Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale Res Lett ; 12(1): 148, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28241672

RESUMEN

Single-phase mixed aluminates-titanates Nd1-x Sr x Al1-x Ti x O3 (x = 0.3 ÷ 0.9) were prepared from stoichiometric amounts of constituent oxides Nd2O3, Al2O3, TiO2 and strontium carbonate SrCO3 by solid-state reaction technique in air at 1773 K. Crystal structure parameters of Nd1-x Sr x Al1-x Ti x O3 were refined by full-profile Rietveld refinement in space groups R [Formula: see text] c (x = 0.3, 0.5, 0.7 and 0.8) and Pm [Formula: see text] m (x = 0.9). Comparison of the obtained structural parameters with the literature data for the end members of the system NdAlO3 and SrTiO3 revealed formation of two kinds of solid solutions Nd1-xSrxAl1-xTixO3 with the cubic and rhombohedral perovskite structure. Morphotropic rhombohedral-to-cubic phase transition in Nd1-xSrxAl1-xTixO3 series occurs at x = 0.84. Based on the results obtained as well as the literature data for the parent compounds, the tentative phase diagram of the NdAlO3-SrTiO3 pseudo-binary system have been constructed.

2.
Nanoscale Res Lett ; 11(1): 17, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26759353

RESUMEN

Single-phase mixed aluminates-titanates Pr1-x Sr x Al1-x Ti x O3 (x = 0.1, 0.2, 0.3, 0.5, 0.7) with rhombohedral perovskite structure were prepared by solid-state reaction technique at 1823-1873 K. Morphotropic rhombohedral-to-cubic phase transition in Pr1-x Sr x Al1-x Ti x O3 series is predicted to occur at x = 0.88. The temperature-induced structural phase transition R [Formula: see text] с - Pm [Formula: see text] m in Pr0.5Sr0.5Al0.5Ti0.5O3, detected at 930 K by in situ high-temperature X-ray synchrotron powder diffraction, occurs at considerably lower temperature as the corresponding transformation in the parent compound PrAlO3 (1770 K). Such remarkable drop of the transition temperature is explained by gradual decrease of the perovskite structure deformation in the Pr1-x Sr x Al1-x Ti x O3 series with increasing Sr and Ti contents as a consequence of the increasing Goldschmidt tolerance factor. For Pr0.3Sr0.7Al0.3Ti0.7O3 phase, a sequence of the low-temperature phase transformation R [Formula: see text] с - Immb(C2/m) - I4/mcm was detected.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA