Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Comput Biol ; 20(5): e1012130, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739680

RESUMEN

Within the islets of Langerhans, beta cells orchestrate synchronized insulin secretion, a pivotal aspect of metabolic homeostasis. Despite the inherent heterogeneity and multimodal activity of individual cells, intercellular coupling acts as a homogenizing force, enabling coordinated responses through the propagation of intercellular waves. Disruptions in this coordination are implicated in irregular insulin secretion, a hallmark of diabetes. Recently, innovative approaches, such as integrating multicellular calcium imaging with network analysis, have emerged for a quantitative assessment of the cellular activity in islets. However, different groups use distinct experimental preparations, microscopic techniques, apply different methods to process the measured signals and use various methods to derive functional connectivity patterns. This makes comparisons between findings and their integration into a bigger picture difficult and has led to disputes in functional connectivity interpretations. To address these issues, we present here a systematic analysis of how different approaches influence the network representation of islet activity. Our findings show that the choice of methods used to construct networks is not crucial, although care is needed when combining data from different islets. Conversely, the conclusions drawn from network analysis can be heavily affected by the pre-processing of the time series, the type of the oscillatory component in the signals, and by the experimental preparation. Our tutorial-like investigation aims to resolve interpretational issues, reconcile conflicting views, advance functional implications, and encourage researchers to adopt connectivity analysis. As we conclude, we outline challenges for future research, emphasizing the broader applicability of our conclusions to other tissues exhibiting complex multicellular dynamics.


Asunto(s)
Islotes Pancreáticos , Islotes Pancreáticos/fisiología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/citología , Animales , Biología Computacional/métodos , Ratones , Insulina/metabolismo , Humanos , Células Secretoras de Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Secreción de Insulina/fisiología , Modelos Biológicos , Calcio/metabolismo , Señalización del Calcio/fisiología
2.
Biophys J ; 122(5): 784-801, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36738106

RESUMEN

Islets of Langerhans operate as multicellular networks in which several hundred ß cells work in synchrony to produce secretory pulses of insulin, a hormone crucial for controlling metabolic homeostasis. Their collective rhythmic activity is facilitated by gap junctional coupling and affected by their functional heterogeneity, but the details of this robust and coordinated behavior are still not fully understood. Recent advances in multicellular imaging and optogenetic and photopharmacological strategies, as well as in network science, have led to the discovery of specialized ß cell subpopulations that were suggested to critically determine the collective dynamics in the islets. In particular hubs, i.e., ß cells with many functional connections, are believed to significantly enhance communication capacities of the intercellular network and facilitate an efficient spreading of intercellular Ca2+ waves, whereas wave-initiator cells trigger intercellular signals in their cohorts. Here, we determined Ca2+ signaling characteristics of these two ß cell subpopulations and the relationship between them by means of functional multicellular Ca2+ imaging in mouse pancreatic tissue slices in combination with methods of complex network theory. We constructed network layers based on individual Ca2+ waves to identify wave initiators, and functional correlation-based networks to detect hubs. We found that both cell types exhibit a higher-than-average active time under both physiological and supraphysiological glucose concentrations, but also that they differ significantly in many other functional characteristics. Specifically, Ca2+ oscillations in hubs are more regular, and their role appears to be much more stable over time than for initiator cells. Moreover, in contrast to wave initiators, hubs transmit intercellular signals faster than other cells, which implies a stronger intercellular coupling. Our research indicates that hubs and wave-initiator cell subpopulations are both natural features of healthy pancreatic islets, but their functional roles in principle do not overlap and should thus not be considered equal.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Animales , Señalización del Calcio/fisiología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Secreción de Insulina , Calcio/metabolismo , Glucosa/metabolismo
3.
PLoS Comput Biol ; 17(5): e1009002, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33974632

RESUMEN

NMDA receptors promote repolarization in pancreatic beta cells and thereby reduce glucose-stimulated insulin secretion. Therefore, NMDA receptors are a potential therapeutic target for diabetes. While the mechanism of NMDA receptor inhibition in beta cells is rather well understood at the molecular level, its possible effects on the collective cellular activity have not been addressed to date, even though proper insulin secretion patterns result from well-synchronized beta cell behavior. The latter is enabled by strong intercellular connectivity, which governs propagating calcium waves across the islets and makes the heterogeneous beta cell population work in synchrony. Since a disrupted collective activity is an important and possibly early contributor to impaired insulin secretion and glucose intolerance, it is of utmost importance to understand possible effects of NMDA receptor inhibition on beta cell functional connectivity. To address this issue, we combined confocal functional multicellular calcium imaging in mouse tissue slices with network science approaches. Our results revealed that NMDA receptor inhibition increases, synchronizes, and stabilizes beta cell activity without affecting the velocity or size of calcium waves. To explore intercellular interactions more precisely, we made use of the multilayer network formalism by regarding each calcium wave as an individual network layer, with weighted directed connections portraying the intercellular propagation. NMDA receptor inhibition stabilized both the role of wave initiators and the course of waves. The findings obtained with the experimental antagonist of NMDA receptors, MK-801, were additionally validated with dextrorphan, the active metabolite of the approved drug dextromethorphan, as well as with experiments on NMDA receptor KO mice. In sum, our results provide additional and new evidence for a possible role of NMDA receptor inhibition in treatment of type 2 diabetes and introduce the multilayer network paradigm as a general strategy to examine effects of drugs on connectivity in multicellular systems.


Asunto(s)
Células Secretoras de Insulina/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Diabetes Mellitus Tipo 2/metabolismo , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Glucosa/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Noqueados
4.
Phys Rev E ; 108(5-1): 054409, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115462

RESUMEN

Pancreatic beta cells are coupled excitable oscillators that synchronize their activity via different communication pathways. Their oscillatory activity manifests itself on multiple timescales and consists of bursting electrical activity, subsequent oscillations in the intracellular Ca^{2+}, as well as oscillations in metabolism and exocytosis. The coordination of the intricate activity on the multicellular level plays a key role in the regulation of physiological pulsatile insulin secretion and is incompletely understood. In this paper, we investigate theoretically the principles that give rise to the synchronized activity of beta cell populations by building up a phenomenological multicellular model that incorporates the basic features of beta cell dynamics. Specifically, the model is composed of coupled slow and fast oscillatory units that reflect metabolic processes and electrical activity, respectively. Using a realistic description of the intercellular interactions, we study how the combination of electrical and metabolic coupling generates collective rhythmicity and shapes functional beta cell networks. It turns out that while electrical coupling solely can synchronize the responses, the addition of metabolic interactions further enhances coordination, the spatial range of interactions increases the number of connections in the functional beta cell networks, and ensures a better consistency with experimental findings. Moreover, our computational results provide additional insights into the relationship between beta cell heterogeneity, their activity profiles, and functional connectivity, supplementing thereby recent experimental results on endocrine networks.


Asunto(s)
Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Periodicidad , Electricidad , Exocitosis
5.
Front Endocrinol (Lausanne) ; 13: 922640, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784543

RESUMEN

Islets of Langerhans are multicellular microorgans located in the pancreas that play a central role in whole-body energy homeostasis. Through secretion of insulin and other hormones they regulate postprandial storage and interprandial usage of energy-rich nutrients. In these clusters of hormone-secreting endocrine cells, intricate cell-cell communication is essential for proper function. Electrical coupling between the insulin-secreting beta cells through gap junctions composed of connexin36 is particularly important, as it provides the required, most important, basis for coordinated responses of the beta cell population. The increasing evidence that gap-junctional communication and its modulation are vital to well-regulated secretion of insulin has stimulated immense interest in how subpopulations of heterogeneous beta cells are functionally arranged throughout the islets and how they mediate intercellular signals. In the last decade, several novel techniques have been proposed to assess cooperation between cells in islets, including the prosperous combination of multicellular imaging and network science. In the present contribution, we review recent advances related to the application of complex network approaches to uncover the functional connectivity patterns among cells within the islets. We first provide an accessible introduction to the basic principles of network theory, enumerating the measures characterizing the intercellular interactions and quantifying the functional integration and segregation of a multicellular system. Then we describe methodological approaches to construct functional beta cell networks, point out possible pitfalls, and specify the functional implications of beta cell network examinations. We continue by highlighting the recent findings obtained through advanced multicellular imaging techniques supported by network-based analyses, giving special emphasis to the current developments in both mouse and human islets, as well as outlining challenges offered by the multilayer network formalism in exploring the collective activity of islet cell populations. Finally, we emphasize that the combination of these imaging techniques and network-based analyses does not only represent an innovative concept that can be used to describe and interpret the physiology of islets, but also provides fertile ground for delineating normal from pathological function and for quantifying the changes in islet communication networks associated with the development of diabetes mellitus.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Animales , Comunicación Celular , Insulina , Ratones , Páncreas
6.
Comput Biol Chem ; 91: 107449, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33588154

RESUMEN

We investigate the relations between the enzyme kinetic flexibility, the rate of entropy production, and the Shannon information entropy in a steady-state enzyme reaction. All these quantities are maximized with respect to enzyme rate constants. We show that the steady-state, which is characterized by the most flexible enzymatic transitions between the enzyme conformational states, coincides with the global maxima of the Shannon information entropy and the rate of entropy production. This steady-state of an enzyme is referred to as globally optimal. This theoretical approach is then used for the analysis of the kinetic and the thermodynamic performance of the enzyme triose-phosphate isomerase. The analysis reveals that there exist well-defined maxima of the kinetic flexibility, the rate of entropy production, and the Shannon information entropy with respect to any arbitrarily chosen rate constant of the enzyme and that these maxima, calculated from the measured kinetic rate constants for the triose-phosphate isomerase are lower, however of the same order of magnitude, as the maxima of the globally optimal state of the enzyme. This suggests that the triose-phosphate isomerase could be a well, but not fully evolved enzyme, as it was previously claimed. Herein presented theoretical investigations also provide clear evidence that the flexibility of enzymatic transitions between the enzyme conformational states is a requirement for the maximal Shannon information entropy and the maximal rate of entropy production.


Asunto(s)
Termodinámica , Triosa-Fosfato Isomerasa/metabolismo , Biología Computacional , Cinética
7.
Results Phys ; 26: 104433, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34123716

RESUMEN

We propose and study an epidemiological model on a social network that takes into account heterogeneity of the population and different vaccination strategies. In particular, we study how the COVID-19 epidemics evolves and how it is contained by different vaccination scenarios by taking into account data showing that older people, as well as individuals with comorbidities and poor metabolic health, and people coming from economically depressed areas with lower quality of life in general, are more likely to develop severe COVID-19 symptoms, and quicker loss of immunity and are therefore more prone to reinfection. Our results reveal that the structure and the spatial arrangement of subpopulations are important epidemiological determinants. In a healthier society the disease spreads more rapidly but the consequences are less disastrous as in a society with more prevalent chronic comorbidities. If individuals with poor health are segregated within one community, the epidemic outcome is less favorable. Moreover, we show that, contrary to currently widely adopted vaccination policies, prioritizing elderly and other higher-risk groups is beneficial only if the supply of vaccine is high. If, however, the vaccination availability is limited, and if the demographic distribution across the social network is homogeneous, better epidemic outcomes are achieved if healthy people are vaccinated first. Only when higher-risk groups are segregated, like in elderly homes, their prioritization will lead to lower COVID-19 related deaths. Accordingly, young and healthy individuals should view vaccine uptake as not only protecting them, but perhaps even more so protecting the more vulnerable socio-demographic groups.

8.
Epileptic Disord ; 22(5): 519-530, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33052105

RESUMEN

The human brain is increasingly seen as a dynamic neural system, the function of which relies on a diverse set of connections between brain regions. To assess these complex dynamical interactions, formalism of complex networks was suggested as one of the most promising tools to offer new insight into the brain's structural and functional organization, with a potential also for clinical implications. Irrespective of the brain mapping technique, modern network approaches have revealed fundamental aspects of normal brain-network organization, such as small-world and scale-free patterns, hierarchical modularity, and the presence of hubs. Moreover, the utility of these approaches, to gain a better understanding of neurological diseases, is of great interest. In the present contribution, we first describe the basic network measures and how the brain networks are constructed on the basis of brain activity data in order to introduce clinical neurologists to this new theoretical paradigm. We then demonstrate how network formalism can be used to detect changes in EEG-based functional connectivity patterns in six paediatric patients with childhood absence epilepsy. Notably, our results do not only indicate enhanced synchronicity during epileptic episodes but also reveal specific spatial changes in the electrical activity of the brain. We argue that the network-based evaluation of functional brain networks can provide clinicians with more detailed insight into the activity of a pathological brain and can also be regarded as a support for objective diagnosis and treatment for various neurological diseases.


Asunto(s)
Encéfalo/fisiopatología , Conectoma , Electroencefalografía , Epilepsia Tipo Ausencia/fisiopatología , Red Nerviosa/fisiopatología , Niño , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA