Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 598(12): 2491-2505, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32196672

RESUMEN

KEY POINTS: Carbon dioxide levels are mildly elevated on the International Space Station and it is unknown whether this chronic exposure causes physiological changes to astronauts. We combined ∼4 mmHg ambient PCO2 with the strict head-down tilt bed rest model of spaceflight and this led to the development of optic disc oedema in one-half of the subjects. We demonstrate no change in arterialized PCO2 , cerebrovascular reactivity to CO2 or the hypercapnic ventilatory response. Our data suggest that the mild hypercapnic environment does not contribute to the development of spaceflight associated neuro-ocular syndrome. ABSTRACT: Chronically elevated carbon dioxide (CO2 ) levels can occur in confined spaces such as the International Space Station. Using the spaceflight analogue 30 days of strict 6° head-down tilt bed rest (HDTBR) in a mild hypercapnic environment ( PCO2 = ∼4 mmHg), we investigated arterialized PCO2 , cerebrovascular reactivity and the hypercapnic ventilatory response in 11 healthy subjects (five females) before, on days 1, 9, 15 and 30 of bed rest (BR), and 6 and 13 days after HDTBR. During all HDTBR time points, arterialized PCO2 was not significantly different from the pre-HDTBR measured in the 6° HDT posture, with a mean (95% confidence interval) increase of 1.2 mmHg (-0.2 to 2.5 mmHg, P = 0.122) on day 30 of HDTBR. Respiratory acidosis was never detected, although a mild metabolic alkalosis developed on day 30 of HDTBR by a mean (95% confidence interval) pH change of 0.032 (0.022-0.043; P < 0.001), which remained elevated by 0.021 (0.011-0.031; P < 0.001) 6 days after HDTBR. Arterialized pH returned to pre-HDTBR levels 13 days after BR with a change of -0.001 (-0.009 to 0.007; P = 0.991). Compared to pre-HDTBR, cerebrovascular reactivity during and after HDTBR did not change. Baseline ventilation, ventilatory recruitment threshold and the slope of the ventilatory response were similar between pre-HDTBR and all other time points. Taken together, these data suggest that the mildly increased ambient PCO2 combined with 30 days of strict 6° HDTBR did not change arterialized PCO2 levels. Therefore, the experimental conditions were not sufficient to elicit a detectable physiological response.


Asunto(s)
Dióxido de Carbono , Inclinación de Cabeza , Astronautas , Reposo en Cama/efectos adversos , Femenino , Humanos , Hipercapnia
2.
Circulation ; 140(9): 729-738, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31319685

RESUMEN

BACKGROUND: Astronauts returning to earth usually demonstrate reduced orthostatic tolerance when assessed on a tilt table or quiet standing, but no studies have evaluated postflight orthostatic tolerance during activities of daily living, when it is most clinically relevant. Ambulatory blood pressure (BP) variability also is associated with orthostatic intolerance in certain patient populations and can capture clinically significant orthostatic hypotension during activities of daily living, especially when measured on a beat-to-beat basis. We evaluated the impact of prolonged spaceflight on orthostatic tolerance and BP profiles in astronauts. METHODS: Ambulatory beat-to-beat BP was recorded using a portable device for multiple 24-hour time periods before, during, and after 6 months of spaceflight in 12 astronauts (4 women; age 48±5 [mean±SD] years). BP variability in the time domain was calculated as the SD. Systolic BP distribution during activities of daily living was characterized by skewness and kurtosis. RESULTS: In contrast with results from previous studies that used tilt tables or stand tests, no astronaut experienced orthostatic intolerance/hypotension during activities of daily living before or after spaceflight. Also, 24-hour systolic BP decreased in space (120±10 mm Hg before spaceflight versus 106±9 mm Hg during spaceflight; P<0.01), but it returned to normal upon landing (122±13 mm Hg). Diastolic BP was unchanged during and after spaceflight. Systolic and diastolic BP variability remained the same before, during, and after spaceflight (both P>0.05). The skewness of systolic BP increased in space (0.74±0.51 versus 1.43±1.00; P=0.001), indicating that signal fluctuations became asymmetrical; however, it returned to preflight levels after landing (0.51±0.42). The kurtosis increased in space (5.01±7.67 versus 11.10±11.79; P=0.010), suggesting that fluctuations concentrated around the mean with a narrow distribution; however, it also returned to preflight levels (2.21±2.56) after return to earth. CONCLUSIONS: Given current countermeasures including in-flight exercise training and volume resuscitation on return, no astronauts experienced orthostatic hypotension or intolerance during routine (for landing day) activities in the initial 24 hours after landing following 6 months in space. Prolonged exposure to spaceflight had little impact on systolic BP variability and its distribution, although the latter showed a transient change in space (accompanied by mild relative hypotension), all of which returned to preflight values after return to earth.


Asunto(s)
Presión Sanguínea/fisiología , Vuelo Espacial , Adulto , Astronautas , Monitoreo Ambulatorio de la Presión Arterial/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Intolerancia Ortostática/diagnóstico
3.
Radiology ; 295(3): 640-648, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32286194

RESUMEN

Background Astronauts on long-duration spaceflight missions may develop changes in ocular structure and function, which can persist for years after the return to normal gravity. Chronic exposure to elevated intracranial pressure during spaceflight is hypothesized to be a contributing factor, however, the etiologic causes remain unknown. Purpose To investigate the intracranial effects of microgravity by measuring combined changes in intracranial volumetric parameters, pituitary morphologic structure, and aqueductal cerebrospinal fluid (CSF) hydrodynamics relative to spaceflight and to establish a comprehensive model of recovery after return to Earth. Materials and Methods This prospective longitudinal MRI study enrolled astronauts with planned long-duration spaceflight. Measures were conducted before spaceflight followed by 1, 30, 90, 180, and 360 days after landing. Intracranial volumetry and aqueductal CSF hydrodynamics (CSF peak-to-peak velocity amplitude and aqueductal stroke volume) were quantified for each phase. Qualitative and quantitative changes in pre- to postflight (day 1) pituitary morphologic structure were determined. Statistical analysis included separate mixed-effects models per dependent variable with repeated observations over time. Results Eleven astronauts (mean age, 45 years ± 5 [standard deviation]; 10 men) showed increased mean volumes in the brain (28 mL; P < .001), white matter (26 mL; P < .001), mean lateral ventricles (2.2 mL; P < .001), and mean summated brain and CSF (33 mL; P < .001) at postflight day 1 with corresponding increases in mean aqueductal stroke volume (14.6 µL; P = .045) and mean CSF peak-to-peak velocity magnitude (2.2 cm/sec; P = .01). Summated mean brain and CSF volumes remained increased at 360 days after spaceflight (28 mL; P < .001). Qualitatively, six of 11 (55%) astronauts developed or showed exacerbated pituitary dome depression compared with baseline. Average midline pituitary height decreased from 5.9 to 5.3 mm (P < .001). Conclusion Long-duration spaceflight was associated with increased pituitary deformation, augmented aqueductal cerebrospinal fluid (CSF) hydrodynamics, and expansion of summated brain and CSF volumes. Summated brain and CSF volumetric expansion persisted up to 1 year into recovery, suggesting permanent alteration. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Lev in this issue.


Asunto(s)
Astronautas , Encéfalo/diagnóstico por imagen , Presión del Líquido Cefalorraquídeo/fisiología , Presión Intracraneal/fisiología , Imagen por Resonancia Magnética , Vuelo Espacial , Simulación de Ingravidez , Adulto , Acueducto del Mesencéfalo/diagnóstico por imagen , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Hipófisis/diagnóstico por imagen , Estudios Prospectivos
4.
Eur J Appl Physiol ; 115(12): 2631-40, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26438067

RESUMEN

PURPOSE: In addition to serious bone, vestibular, and muscle deterioration, space flight leads to cardiovascular dysfunction upon return to gravity. In seeking a countermeasure to space flight-induced orthostatic intolerance, we previously determined that exposure to artificial gravity (AG) training in a centrifuge improved orthostatic tolerance of ambulatory subjects. This protocol was more effective in men than women and more effective when subjects exercised. METHODS: We now determine the orthostatic tolerance limit (OTL) of cardiovascularly deconditioned (furosemide) men and women on one day following 90 min of AG compared to a control day (90 min of head-down bed rest, HDBR). RESULTS: There were three major findings: a short bout of artificial gravity improved orthostatic tolerance of hypovolemic men (30 %) and women (22 %). Men and women demonstrated different mechanisms of cardiovascular regulation on AG and HDBR days; women maintained systolic blood pressure the same after HDBR and AG exposure while men's systolic pressure dropped (11 ± 2.9 mmHg) after AG. Third, as presyncopal symptoms developed, men's and women's cardiac output and stroke volume dropped to the same level on both days, even though the OTL test lasted significantly longer on the AG day, indicating cardiac filling as a likely variable to trigger presyncope. CONCLUSIONS: (1) Even with gender differences, AG should be considered as a space flight countermeasure to be applied to astronauts before reentry into gravity, (2) men and women regulate blood pressure during an orthostatic stress differently following exposure to artificial gravity and (3) the trigger for presyncope may be cardiac filling.


Asunto(s)
Presión Sanguínea , Hipovolemia/fisiopatología , Intolerancia Ortostática/fisiopatología , Ingravidez/efectos adversos , Adulto , Femenino , Humanos , Hipovolemia/etiología , Masculino , Intolerancia Ortostática/etiología , Factores Sexuales
7.
Eur J Appl Physiol ; 114(3): 597-608, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24337701

RESUMEN

INTRODUCTION: Abdomen-high, lower body graded compression garments (GCGs) may represent the next-generation of orthostatic intolerance protection with applications for exploration missions and commercial space flight. PURPOSE: To evaluate the efficacy of the GCG to prevent orthostatic intolerance after a 14-day 6° head-down tilt bed rest (BR) and to determine whether wearing thigh-high compression garments impairs recovery from BR. METHODS: Sixteen (12 M, 4 F) subjects participated in a 15-min 80° head-up tilt test 5 day before BR (BR-5), on the last morning of BR (BR+0), and on day 1 (BR+1) and 3 after BR (BR+3). No subjects wore the GCG on BR-5, and all subjects wore the GCG during testing on BR+0. Control subjects (n = 8) wore the GCG only through testing on BR+0. Treatment subjects (n = 8) wore the GCG on BR+0 and thigh-high garments on BR+1 and BR+2. RESULTS: No subjects were presyncopal during tilt on BR+0 while wearing the GCG. Despite lower plasma volume index (BR-5: 1.52 ± 0.06, BR+0: 1.32 ± 0.05 l/m(2)), the tilt-induced increase in heart rate (ΔHR, 17 ± 2 bpm) and decrease in stroke volume (ΔSV, -28 ± 3 ml) on BR+0 were less than on BR-5 (24 ± 2 bpm, -43 ± 4 ml). On BR+1 ΔHR in the control group (33 ± 4 bpm) was higher than in the treatment group (23 ± 2 bpm) but there were no group differences on BR+3. CONCLUSIONS: Wearing the GCG prevented the orthostatic intolerance that is normally present after BR. Thigh-high garments provided protection after BR, and wearing these garments did not impair recovery.


Asunto(s)
Vendajes de Compresión , Intolerancia Ortostática/fisiopatología , Adulto , Reposo en Cama/métodos , Presión Sanguínea/fisiología , Gasto Cardíaco/fisiología , Femenino , Inclinación de Cabeza/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Volumen Sistólico/fisiología
8.
Aviat Space Environ Med ; 85(4): 407-13, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24754201

RESUMEN

BACKGROUND: Earth-based simulations of physiologic responses to space mission activities are needed to develop prospective countermeasures. To determine whether upright lower body positive pressure (LBPP) provides a suitable space mission simulation, we investigated the cardiovascular responses of normovolemic and hypovolemic men and women to supine and orthostatic stress induced by head-up tilt (HUT) and upright LBPP, representing standing in lunar, Martian, and Earth gravities. METHODS: Six men and six women were tested in normovolemic and hypovolemic (furosemide, intravenous, 0.5 mg x kg(-1)) conditions. Continuous electrocardiogram, blood pressure, segmental bioimpedance, and stroke volume (echocardiography) were recorded supine and at lunar, Martian, and Earth gravities (10 degrees, 20 degrees, and 80 degrees HUT vs. 20%, 40%, and 100% bodyweight upright LBPP), respectively. Cardiovascular responses were assessed from mean values, spectral powers, and spontaneous baroreflex parameters. RESULTS: Hypovolemia reduced plasma volume by approximately 10% and stroke volume by approximately 25% at supine, and increasing orthostatic stress resulted in further reductions. Upright LBPP induced more plasma volume losses at simulated lunar and Martian gravities compared with HUT, while both techniques induced comparable central hypovolemia at each stress. Cardiovascular responses to orthostatic stress were comparable between HUT and upright LBPP in both normovolemic and hypovolemic conditions; however, hypovolemic blood pressure was greater during standing at 100% bodyweight compared to 80 degree HUT due to a greater increase of total peripheral resistance. CONCLUSIONS: The comparable cardiovascular response to HUT and upright LBPP support the use of upright LBPP as a potential model to simulate activity in lunar and Martian gravities.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Gravedad Alterada/efectos adversos , Hipovolemia/fisiopatología , Simulación del Espacio , Estrés Fisiológico/fisiología , Adulto , Presión Sanguínea/fisiología , Estudios de Casos y Controles , Planeta Tierra , Electrocardiografía , Femenino , Gravitación , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Marte , Luna , Postura/fisiología , Vuelo Espacial , Volumen Sistólico/fisiología , Resistencia Vascular/fisiología , Adulto Joven
9.
Aviat Space Environ Med ; 85(4): 414-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24754202

RESUMEN

INTRODUCTION: In this study we compare two models [head-up tilt (HUT) vs. body unweighting using lower body positive pressure (LBPP)] to simulate Moon, Mars, and Earth gravities. A literature search did not reveal any comparisons of this type performed previously. We hypothesized that segmental fluid volume shifts (thorax, abdomen, upper and lower leg), cardiac output, and blood pressure (BP), heart rate (HR), and total peripheral resistance to standing would be similar in the LBPP and HUT models. METHODS: There were 21 subjects who were studied while supine (simulation of spaceflight) and standing at 100% (Earth), 40% (Mars), and 20% (Moon) bodyweight produced by LBPP in Alter-G and while supine and tilted at 80 degrees, 20 degrees, and 10 degrees HUT (analogues of Earth, Mars, and Moon gravities, respectively). RESULTS: Compared to supine, fluid shifts from the chest to the abdomen, increases in HR, and decreases in stroke volume were greater at 100% bodyweight than at reduced weights in response to both LBPP and HUT. Differences between the two models were found for systolic BP, diastolic BP, mean arterial BP, stroke volume, total peripheral resistance, and thorax and abdomen impedances, while HR, cardiac output, and upper and lower leg impedances were similar. CONCLUSIONS: Bodyweight unloading via both LBPP and HUT resulted in cardiovascular changes similar to those anticipated in actual reduced gravity environments. The LBPP model/Alter-G has the advantage of providing an environment that allows dynamic activity at reduced bodyweight; however, the significant increase in blood pressures in the Alter-GC may favor the HUT model.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Gravedad Alterada , Simulación del Espacio/métodos , Adulto , Presión Sanguínea/fisiología , Gasto Cardíaco/fisiología , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Marte , Modelos Cardiovasculares , Luna , Intolerancia Ortostática , Postura/fisiología , Vuelo Espacial , Volumen Sistólico/fisiología , Resistencia Vascular/fisiología , Adulto Joven
10.
Am J Physiol Heart Circ Physiol ; 304(8): H1114-23, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23396455

RESUMEN

Spaceflight-induced orthostatic intolerance has been studied for decades. Although ∼22% of the astronaut corps are women, most mechanistic studies use mostly male subjects, despite known sex differences in autonomic control and postflight orthostatic intolerance. We studied adrenergic, baroreflex, and autonomic indexes during continuous infusions of vasoactive drugs in men and women during a 60-day head-down bed rest. Volunteers were tested before bed rest (20 men and 10 women) and around day 30 (20 men and 10 women) and day 60 (16 men and 8 women) of bed rest. Three increasing doses of phenylephrine (PE) and sodium nitroprusside were infused for 10 min after an infusion of normal saline. A 20-min rest period separated the phenylephrine and sodium nitroprusside infusions. Autonomic activity was approximated by spectral indexes of heart rate and blood pressure variability, and baroreflex sensitivity was measured by the spontaneous baroreflex slope. Parasympathetic modulation and baroreflex sensitivity decreased with bed rest, with women experiencing a larger decrease in baroreflex sensitivity by day 30 than men. The sympathetic activation of men and parasympathetic responsiveness of women in blood pressure control during physiological stress were preserved throughout bed rest. During PE infusions, women experienced saturation of the R-R interval at high frequency, whereas men did not, revealing a sex difference in the parabolic relationship between high-frequency R-R interval, a measurement of respiratory sinus arrhythmia, and R-R interval. These sex differences in blood pressure control during simulated microgravity reveal the need to study sex differences in long-duration spaceflight to ensure the health and safety of the entire astronaut corps.


Asunto(s)
Presión Sanguínea/fisiología , Inclinación de Cabeza/fisiología , Intolerancia Ortostática/fisiopatología , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Adulto , Sistema Nervioso Autónomo/efectos de los fármacos , Sistema Nervioso Autónomo/fisiología , Barorreflejo/efectos de los fármacos , Barorreflejo/fisiología , Reposo en Cama , Presión Sanguínea/efectos de los fármacos , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Nitroprusiato/farmacología , Fenilefrina/farmacología , Volumen Plasmático/efectos de los fármacos , Volumen Plasmático/fisiología , Factores Sexuales , Vuelo Espacial , Vasodilatadores/farmacología , Simulación de Ingravidez
12.
Aviat Space Environ Med ; 84(5): 459-66, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23713210

RESUMEN

UNLABELLED: Space Shuttle astronauts wore an inflatable antigravity suit during reentry and landing, and astronauts and cosmonauts wear an elastic-compression garment (with lacing) during Soyuz re-entry and landings and in the first few days of recovery. However, neither garment is an ideal countermeasure to spaceflight-induced orthostatic intolerance. Our laboratory has been investigating an elastic graded compression garment (GCG) that applies graduated pressures from the feet to the abdomen for use following International Space Station missions and possibly during exploration missions. METHODS: Before and after Shuttle missions, 14 astronauts participated in a 3.5-min stand test. The stand test was conducted without garments preflight. On landing day, 7 astronauts wore the GCG while 7 astronauts did not (controls). Heart rate and blood pressure were measured in all astronauts during prone rest and standing. Stroke volume and cardiac output were measured only in GCG subjects. RESULTS: No astronauts in either group became presyncopal during the stand test preflight or postflight. The change in heart rate from prone to standing was lower in the GCG subjects on landing day than in the control subjects. Within the GCG subjects only, the increase in total peripheral resistance from prone to standing was higher after spaceflight. CONCLUSIONS: The GCG prevented tachycardia and increased total peripheral resistance with standing after spaceflight. The GCG shows promise as a countermeasure against post-spaceflight orthostatic intolerance, can be easily donned, and is relatively comfortable to wear, but has not been validated after long-duration spaceflight.


Asunto(s)
Presión Sanguínea , Vendajes de Compresión , Trajes Gravitatorios , Frecuencia Cardíaca , Intolerancia Ortostática/prevención & control , Vuelo Espacial , Abdomen , Adulto , Gasto Cardíaco , Estudios de Casos y Controles , Femenino , Humanos , Pierna , Masculino , Persona de Mediana Edad , Intolerancia Ortostática/etiología , Postura , Volumen Sistólico , Síncope/prevención & control , Resultado del Tratamiento , Resistencia Vascular
13.
Aviat Space Environ Med ; 84(11): 1140-6, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24279226

RESUMEN

BACKGROUND: We hypothesized that human cardiovascular responses to standing in reduced gravity environments, as on the Moon or Mars, could be modeled using a lower body positive pressure (LBPP) chamber. METHODS: Heart rate, blood pressure, body segment fluid shifts, ECG, indexes of sympathetic, parasympathetic balance, and baroreflex control of the heart and periphery plus echocardiographic measures of cardiac function were recorded from seven men and seven women supine and standing at 100% (Earth), 40% (-Mars), and 20% (-Moon) bodyweights (BW). RESULTS: The fluid shifted from the chest was greater when standing at 100% BW than at 20% and 40% BW, while fluid pooled in the abdomen was similar at all BWs. Compared to moving from supine to standing at 100% BW, moving to 20% and 40% BW resulted in smaller decreases in stroke volume and pulse pressure, smaller increases in heart rate and smaller decreases in parasympathetic control of heart rate, baroreflex slope, numbers of blood pressure ramps, and much reduced indexes of sympathetic drive to the heart and periphery. However, peripheral vascular resistance, systolic pressure, and baroreflex effectiveness were elevated during 20% and 40% BW, compared to supine and standing at 100% BW. DISCUSSION: Standing at reduced bodyweight suppressed indexes of sympathetic control of heart rate and peripheral vasomotion. Regulatory responses indicated a combination of arterial and cardiopulmonary baroreflex control: mean heart rate, vasomotion, and baroreflex sensitivity appeared to be more under cardiopulmonary control while baroreflex effectiveness appeared to be driven more by the arterial baroreflex.


Asunto(s)
Barorreflejo/fisiología , Presión Sanguínea/fisiología , Hipogravedad , Vuelo Espacial , Sistema Cardiovascular , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Volumen Sistólico/fisiología , Resistencia Vascular/fisiología
14.
Eur J Appl Physiol ; 112(2): 605-16, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21626041

RESUMEN

We studied 15 men (8 treatment, 7 control) before and after 21 days of 6º head-down tilt to determine whether daily, 1-h exposures to 1.0 G(z) (at the heart) artificial gravity (AG) would prevent bed rest-induced cardiovascular deconditioning. Testing included echocardiographic analysis of cardiac function, plasma volume (PV), aerobic power (VO(2)pk) and cardiovascular and neuroendocrine responses to 80º head-up tilt (HUT). Data collected during HUT were ECG, stroke volume (SV), blood pressure (BP) and blood for catecholamines and vasoactive hormones. Heart rate (HR), cardiac output (CO), total peripheral resistance, and spectral power of BP and HR were calculated. Bed rest decreased PV, supine and HUT SV, and indices of cardiac function in both groups. Although PV was decreased in control and AG after bed rest, AG attenuated the decrease in orthostatic tolerance [pre- to post-bed rest change; control: -11.8 ± 2.0, AG: -6.0 ± 2.8 min (p = 0.012)] and VO(2)pk [pre- to post-bed rest change; control: -0.39 ± 0.11, AG: -0.17 ± 0.06 L/min (p = 0.041)]. AG prevented increases in pre-tilt levels of plasma renin activity [pre- to post-bed rest change; control: 1.53 ± 0.23, AG: -0.07 ± 0.34 ng/mL/h (p = 0.001)] and angiotensin II [pre- to post-bed rest change; control: 3.00 ± 1.04, AG: -0.63 ± 0.81 pg/mL (p = 0.009)] and increased HUT aldosterone [post-bed rest; control: 107 ± 30 pg/mL, AG: 229 ± 68 pg/mL (p = 0.045)] and norepinephrine [post-bed rest; control: 453 ± 107, AG: 732 ± 131 pg/mL (p = 0.003)]. We conclude that AG can mitigate some aspects of bed rest-induced cardiovascular deconditioning, including orthostatic intolerance and aerobic power. Mechanisms of improvement were not cardiac-mediated, but likely through improved sympathetic responsiveness to orthostatic stress.


Asunto(s)
Reposo en Cama/efectos adversos , Terapia por Ejercicio , Gravedad Alterada , Corazón/fisiopatología , Miocardio/patología , Esfuerzo Físico , Aptitud Física , Adulto , Atrofia , Femenino , Humanos , Masculino
15.
Aviat Space Environ Med ; 83(10): 995-1000, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23066623

RESUMEN

INTRODUCTION: With missions planned to travel greater distances from Earth at ranges that make real-time two-way communication impractical, astronauts will be required to perform autonomous medical diagnostic procedures during future exploration missions. Virtual guidance is a form of just-in-time training developed to allow novice ultrasound operators to acquire diagnostically-adequate images of clinically relevant anatomical structures using a prerecorded audio/visual tutorial viewed in real-time. METHODS: Individuals without previous experience in ultrasound were recruited to perform carotid artery (N = 10) and ophthalmic (N = 9) ultrasound examinations using virtual guidance as their only training tool. In the carotid group, each untrained operator acquired two-dimensional, pulsed and color Doppler of the carotid artery. In the ophthalmic group, operators acquired representative images of the anterior chamber of the eye, retina, optic nerve, and nerve sheath. Ultrasound image quality was evaluated by independent imaging experts. RESULTS: Of the studies, 8 of the 10 carotid and 17 of 18 of the ophthalmic images (2 images collected per study) were judged to be diagnostically adequate. The quality of all but one of the ophthalmic images ranged from adequate to excellent. DISCUSSION: Diagnostically-adequate carotid and ophthalmic ultrasound examinations can be obtained by previously untrained operators with assistance from only an audio/video tutorial viewed in real time while scanning. This form of just-in-time training, which can be applied to other examinations, represents an opportunity to acquire important information for NASA flight surgeons and researchers when trained medical personnel are not available or when remote guidance is impractical.


Asunto(s)
Medicina Aeroespacial/educación , Astronautas/educación , Arterias Carótidas/diagnóstico por imagen , Educación Médica/métodos , Ojo/diagnóstico por imagen , Bibliotecas Digitales , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vuelo Espacial , Ultrasonografía Doppler en Color , Ultrasonografía Doppler de Pulso
16.
JAMA Ophthalmol ; 140(8): 763-770, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35708665

RESUMEN

Importance: Countermeasures that reverse the headward fluid shift experienced in weightlessness have the potential to mitigate spaceflight-associated neuro-ocular syndrome. This study investigated whether use of the countermeasure lower-body negative pressure during spaceflight was associated with changes in ocular structure. Objective: To determine whether changes to the optic nerve head and retina during spaceflight can be mitigated by brief in-flight application of 25-mm Hg lower-body negative pressure. Design, Setting, and Participants: In the National Aeronautics and Space Administration's "Fluid Shifts Study," a prospective cohort study, optical coherence tomography scans of the optic nerve head and macula were obtained from US and international crew members before flight, in-flight, and up to 180 days after return to Earth. In-flight scans were obtained both under normal weightless conditions and 10 to 20 minutes into lower-body negative pressure exposure. Preflight and postflight data were collected in the seated, supine, and head-down tilt postures. Crew members completed 6- to 12-month missions that took place on the International Space Station. Data were analyzed from 2016 to 2021. Interventions or Exposures: Spaceflight and lower-body negative pressure. Main Outcomes and Measures: Changes in minimum rim width, optic cup volume, Bruch membrane opening height, peripapillary total retinal thickness, and macular thickness. Results: Mean (SD) flight duration for the 14 crew members (mean [SD] age, 45 [6] years; 11 male crew members [79%]) was 214 (72) days. Ocular changes on flight day 150, as compared with preflight seated, included an increase in minimum rim width (33.8 µm; 95% CI, 27.9-39.7 µm; P < .001), decrease in cup volume (0.038 mm3; 95% CI, 0.030-0.046 mm3; P < .001), posterior displacement of Bruch membrane opening (-9.0 µm; 95% CI, -15.7 to -2.2 µm; P = .009), and decrease in macular thickness (fovea to 500 µm, 5.1 µm; 95% CI, 3.5-6.8 µm; P < .001). Brief exposure to lower-body negative pressure did not affect these parameters. Conclusions and Relevance: Results of this cohort study suggest that peripapillary tissue thickening, decreased cup volume, and mild central macular thinning were associated with long-duration spaceflight. Acute exposure to 25-mm Hg lower-body negative pressure did not alter optic nerve head or retinal morphology, suggesting that longer durations of a fluid shift reversal may be needed to mitigate spaceflight-induced changes and/or other factors are involved.


Asunto(s)
Disco Óptico , Vuelo Espacial , Estudios de Cohortes , Transferencias de Fluidos Corporales/fisiología , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Retina/diagnóstico por imagen , Vuelo Espacial/métodos
17.
Mayo Clin Proc ; 97(7): 1237-1246, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35787853

RESUMEN

OBJECTIVE: To determine the long-term cardiovascular disease risk of astronauts with spaceflight exposure compared with a well-matched cohort. METHODS: National Aeronautics and Space Administration (NASA) astronauts are selected into their profession based upon education, unique skills, and health and are exposed to cardiovascular disease risk factors during spaceflight. The Cooper Center Longitudinal Study (CCLS) is a generally healthy cohort from a preventive medicine clinic in Dallas, Texas. Using a matched cohort design, astronauts who were selected beginning April 1, 1959, (and each subsequent selection class through 2009) and exposed to spaceflight were matched to CCLS participants who met astronaut selection criteria; 1514 CCLS participants matched to 303 astronauts in a 5-to-1 ratio on sex, date of birth, and age. The outcome of cardiovascular mortality through December 31, 2016, was determined by death certificate or National Death Index. RESULTS: There were 11 deaths caused by cardiovascular disease (CVD) among astronauts and 46 among CCLS participants. There was no evidence of increased mortality risk in astronauts (hazard ratio [HR]=1.10; 95% confidence interval [CI], 0.50 to 2.45) with adjustment for baseline cardiovascular covariates. However, the secondary outcome of CVD events showed an increased adjusted risk in astronauts (HR=2.41; 95% CI, 1.26 to 4.63). CONCLUSION: No increased risk of CVD mortality was observed in astronauts with spaceflight exposure compared with a well-matched cohort, but there was evidence of increased total CVD events. Given that the duration of spaceflight will increase, particularly on missions to Mars, continued surveillance and mitigation of CVD risk is needed to ensure the safety of those who venture into space.


Asunto(s)
Astronautas , Enfermedades Cardiovasculares , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Estudios Longitudinales , Factores de Riesgo , Estados Unidos/epidemiología , United States National Aeronautics and Space Administration
18.
J Appl Physiol (1985) ; 133(3): 721-731, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35861522

RESUMEN

Weightlessness induces a cephalad shift of blood and cerebrospinal fluid that may increase intracranial pressure (ICP) during spaceflight, whereas lower body negative pressure (LBNP) may provide an opportunity to caudally redistribute fluids and lower ICP. To investigate the effects of spaceflight and LBNP on noninvasive indicators of ICP (nICP), we studied 13 crewmembers before and after spaceflight in seated, supine, and 15° head-down tilt postures, and at ∼45 and ∼150 days of spaceflight with and without 25 mmHg LBNP. We used four techniques to quantify nICP: cerebral and cochlear fluid pressure (CCFP), otoacoustic emissions (OAE), ultrasound measures of optic nerve sheath diameter (ONSD), and ultrasound-based internal jugular vein pressure (IJVp). On flight day 45, two nICP measures were lower than preflight supine posture [CCFP: mean difference -98.5 -nL (CI: -190.8 to -6.1 -nL), P = 0.037]; [OAE: -19.7° (CI: -10.4° to -29.1°), P < 0.001], but not significantly different from preflight seated measures. Conversely, ONSD was not different than any preflight posture, whereas IJVp was significantly greater than preflight seated measures [14.3 mmHg (CI: 10.1 to 18.5 mmHg), P < 0.001], but not significantly different than preflight supine measures. During spaceflight, acute LBNP application did not cause a significant change in nICP indicators. These data suggest that during spaceflight, nICP is not elevated above values observed in the seated posture on Earth. Invasive measures would be needed to provide absolute ICP values and more precise indications of ICP change during various phases of spaceflight.NEW & NOTEWORTHY The current study provides new evidence that intracranial pressure (ICP), as assessed with noninvasive measures, may not be elevated during long-duration spaceflight. In addition, the acute use of lower body negative pressure did not significantly reduce indicators of ICP during weightlessness.


Asunto(s)
Vuelo Espacial , Ingravidez , Inclinación de Cabeza/fisiología , Presión Intracraneal/fisiología , Vuelo Espacial/métodos , Simulación de Ingravidez
19.
Aviat Space Environ Med ; 82(6): 648-53, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21702317

RESUMEN

INTRODUCTION: Astronauts have worn an inflatable antigravity suit (AGS) during Space Shuttle re-entry and landing to protect against hypotension and syncope, but ambulation with an inflated AGS requires significant effort and may prevent successful completion of an unaided emergency egress from the vehicle. NASA is considering the use of alternative garments to provide protection against post-spaceflight orthostatic intolerance. The purpose of this study was to compare the metabolic cost of walking in NASA's current AGS with that of walking in a commercially available elastic compression garment (thigh-high stockings), a candidate garment for use after exploration missions. METHODS: There were 10 volunteers (5 men, 5 women) who walked on a treadmill at 5.6 km x h(-1) for 5 min, a simulation of unaided egress previously used in our laboratory, in 3 different conditions presented in random order: wearing exercise clothes, wearing elastic compression garments, and wearing the AGS. Oxygen consumption (Vo2), carbon dioxide production (Vco2), and ventilation (V(E)) were compared using repeated-measures ANOVA and Tukey's Honestly Significant Difference test. RESULTS: Vo2 while wearing the AGS was 12% greater than when wearing the elastic compression garments and 15% greater than while wearing exercise clothes. There were no differences between the elastic compression garments and exercise clothes only conditions. Vco2 and VE also were greater while walking in the AGS than walking in the elastic compression garments or exercise clothes. CONCLUSIONS: Wearing elastic compression garments as a countermeasure to post-spaceflight orthostatic intolerance may not impair unaided egress from a space vehicle.


Asunto(s)
Astronautas , Vestuario , Metabolismo Energético/fisiología , Intolerancia Ortostática/prevención & control , Vuelo Espacial , Caminata/fisiología , Adulto , Presión Sanguínea/fisiología , Prueba de Esfuerzo , Femenino , Trajes Gravitatorios , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Consumo de Oxígeno/fisiología
20.
Eye (Lond) ; 35(7): 1869-1878, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33514895

RESUMEN

BACKGROUND/OBJECTIVES: Spaceflight associated neuro-ocular syndrome (SANS), a health risk related to long-duration spaceflight, is hypothesized to result from a headward fluid shift that occurs with the loss of hydrostatic pressure gradients in weightlessness. Shifts in the vascular and cerebrospinal fluid compartments alter the mechanical forces at the posterior eye and lead to flattening of the posterior ocular globe. The goal of the present study was to develop a method to quantify globe flattening observed by magnetic resonance imaging after spaceflight. SUBJECTS/METHODS: Volumetric displacement of the posterior globe was quantified in 10 astronauts at 5 time points after spaceflight missions of ~6 months. RESULTS: Mean globe volumetric displacement was 9.88 mm3 (95% CI 4.56-15.19 mm3, p < 0.001) on the first day of assessment after the mission (R[return]+ 1 day); 9.00 mm3 (95% CI 3.73-14.27 mm3, p = 0.001) at R + 30 days; 6.53 mm3 (95% CI 1.24-11.83 mm3, p < 0.05) at R + 90 days; 4.45 mm3 (95% CI -0.96 to 9.86 mm3, p = 0.12) at R + 180 days; and 7.21 mm3 (95% CI 1.82-12.60 mm3, p < 0.01) at R + 360 days. CONCLUSIONS: There was a consistent inward displacement of the globe at the optic nerve, which had only partially resolved 1 year after landing. More pronounced globe flattening has been observed in previous studies of astronauts; however, those observations lacked quantitative measures and were subjective in nature. The novel automated method described here allows for detailed quantification of structural changes in the posterior globe that may lead to an improved understanding of SANS.


Asunto(s)
Vuelo Espacial , Ingravidez , Astronautas , Humanos , Presión Intracraneal , Imagen por Resonancia Magnética , Ingravidez/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA