Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 159(6): 1243-6, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25480287

RESUMEN

The 2014 Nobel Prize in Chemistry has been awarded jointly to William E. Moerner, Stefan W. Hell, and Eric Betzig "for the development of super-resolved fluorescence microscopy." I discuss the contributions made by this year's awardees and how advances in understanding the behavior of fluorophores and research in light microscopy converged to allow the improved visualization of biological structures.


Asunto(s)
Química/historia , Microscopía Fluorescente/historia , Premio Nobel , Europa (Continente) , Historia del Siglo XX , Historia del Siglo XXI , Luz , Estados Unidos
2.
Nat Chem Biol ; 16(10): 1078-1086, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32719556

RESUMEN

The p53 homolog TAp63α is the transcriptional key regulator of genome integrity in oocytes. After DNA damage, TAp63α is activated by multistep phosphorylation involving multiple phosphorylation events by the kinase CK1, which triggers the transition from a dimeric and inactive conformation to an open and active tetramer that initiates apoptosis. By measuring activation kinetics in ovaries and single-site phosphorylation kinetics in vitro with peptides and full-length protein, we show that TAp63α phosphorylation follows a biphasic behavior. Although the first two CK1 phosphorylation events are fast, the third one, which constitutes the decisive step to form the active conformation, is slow. Structure determination of CK1 in complex with differently phosphorylated peptides reveals the structural mechanism for the difference in the kinetic behavior based on an unusual CK1/TAp63α substrate interaction in which the product of one phosphorylation step acts as an inhibitor for the following one.


Asunto(s)
Apoptosis/fisiología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Dominio Catalítico , Daño del ADN , Femenino , Humanos , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Oocitos , Fosforilación , Conformación Proteica , Factores de Tiempo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
3.
BMC Biol ; 19(1): 37, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627108

RESUMEN

BACKGROUND: Organoids are morphologically heterogeneous three-dimensional cell culture systems and serve as an ideal model for understanding the principles of collective cell behaviour in mammalian organs during development, homeostasis, regeneration, and pathogenesis. To investigate the underlying cell organisation principles of organoids, we imaged hundreds of pancreas and cholangiocarcinoma organoids in parallel using light sheet and bright-field microscopy for up to 7 days. RESULTS: We quantified organoid behaviour at single-cell (microscale), individual-organoid (mesoscale), and entire-culture (macroscale) levels. At single-cell resolution, we monitored formation, monolayer polarisation, and degeneration and identified diverse behaviours, including lumen expansion and decline (size oscillation), migration, rotation, and multi-organoid fusion. Detailed individual organoid quantifications lead to a mechanical 3D agent-based model. A derived scaling law and simulations support the hypotheses that size oscillations depend on organoid properties and cell division dynamics, which is confirmed by bright-field microscopy analysis of entire cultures. CONCLUSION: Our multiscale analysis provides a systematic picture of the diversity of cell organisation in organoids by identifying and quantifying the core regulatory principles of organoid morphogenesis.


Asunto(s)
División Celular , Colangiocarcinoma/fisiopatología , Morfogénesis , Organoides/crecimiento & desarrollo , Páncreas/fisiología , Animales , Epitelio/crecimiento & desarrollo , Humanos , Ratones , Microscopía
4.
BMC Bioinformatics ; 22(1): 579, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863116

RESUMEN

BACKGROUND: The technical development of imaging techniques in life sciences has enabled the three-dimensional recording of living samples at increasing temporal resolutions. Dynamic 3D data sets of developing organisms allow for time-resolved quantitative analyses of morphogenetic changes in three dimensions, but require efficient and automatable analysis pipelines to tackle the resulting Terabytes of image data. Particle image velocimetry (PIV) is a robust and segmentation-free technique that is suitable for quantifying collective cellular migration on data sets with different labeling schemes. This paper presents the implementation of an efficient 3D PIV package using the Julia programming language-quickPIV. Our software is focused on optimizing CPU performance and ensuring the robustness of the PIV analyses on biological data. RESULTS: QuickPIV is three times faster than the Python implementation hosted in openPIV, both in 2D and 3D. Our software is also faster than the fastest 2D PIV package in openPIV, written in C++. The accuracy evaluation of our software on synthetic data agrees with the expected accuracies described in the literature. Additionally, by applying quickPIV to three data sets of the embryogenesis of Tribolium castaneum, we obtained vector fields that recapitulate the migration movements of gastrulation, both in nuclear and actin-labeled embryos. We show normalized squared error cross-correlation to be especially accurate in detecting translations in non-segmentable biological image data. CONCLUSIONS: The presented software addresses the need for a fast and open-source 3D PIV package in biological research. Currently, quickPIV offers efficient 2D and 3D PIV analyses featuring zero-normalized and normalized squared error cross-correlations, sub-pixel/voxel approximation, and multi-pass. Post-processing options include filtering and averaging of the resulting vector fields, extraction of velocity, divergence and collectiveness maps, simulation of pseudo-trajectories, and unit conversion. In addition, our software includes functions to visualize the 3D vector fields in Paraview.


Asunto(s)
Imagenología Tridimensional , Programas Informáticos , Desarrollo Embrionario , Procesamiento de Imagen Asistido por Computador , Reología
5.
Biophys J ; 118(8): 1850-1860, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32229315

RESUMEN

Thermal motions enable a particle to probe the optimal interaction state when binding to a cell membrane. However, especially on the scale of microseconds and nanometers, position and orientation fluctuations are difficult to observe with common measurement technologies. Here, we show that it is possible to detect single binding events of immunoglobulin-G-coated polystyrene beads, which are held in an optical trap near the cell membrane of a macrophage. Changes in the spatial and temporal thermal fluctuations of the particle were measured interferometrically, and no fluorophore labeling was required. We demonstrate both by Brownian dynamic simulations and by experiments that sequential stepwise increases in the force constant of the bond between a bead and a cell of typically 20 pN/µm are clearly detectable. In addition, this technique provides estimates about binding rates and diffusion constants of membrane receptors. The simple approach of thermal noise tracking points out new strategies in understanding interactions between cells and particles, which are relevant for a large variety of processes, including phagocytosis, drug delivery, and the effects of small microplastics and particulates on cells.


Asunto(s)
Plásticos , Fenómenos Biofísicos , Membrana Celular , Difusión , Movimiento (Física)
6.
Proc Natl Acad Sci U S A ; 114(19): 4869-4874, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28438995

RESUMEN

Light-sheet-based fluorescence microscopy (LSFM) features optical sectioning in the excitation process. It minimizes fluorophore bleaching as well as phototoxic effects and provides a true axial resolution. The detection path resembles properties of conventional fluorescence microscopy. Structured illumination microscopy (SIM) is attractive for superresolution because of its moderate excitation intensity, high acquisition speed, and compatibility with all fluorophores. We introduce SIM to LSFM because the combination pushes the lateral resolution to the physical limit of linear SIM. The instrument requires three objective lenses and relies on methods to control two counterpropagating coherent light sheets that generate excitation patterns in the focal plane of the detection lens. SIM patterns with the finest line spacing in the far field become available along multiple orientations. Flexible control of rotation, frequency, and phase shift of the perfectly modulated light sheet are demonstrated. Images of beads prove a near-isotropic lateral resolution of sub-100 nm. Images of yeast endoplasmic reticulum show that coherent structured illumination (csi) LSFM performs with physiologically relevant specimens.


Asunto(s)
Retículo Endoplásmico , Saccharomyces cerevisiae/citología , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos
7.
Biophys J ; 116(1): 127-141, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30514631

RESUMEN

During mammalian preimplantation, cells of the inner cell mass (ICM) adopt either an embryonic or an extraembryonic fate. This process is tightly regulated in space and time and has been studied previously in mouse embryos and embryonic stem cell models. Current research suggests that cell fates are arranged in a salt-and-pepper pattern of random cell positioning or a spatially alternating pattern. However, the details of the three-dimensional patterns of cell fate specification have not been investigated in the embryo nor in in vitro systems. We developed ICM organoids as a, to our knowledge, novel three-dimensional in vitro stem cell system to model mechanisms of fate decisions that occur in the ICM. ICM organoids show similarities to the in vivo system that arise regardless of the differences in geometry and total cell number. Inspecting ICM organoids and mouse embryos, we describe a so far unknown local clustering of cells with identical fates in both systems. These findings are based on the three-dimensional quantitative analysis of spatiotemporal patterns of NANOG and GATA6 expression in combination with computational rule-based modeling. The pattern identified by our analysis is distinct from the current view of a salt-and-pepper pattern. Our investigation of the spatial distributions both in vivo and in vitro dissects the contributions of the different parts of the embryo to cell fate specifications. In perspective, our combination of quantitative in vivo and in vitro analyses can be extended to other mammalian organisms and thus creates a powerful approach to study embryogenesis.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Organoides/embriología , Animales , Agregación Celular , Células Cultivadas , Células Madre Embrionarias/metabolismo , Factor de Transcripción GATA6/metabolismo , Ratones , Proteína Homeótica Nanog/metabolismo , Organoides/citología
8.
Kidney Int ; 95(3): 540-562, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30712922

RESUMEN

Biglycan, a small leucine-rich proteoglycan, acts as a danger signal and is classically thought to promote macrophage recruitment via Toll-like receptors (TLR) 2 and 4. We have recently shown that biglycan signaling through TLR 2/4 and the CD14 co-receptor regulates inflammation, suggesting that TLR co-receptors may determine whether biglycan-TLR signaling is pro- or anti-inflammatory. Here, we sought to identify other co-receptors and characterize their impact on biglycan-TLR signaling. We found a marked increase in the number of autophagic macrophages in mice stably overexpressing soluble biglycan. In vitro, stimulation of murine macrophages with biglycan triggered autophagosome formation and enhanced the flux of autophagy markers. Soluble biglycan also promoted autophagy in human peripheral blood macrophages. Using macrophages from mice lacking TLR2 and/or TLR4, CD14, or CD44, we demonstrated that the pro-autophagy signal required TLR4 interaction with CD44, a receptor involved in adhesion, migration, lymphocyte activation, and angiogenesis. In vivo, transient overexpression of circulating biglycan at the onset of renal ischemia/reperfusion injury (IRI) enhanced M1 macrophage recruitment into the kidneys of Cd44+/+ and Cd44-/- mice but not Cd14-/- mice. The biglycan-CD44 interaction increased M1 autophagy and the number of renal M2 macrophages and reduced tubular damage following IRI. Thus, CD44 is a novel signaling co-receptor for biglycan, an interaction that is required for TLR4-CD44-dependent pro-autophagic activity in macrophages. Interfering with the interaction between biglycan and specific TLR co-receptors could represent a promising therapeutic intervention to curtail kidney inflammation and damage.


Asunto(s)
Lesión Renal Aguda/inmunología , Biglicano/metabolismo , Receptores de Hialuranos/metabolismo , Macrófagos/inmunología , Daño por Reperfusión/inmunología , Lesión Renal Aguda/patología , Animales , Autofagosomas/inmunología , Autofagosomas/metabolismo , Autofagia/inmunología , Biglicano/genética , Biglicano/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/inmunología , Túbulos Renales/irrigación sanguínea , Túbulos Renales/inmunología , Túbulos Renales/patología , Activación de Macrófagos , Ratones , Ratones Noqueados , Cultivo Primario de Células , Daño por Reperfusión/patología , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
9.
Nat Rev Mol Cell Biol ; 8(10): 839-45, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17684528

RESUMEN

Moving from cell monolayers to three-dimensional (3D) cultures is motivated by the need to work with cellular models that mimic the functions of living tissues. Essential cellular functions that are present in tissues are missed by 'petri dish'-based cell cultures. This limits their potential to predict the cellular responses of real organisms. However, establishing 3D cultures as a mainstream approach requires the development of standard protocols, new cell lines and quantitative analysis methods, which include well-suited three-dimensional imaging techniques. We believe that 3D cultures will have a strong impact on drug screening and will also decrease the use of laboratory animals, for example, in the context of toxicity assays.


Asunto(s)
Técnicas de Cultivo de Tejidos , Animales , Adhesión Celular/fisiología , Técnicas de Cultivo de Célula , Movimiento Celular/fisiología , Humanos
10.
Development ; 141(11): 2331-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24803590

RESUMEN

Insect development has contributed significantly to our understanding of metazoan development. However, most information has been obtained by analyzing a single species, the fruit fly Drosophila melanogaster. Embryonic development of the red flour beetle Tribolium castaneum differs fundamentally from that of Drosophila in aspects such as short-germ development, embryonic leg development, extensive extra-embryonic membrane formation and non-involuted head development. Although Tribolium has become the second most important insect model organism, previous live imaging attempts have addressed only specific questions and no long-term live imaging data of Tribolium embryogenesis have been available. By combining light sheet-based fluorescence microscopy with a novel mounting method, we achieved complete, continuous and non-invasive fluorescence live imaging of Tribolium embryogenesis at high spatiotemporal resolution. The embryos survived the 2-day or longer imaging process, developed into adults and produced fertile progeny. Our data document all morphogenetic processes from the rearrangement of the uniform blastoderm to the onset of regular muscular movement in the same embryo and in four orientations, contributing significantly to the understanding of Tribolium development. Furthermore, we created a comprehensive chronological table of Tribolium embryogenesis, integrating most previous work and providing a reference for future studies. Based on our observations, we provide evidence that serosa window closure and serosa opening, although deferred by more than 1 day, are linked. All our long-term imaging datasets are available as a resource for the community. Tribolium is only the second insect species, after Drosophila, for which non-invasive long-term fluorescence live imaging has been achieved.


Asunto(s)
Microscopía Fluorescente/métodos , Tribolium/embriología , Animales , Animales Modificados Genéticamente , Blastodermo/fisiología , Desarrollo Embrionario , Membranas Extraembrionarias , Fluorescencia , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Membrana Serosa/metabolismo
11.
Proc Natl Acad Sci U S A ; 110(13): 5229-34, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23479644

RESUMEN

In Arabidopsis, lateral root primordia (LRPs) originate from pericycle cells located deep within the parental root and have to emerge through endodermal, cortical, and epidermal tissues. These overlaying tissues place biomechanical constraints on the LRPs that are likely to impact their morphogenesis. This study probes the interplay between the patterns of cell division, organ shape, and overlaying tissues on LRP morphogenesis by exploiting recent advances in live plant cell imaging and image analysis. Our 3D/4D image analysis revealed that early stage LRPs exhibit tangential divisions that create a ring of cells corralling a population of rapidly dividing cells at its center. The patterns of division in the latter population of cells during LRP morphogenesis are not stereotypical. In contrast, statistical analysis demonstrated that the shape of new LRPs is highly conserved. We tested the relative importance of cell division pattern versus overlaying tissues on LRP morphogenesis using mutant and transgenic approaches. The double mutant aurora1 (aur1) aur2 disrupts the pattern of LRP cell divisions and impacts its growth dynamics, yet the new organ's dome shape remains normal. In contrast, manipulating the properties of overlaying tissues disrupted LRP morphogenesis. We conclude that the interaction with overlaying tissues, rather than the precise pattern of divisions, is most important for LRP morphogenesis and optimizes the process of lateral root emergence.


Asunto(s)
Arabidopsis/metabolismo , División Celular/fisiología , Desarrollo de la Planta/fisiología , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aurora Quinasas , Raíces de Plantas/citología , Raíces de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
12.
Chembiochem ; 16(5): 766-71, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25711603

RESUMEN

Simple urea compounds ("phurealipids") have been identified from the entomopathogenic bacterium Photorhabdus luminescens, and their biosynthesis was elucidated. Very similar analogues of these compounds have been previously developed as inhibitors of juvenile hormone epoxide hydrolase (JHEH), a key enzyme in insect development and growth. Phurealipids also inhibit JHEH, and therefore phurealipids might contribute to bacterial virulence.


Asunto(s)
Productos Biológicos/farmacología , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Photorhabdus/química , Urea/farmacología , Animales , Productos Biológicos/química , Productos Biológicos/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Epóxido Hidrolasas/metabolismo , Insectos , Relación Estructura-Actividad , Urea/análogos & derivados , Urea/metabolismo
13.
Cell Tissue Res ; 360(1): 129-41, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25743693

RESUMEN

In light sheet-based fluorescence microscopy (LSFM), only the focal plane is illuminated by a laser light sheet. Hence, only the fluorophores within a thin volume of the specimen are excited. This reduces photo-bleaching and photo-toxic effects by several orders of magnitude compared with any other form of microscopy. Therefore, LSFM (aka single/selective-plane illumination microscopy [SPIM] or digitally scanned light sheet microscopy [DSLM]) is the technique of choice for the three-dimensional imaging of live or fixed and of small or large three-dimensional specimens. The parallel recording of millions of pixels with modern cameras provides an extremely fast acquisition speed. Recent developments address the penetration depth, the resolution and the recording speed of LSFM. The impact of LSFM on research areas such as three-dimensional cell cultures, neurosciences, plant biology and developmental biology is increasing at a rapid pace. The development of high-throughput LSFM is the next leap forward, allowing the application of LSFM in toxicology and drug discovery screening.


Asunto(s)
Células/citología , Microscopía Fluorescente/métodos , Imagen Molecular/métodos , Especificidad de Órganos , Animales , Disciplinas de las Ciencias Biológicas , Técnicas de Cultivo de Célula , Transferencia Resonante de Energía de Fluorescencia , Humanos
14.
BMC Cancer ; 15: 351, 2015 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-25933805

RESUMEN

BACKGROUND: The complex cellular networks within tumors, the cytokine milieu, and tumor immune escape mechanisms affecting infiltration and anti-tumor activity of immune cells are of great interest to understand tumor formation and to decipher novel access points for cancer therapy. However, cellular in vitro assays, which rely on monolayer cultures of mammalian cell lines, neglect the three-dimensional architecture of a tumor, thus limiting their validity for the in vivo situation. METHODS: Three-dimensional in vivo-like tumor spheroid were established from human cervical carcinoma cell lines as proof of concept to investigate infiltration and cytotoxicity of NK cells in a 96-well plate format, which is applicable for high-throughput screening. Tumor spheroids were monitored for NK cell infiltration and cytotoxicity by flow cytometry. Infiltrated NK cells, could be recovered by magnetic cell separation. RESULTS: The tumor spheroids were stable over several days with minor alterations in phenotypic appearance. The tumor spheroids expressed high levels of cellular ligands for the natural killer (NK) group 2D receptor (NKG2D), mediating spheroid destruction by primary human NK cells. Interestingly, destruction of a three-dimensional tumor spheroid took much longer when compared to the parental monolayer cultures. Moreover, destruction of tumor spheroids was accompanied by infiltration of a fraction of NK cells, which could be recovered at high purity. CONCLUSION: Tumor spheroids represent a versatile in vivo-like model system to study cytotoxicity and infiltration of immune cells in high-throughput screening. This system might proof useful for the investigation of the modulatory potential of soluble factors and cells of the tumor microenvironment on immune cell activity as well as profiling of patient-/donor-derived immune cells to personalize cellular immunotherapy.


Asunto(s)
Citotoxicidad Inmunológica , Linfocitos Infiltrantes de Tumor/inmunología , Línea Celular Tumoral , Técnicas de Cocultivo , Proteínas Ligadas a GPI/metabolismo , Humanos , Inmunidad Innata , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Asesinas Naturales , Esferoides Celulares/patología , Escape del Tumor
15.
BMC Plant Biol ; 14: 252, 2014 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-25260869

RESUMEN

BACKGROUND: Small Rab GTPases are important regulators of vesicular trafficking in plants. AtRabA1d, a member of the RabA1 subfamily of small GTPases, was previously found in the vesicle-rich apical dome of growing root hairs suggesting a role during tip growth; however, its specific intracellular localization and role in plants has not been well described. RESULTS: The transient expression of 35S::GFP:RabA1d construct in Allium porrum and Nicotiana benthamiana revealed vesicular structures, which were further corroborated in stable transformed Arabidopsis thaliana plants. GFP-RabA1d colocalized with the trans-Golgi network marker mCherry-VTI12 and with early FM4-64-labeled endosomal compartments. Late endosomes and endoplasmic reticulum labeled with FYVE-DsRed and ER-DsRed, respectively, were devoid of GFP-RabA1d. The accumulation of GFP-RabA1d in the core of brefeldin A (BFA)-induced-compartments and the quantitative upregulation of RabA1d protein levels after BFA treatment confirmed the association of RabA1d with early endosomes/TGN and its role in vesicle trafficking. Light-sheet microscopy revealed involvement of RabA1d in root development. In root cells, GFP-RabA1d followed cell plate expansion consistently with cytokinesis-related vesicular trafficking and membrane recycling. GFP-RabA1d accumulated in disc-like structures of nascent cell plates, which progressively evolved to marginal ring-like structures of the growing cell plates. During root hair growth and development, GFP-RabA1d was enriched at root hair bulges and at the apical dome of vigorously elongating root hairs. Importantly, GFP-RabA1d signal intensity exhibited an oscillatory behavior in-phase with tip growth. Progressively, this tip localization dissapeared in mature root hairs suggesting a link between tip localization of RabA1d and root hair elongation. Our results support a RabA1d role in events that require vigorous membrane trafficking. CONCLUSIONS: RabA1d is located in early endosomes/TGN and is involved in vesicle trafficking. RabA1d participates in both cell plate formation and root hair oscillatory tip growth. The specific GFP-RabA1d subcellular localization confirms a correlation between its specific spatio-temporal accumulation and local vesicle trafficking requirements during cell plate and root hair formation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Raíces de Plantas/enzimología , Proteínas de Unión al GTP rab/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Citocinesis , Genes Reporteros , Cebollas/genética , Cebollas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Transporte de Proteínas , Proteómica , Proteínas Recombinantes de Fusión , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Unión al GTP rab/genética , Red trans-Golgi/enzimología
16.
Adv Mater ; 36(8): e2306258, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37822216

RESUMEN

Tissue engineering holds great promise for biomedical research and healthcare, offering alternatives to animal models and enabling tissue regeneration and organ transplantation. 3D bioprinting stands out for its design flexibility and reproducibility. Here, an integrated fluorescent light sheet bioprinting and imaging system is presented that combines high printing speed (0.66 mm3 /s) and resolution (9 µm) with light sheet-based imaging. This approach employs direct laser patterning and a static light sheet for confined voxel crosslinking in photocrosslinkable materials. The developed bioprinter enables real-time monitoring of hydrogel crosslinking using fluorescent recovery after photobleaching (FRAP) and brightfield imaging as well as in situ light sheet imaging of cells. Human fibroblasts encapsulated in a thiol-ene click chemistry-based hydrogel exhibited high viability (83% ± 4.34%) and functionality. Furthermore, full-thickness skin constructs displayed characteristics of both epidermal and dermal layers and remained viable for 41 days. The integrated approach demonstrates the capabilities of light sheet bioprinting, offering high speed, resolution, and real-time characterization. Future enhancements involving solid-state laser scanning devices such as acousto-optic deflectors and modulators will further enhance resolution and speed, opening new opportunities in light-based bioprinting and advancing tissue engineering.


Asunto(s)
Bioimpresión , Animales , Humanos , Bioimpresión/métodos , Reproducibilidad de los Resultados , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Hidrogeles , Andamios del Tejido
17.
J Cell Sci ; 124(Pt 6): 978-87, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21378314

RESUMEN

The Golgi complex has a central role in the secretory pathway of all higher organisms. To explain the synthesis of its unique stacked structure in mammalian cells, two major models have been proposed. One suggests that it is synthesized de novo from the endoplasmic reticulum. The second model postulates a pre-existing Golgi template that serves as a scaffold for its biogenesis. To test these hypotheses directly, we have developed an approach in which we deplete the Golgi complex from living cells by laser nanosurgery, and subsequently analyze the 'Golgi-depleted' karyoplast using time-lapse and electron microscopy. We show that biosynthetic transport is blocked after Golgi depletion, but is restored 12 hours later. This recovery of secretory transport coincides with an ordered assembly of stacked Golgi structures, and we also observe the appearance of matrix proteins before that of Golgi enzymes. Functional experiments using RNA interference-mediated knockdown of GM130 further demonstrate the importance of the matrix during Golgi biogenesis. By contrast, the centrosome, which can also be removed by laser nanosurgery and is not reformed within the considered time frame, is not required for this process. Altogether, our data provide evidence that de novo Golgi biogenesis can occur in mammalian cells.


Asunto(s)
Aparato de Golgi/metabolismo , Nanotecnología/métodos , Animales , Línea Celular , Aparato de Golgi/ultraestructura , Humanos , Rayos Láser , Nanotecnología/instrumentación , Biogénesis de Organelos , Transporte de Proteínas , Proteínas/metabolismo
19.
Nat Methods ; 7(8): 637-42, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20601950

RESUMEN

Recording light-microscopy images of large, nontransparent specimens, such as developing multicellular organisms, is complicated by decreased contrast resulting from light scattering. Early zebrafish development can be captured by standard light-sheet microscopy, but new imaging strategies are required to obtain high-quality data of late development or of less transparent organisms. We combined digital scanned laser light-sheet fluorescence microscopy with incoherent structured-illumination microscopy (DSLM-SI) and created structured-illumination patterns with continuously adjustable frequencies. Our method discriminates the specimen-related scattered background from signal fluorescence, thereby removing out-of-focus light and optimizing the contrast of in-focus structures. DSLM-SI provides rapid control of the illumination pattern, exceptional imaging quality and high imaging speeds. We performed long-term imaging of zebrafish development for 58 h and fast multiple-view imaging of early Drosophila melanogaster development. We reconstructed cell positions over time from the Drosophila DSLM-SI data and created a fly digital embryo.


Asunto(s)
Microscopía/instrumentación , Microscopía/métodos , Animales , Drosophila melanogaster/crecimiento & desarrollo , Embrión no Mamífero , Pez Cebra/crecimiento & desarrollo
20.
Cell Tissue Res ; 352(1): 161-77, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23443300

RESUMEN

Conventional two-dimensional cell monolayers do not provide the geometrical, biochemical and mechanical cues found in real tissues. Cells in real tissues interact through chemical and mechanical stimuli with adjacent cells and via the extracellular matrix. Such a highly interconnected communication network extends along all three dimensions. This architecture is lost in two-dimensional cultures. Therefore, at least in many cases, two-dimensional cell monolayers do not represent a suitable in vitro tool to characterize accurately the biology of real tissues. Many studies performed over the last few years have demonstrated that the differences between three-dimensional and two-dimensional cultured cells are striking at the morphological and molecular levels and that three-dimensional cell cultures can be employed in order to shrink the gap between real tissues and in vitro cell models. End-point and long-term imaging of cellular and sub-cellular processes with fluorescence microscopy provides direct insight into the physiological behavior of three-dimensional cell cultures and their response to chemical or mechanical stimulation. Fluorescence imaging of three-dimensional cell cultures sets new challenges and imposes specific requirements concerning the choice of a suitable microscopy technique. Deep penetration into the specimen, high imaging speed and ultra-low intensity of the excitation light are key requirements. Light-sheet-based fluorescence microscopy (LSFM) offers a favorable combination of these requirements and is therefore currently established as the technique of choice for the study of three-dimensional cell cultures. This review illustrates the benefits of cellular spheroids in the life sciences and suggests that LSFM is essential for investigations of cellular and sub-cellular dynamic processes in three-dimensions over time and space.


Asunto(s)
Microscopía Fluorescente/métodos , Esferoides Celulares/citología , Esferoides Celulares/ultraestructura , Animales , Comunicación Celular , Técnicas de Cultivo de Célula/métodos , Supervivencia Celular , Ensayos de Selección de Medicamentos Antitumorales/métodos , Diseño de Equipo , Matriz Extracelular/metabolismo , Humanos , Microscopía Fluorescente/instrumentación , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Esferoides Celulares/metabolismo , Esferoides Celulares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA