006 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17046693

RESUMEN

Trafficking of AMPA receptors (AMPA-Rs) to and from synapses controls the strength of excitatory synaptic transmission. However, proteins that cluster AMPA-Rs at synapses remain poorly understood. Here we show that PSD-95-like membrane-associated guanylate kinases (PSD-MAGUKs) mediate this synaptic targeting, and we uncover a remarkable functional redundancy within this protein family. By manipulating endogenous neuronal PSD-MAGUK levels, we find that both PSD-95 and PSD-93 independently mediate AMPA-R targeting at mature synapses. We also reveal unanticipated synapse heterogeneity as loss of either PSD-95 or PSD-93 silences largely nonoverlapping populations of excitatory synapses. In adult PSD-95 and PSD-93 double knockout animals, SAP-102 is upregulated and compensates for the loss of synaptic AMPA-Rs. At immature synapses, PSD-95 and PSD-93 play little role in synaptic AMPA-R clustering; instead, SAP-102 dominates. These studies establish a PSD-MAGUK-specific regulation of AMPA-R synaptic expression that establishes and maintains glutamatergic synaptic transmission in the mammalian central nervous system.


Asunto(s)
Diferenciación Celular/fisiología , Espinas Dendríticas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Espinas Dendríticas/ultraestructura , Homólogo 4 de la Proteína Discs Large , Regulación hacia Abajo/fisiología , Ácido Glutámico/metabolismo , Guanilato-Quinasas , Hipocampo/embriología , Hipocampo/metabolismo , Hipocampo/ultraestructura , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Neuropéptidos/genética , Neuropéptidos/metabolismo , Técnicas de Cultivo de Órganos , Transporte de Proteínas/fisiología , Ratas , Agregación de Receptores/fisiología , Sinapsis/ultraestructura , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestructura
20.
J Neurosci ; 29(11): 3419-30, 2009 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-19295148

RESUMEN

A high intracellular chloride concentration in immature neurons leads to a depolarizing action of GABA that is thought to shape the developing neuronal network. We show that GABA-triggered depolarization and Ca2+ transients were attenuated in mice deficient for the Na-K-2Cl cotransporter NKCC1. Correlated Ca2+ transients and giant depolarizing potentials (GDPs) were drastically reduced and the maturation of the glutamatergic and GABAergic transmission in CA1 delayed. Brain morphology, synaptic density, and expression levels of certain developmental marker genes were unchanged. The expression of lynx1, a protein known to dampen network activity, was decreased. In mice deficient for the neuronal Cl(-)/HCO(3)(-) exchanger AE3, GDPs were also diminished. These data show that NKCC1-mediated Cl(-) accumulation contributes to GABAergic excitation and network activity during early postnatal development and thus facilitates the maturation of excitatory and inhibitory synapses.


Asunto(s)
Potenciales Postsinápticos Excitadores , Hipocampo/crecimiento & desarrollo , Red Nerviosa/crecimiento & desarrollo , Simportadores de Cloruro de Sodio-Potasio/fisiología , Sinapsis/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Animales Recién Nacidos , Potenciales Postsinápticos Excitadores/genética , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Simportadores de Cloruro de Sodio-Potasio/deficiencia , Miembro 2 de la Familia de Transportadores de Soluto 12
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA