Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 47: 114-123, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25884141

RESUMEN

Aquamin is a commercially-available supplement derived from the algae species Lithothamnion, which has proven osteogenic potential. By harnessing this potential and combining Aquamin with a collagen scaffold, with architecture and composition optimised for bone repair, the aim of this study was to develop a natural osteo-stimulative bone graft substitute. A fabrication process was developed to incorporate Aquamin into scaffolds to produce collagen-Aquamin (CollAqua) scaffolds at two different Aquamin concentrations, 100F or 500F (equivalent weight% of collagen or five times the weight of collagen respectively). CollAqua constructs had improved mechanical properties which were achieved without reducing the scaffold׳s permeability or porosity below the minimum level required for successful bone tissue engineering. The fabrication process produced a homogenous Aquamin distribution throughout the scaffold. Release kinetics revealed that in the first 12h, the entire Aquamin content was released from the 100F however, less than half of Aquamin in the 500F was released with the remainder released approximately 21 days later giving an initial burst release followed by a delayed release. Osteoblasts cultured on the CollAqua scaffolds showed improved osteogenesis as measured by alkaline phosphatase, osteopontin and osteocalcin expression. This was confirmed by increased mineralisation as determined by von Kossa and Alizarin red staining. In conclusion, a cell and growth factor free collagen-based bone graft substitute with enhanced mechanical properties has been developed. The addition of Aquamin to the collagen biomaterial significantly improved mineralisation by osteoblasts and results in a new product which may be capable of enhancing osteogenesis to facilitate bone repair in vivo.


Asunto(s)
Sustitutos de Huesos/química , Trasplante Óseo , Colágeno/química , Suplementos Dietéticos , Fenómenos Mecánicos , Minerales/farmacología , Osteogénesis/efectos de los fármacos , Animales , Calcificación Fisiológica/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteocalcina/metabolismo , Osteopontina/metabolismo , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA