Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Infect Immun ; 91(10): e0002223, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37754681

RESUMEN

Listeria monocytogenes is a remarkably well-adapted facultative intracellular pathogen that can thrive in a wide range of ecological niches. L. monocytogenes maximizes its ability to generate energy from diverse carbon sources using a respiro-fermentative metabolism that can function under both aerobic and anaerobic conditions. Cellular respiration maintains redox homeostasis by regenerating NAD+ while also generating a proton motive force. The end products of the menaquinone (MK) biosynthesis pathway are essential to drive both aerobic and anaerobic cellular respirations. We previously demonstrated that intermediates in the MK biosynthesis pathway, notably 1,4-dihydroxy-2-naphthoate (DHNA), are required for the survival and virulence of L. monocytogenes independent of their role in respiration. Furthermore, we found that restoration of NAD+/NADH ratio through expression of water-forming NADH oxidase could rescue phenotypes associated with DHNA deficiency. Here, we extend these findings to demonstrate that endogenous production or direct supplementation of DHNA restored both the cellular redox homeostasis and metabolic output of fermentation in L. monocytogenes. Furthermore, exogenous supplementation of DHNA rescues the in vitro growth and ex vivo virulence of L. monocytogenes DHNA-deficient mutants. Finally, we demonstrate that exogenous DHNA restores redox balance in L. monocytogenes specifically through the recently annotated NADH dehydrogenase Ndh2, independent of its role in the extracellular electron transport pathway. These data suggest that the production of DHNA may represent an additional layer of metabolic adaptability by L. monocytogenes to drive energy metabolism in the absence of respiration-favorable conditions.


Asunto(s)
Listeria monocytogenes , Virulencia , NAD , Oxidación-Reducción , Homeostasis
2.
PLoS Pathog ; 17(9): e1009493, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34555127

RESUMEN

Listeria monocytogenes is an intracellular bacterium that elicits robust CD8+ T-cell responses. Despite the ongoing development of L. monocytogenes-based platforms as cancer vaccines, our understanding of how L. monocytogenes drives robust CD8+ T-cell responses remains incomplete. One overarching hypothesis is that activation of cytosolic innate pathways is critical for immunity, as strains of L. monocytogenes that are unable to access the cytosol fail to elicit robust CD8+ T-cell responses and in fact inhibit optimal T-cell priming. Counterintuitively, however, activation of known cytosolic pathways, such as the inflammasome and type I IFN, lead to impaired immunity. Conversely, production of prostaglandin E2 (PGE2) downstream of cyclooxygenase-2 (COX-2) is essential for optimal L. monocytogenes T-cell priming. Here, we demonstrate that vacuole-constrained L. monocytogenes elicit reduced PGE2 production compared to wild-type strains in macrophages and dendritic cells ex vivo. In vivo, infection with wild-type L. monocytogenes leads to 10-fold increases in PGE2 production early during infection whereas vacuole-constrained strains fail to induce PGE2 over mock-immunized controls. Mice deficient in COX-2 specifically in Lyz2+ or CD11c+ cells produce less PGE2, suggesting these cell subsets contribute to PGE2 levels in vivo, while depletion of phagocytes with clodronate abolishes PGE2 production completely. Taken together, this work demonstrates that optimal PGE2 production by phagocytes depends on L. monocytogenes access to the cytosol, suggesting that one reason cytosolic access is required to prime CD8+ T-cell responses may be to facilitate production of PGE2.


Asunto(s)
Células Dendríticas/inmunología , Dinoprostona/biosíntesis , Dinoprostona/inmunología , Listeriosis/inmunología , Macrófagos/inmunología , Animales , Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Femenino , Listeria monocytogenes/inmunología , Activación de Linfocitos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Metab Eng ; 80: 254-266, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37923005

RESUMEN

Stable isotope tracers are a powerful tool for the quantitative analysis of microbial metabolism, enabling pathway elucidation, metabolic flux quantification, and assessment of reaction and pathway thermodynamics. 13C and 2H metabolic flux analysis commonly relies on isotopically labeled carbon substrates, such as glucose. However, the use of 2H-labeled nutrient substrates faces limitations due to their high cost and limited availability in comparison to 13C-tracers. Furthermore, isotope tracer studies in industrially relevant bacteria that metabolize complex substrates such as cellulose, hemicellulose, or lignocellulosic biomass, are challenging given the difficulty in obtaining these as isotopically labeled substrates. In this study, we examine the potential of deuterated water (2H2O) as an affordable, substrate-neutral isotope tracer for studying central carbon metabolism. We apply 2H2O labeling to investigate the reversibility of glycolytic reactions across three industrially relevant bacterial species -C. thermocellum, Z. mobilis, and E. coli-harboring distinct glycolytic pathways with unique thermodynamics. We demonstrate that 2H2O labeling recapitulates previous reversibility and thermodynamic findings obtained with established 13C and 2H labeled nutrient substrates. Furthermore, we exemplify the utility of this 2H2O labeling approach by applying it to high-substrate C. thermocellum fermentations -a setting in which the use of conventional tracers is impractical-thereby identifying the glycolytic enzyme phosphofructokinase as a major bottleneck during high-substrate fermentations and unveiling critical insights that will steer future engineering efforts to enhance ethanol production in this cellulolytic organism. This study demonstrates the utility of deuterated water as a substrate-agnostic isotope tracer for examining flux and reversibility of central carbon metabolic reactions, which yields biological insights comparable to those obtained using costly 2H-labeled nutrient substrates.


Asunto(s)
Carbono , Escherichia coli , Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucólisis , Isótopos/metabolismo , Termodinámica , Marcaje Isotópico
4.
Appl Environ Microbiol ; 88(22): e0125822, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36286488

RESUMEN

Glycolysis is an ancient, widespread, and highly conserved metabolic pathway that converts glucose into pyruvate. In the canonical pathway, the phosphofructokinase (PFK) reaction plays an important role in controlling flux through the pathway. Clostridium thermocellum has an atypical glycolysis and uses pyrophosphate (PPi) instead of ATP as the phosphate donor for the PFK reaction. The reduced thermodynamic driving force of the PPi-PFK reaction shifts the entire pathway closer to thermodynamic equilibrium, which has been predicted to limit product titers. Here, we replace the PPi-PFK reaction with an ATP-PFK reaction. We demonstrate that the local changes are consistent with thermodynamic predictions: the ratio of fructose 1,6-bisphosphate to fructose-6-phosphate increases, and the reverse flux through the reaction (determined by 13C labeling) decreases. The final titer and distribution of fermentation products, however, do not change, demonstrating that the thermodynamic constraints of the PPi-PFK reaction are not the sole factor limiting product titer. IMPORTANCE The ability to control the distribution of thermodynamic driving force throughout a metabolic pathway is likely to be an important tool for metabolic engineering. The phosphofructokinase reaction is a key enzyme in Embden-Mayerhof-Parnas glycolysis and therefore improving the thermodynamic driving force of this reaction in C. thermocellum is believed to enable higher product titers. Here, we demonstrate switching from pyrophosphate to ATP does in fact increases the thermodynamic driving force of the phosphofructokinase reaction in vivo. This study also identifies and overcomes a physiological hurdle toward expressing an ATP-dependent phosphofructokinase in an organism that utilizes an atypical glycolytic pathway. As such, the method described here to enable expression of ATP-dependent phosphofructokinase in an organism with an atypical glycolytic pathway will be informative toward engineering the glycolytic pathways of other industrial organism candidates with atypical glycolytic pathways.


Asunto(s)
Clostridium thermocellum , Clostridium thermocellum/metabolismo , Difosfatos/metabolismo , Fosfofructoquinasas/genética , Fosfofructoquinasa-1/genética , Fosfofructoquinasa-1/metabolismo , Glucólisis , Termodinámica , Adenosina Trifosfato/metabolismo
5.
J Biol Chem ; 295(7): 1867-1878, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31871051

RESUMEN

The genomes of most cellulolytic clostridia do not contain genes annotated as transaldolase. Therefore, for assimilating pentose sugars or for generating C5 precursors (such as ribose) during growth on other (non-C5) substrates, they must possess a pathway that connects pentose metabolism with the rest of metabolism. Here we provide evidence that for this connection cellulolytic clostridia rely on the sedoheptulose 1,7-bisphosphate (SBP) pathway, using pyrophosphate-dependent phosphofructokinase (PPi-PFK) instead of transaldolase. In this reversible pathway, PFK converts sedoheptulose 7-phosphate (S7P) to SBP, after which fructose-bisphosphate aldolase cleaves SBP into dihydroxyacetone phosphate and erythrose 4-phosphate. We show that PPi-PFKs of Clostridium thermosuccinogenes and Clostridium thermocellum indeed can convert S7P to SBP, and have similar affinities for S7P and the canonical substrate fructose 6-phosphate (F6P). By contrast, (ATP-dependent) PfkA of Escherichia coli, which does rely on transaldolase, had a very poor affinity for S7P. This indicates that the PPi-PFK of cellulolytic clostridia has evolved the use of S7P. We further show that C. thermosuccinogenes contains a significant SBP pool, an unusual metabolite that is elevated during growth on xylose, demonstrating its relevance for pentose assimilation. Last, we demonstrate that a second PFK of C. thermosuccinogenes that operates with ATP and GTP exhibits unusual kinetics toward F6P, as it appears to have an extremely high degree of cooperative binding, resulting in a virtual on/off switch for substrate concentrations near its K½ value. In summary, our results confirm the existence of an SBP pathway for pentose assimilation in cellulolytic clostridia.


Asunto(s)
Clostridiales/genética , Clostridium thermocellum/genética , Fructosa-Bifosfato Aldolasa/genética , Vía de Pentosa Fosfato/genética , Fosfofructoquinasa-1/genética , Clostridiales/enzimología , Clostridium thermocellum/enzimología , Dihidroxiacetona Fosfato/genética , Dihidroxiacetona Fosfato/metabolismo , Escherichia coli/enzimología , Fructosa-Bifosfato Aldolasa/metabolismo , Fructosafosfatos/metabolismo , Cinética , Pentosas/biosíntesis , Pentosas/metabolismo , Fosfofructoquinasa-1/metabolismo , Fosfotransferasas/metabolismo , Ribosa/biosíntesis , Ribosa/metabolismo , Fosfatos de Azúcar/metabolismo , Transaldolasa/genética , Transaldolasa/metabolismo , Xilosa/biosíntesis , Xilosa/metabolismo
6.
Nat Chem Biol ; 15(10): 1001-1008, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31548693

RESUMEN

Glycolysis plays a central role in producing ATP and biomass. Its control principles, however, remain incompletely understood. Here, we develop a method that combines 2H and 13C tracers to determine glycolytic thermodynamics. Using this method, we show that, in conditions and organisms with relatively slow fluxes, multiple steps in glycolysis are near to equilibrium, reflecting spare enzyme capacity. In Escherichia coli, nitrogen or phosphorus upshift rapidly increases the thermodynamic driving force, deploying the spare enzyme capacity to increase flux. Similarly, respiration inhibition in mammalian cells rapidly increases both glycolytic flux and the thermodynamic driving force. The thermodynamic shift allows flux to increase with only small metabolite concentration changes. Finally, we find that the cellulose-degrading anaerobe Clostridium cellulolyticum exhibits slow, near-equilibrium glycolysis due to the use of pyrophosphate rather than ATP for fructose-bisphosphate production, resulting in enhanced per-glucose ATP yield. Thus, near-equilibrium steps of glycolysis promote both rapid flux adaptation and energy efficiency.


Asunto(s)
Metabolismo Energético/fisiología , Glucólisis , Animales , Línea Celular , Clostridium acetobutylicum , Clostridium cellulolyticum , Escherichia coli/clasificación , Escherichia coli/metabolismo , Glucosa/metabolismo , Homeostasis , Ratones , Nitrógeno , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
7.
J Biol Chem ; 294(25): 9995-10005, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31097544

RESUMEN

Caldicellulosiruptor bescii is an extremely thermophilic, cellulolytic bacterium with a growth optimum at 78 °C and is the most thermophilic cellulose degrader known. It is an attractive target for biotechnological applications, but metabolic engineering will require an in-depth understanding of its primary pathways. A previous analysis of its genome uncovered evidence that C. bescii may have a completely uncharacterized aspect to its redox metabolism, involving a tungsten-containing oxidoreductase of unknown function. Herein, we purified and characterized this new member of the aldehyde ferredoxin oxidoreductase family of tungstoenzymes. We show that it is a heterodimeric glyceraldehyde-3-phosphate (GAP) ferredoxin oxidoreductase (GOR) present not only in all known Caldicellulosiruptor species, but also in 44 mostly anaerobic bacterial genera. GOR is phylogenetically distinct from the monomeric GAP-oxidizing enzyme found previously in several Archaea. We found that its large subunit (GOR-L) contains a single tungstopterin site and one iron-sulfur [4Fe-4S] cluster, that the small subunit (GOR-S) contains four [4Fe-4S] clusters, and that GOR uses ferredoxin as an electron acceptor. Deletion of either subunit resulted in a distinct growth phenotype on both C5 and C6 sugars, with an increased lag phase, but higher cell densities. Using metabolomics and kinetic analyses, we show that GOR functions in parallel with the conventional GAP dehydrogenase, providing an alternative ferredoxin-dependent glycolytic pathway. These two pathways likely facilitate the recycling of reduced redox carriers (NADH and ferredoxin) in response to environmental H2 concentrations. This metabolic flexibility has important implications for the future engineering of this and related species.


Asunto(s)
Biomasa , Firmicutes/metabolismo , Gliceraldehído 3-Fosfato Deshidrogenasa (NADP+)/metabolismo , Gliceraldehído 3-Fosfato/química , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Glucólisis , Caldicellulosiruptor , Firmicutes/crecimiento & desarrollo , Gliceraldehído 3-Fosfato/metabolismo , Metaboloma , Oxidación-Reducción , Filogenia
8.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32978139

RESUMEN

Clostridium thermocellum and Thermoanaerobacterium saccharolyticum were grown in cellobiose-limited chemostat cultures at a fixed dilution rate. C. thermocellum produced acetate, ethanol, formate, and lactate. Surprisingly, and in contrast to batch cultures, in cellobiose-limited chemostat cultures of T. saccharolyticum, ethanol was the main fermentation product. Enzyme assays confirmed that in C. thermocellum, glycolysis proceeds via pyrophosphate (PPi)-dependent phosphofructokinase (PFK), pyruvate-phosphate dikinase (PPDK), as well as a malate shunt for the conversion of phosphoenolpyruvate (PEP) to pyruvate. Pyruvate kinase activity was not detectable. In T. saccharolyticum, ATP but not PPi served as cofactor for the PFK reaction. High activities of both pyruvate kinase and PPDK were present, whereas the activities of a malate shunt enzymes were low in T. saccharolyticum In C. thermocellum, glycolysis via PPi-PFK and PPDK obeys the equation glucose + 5 NDP + 3 PPi → 2 pyruvate + 5 NTP + Pi (where NDP is nucleoside diphosphate and NTP is nucleoside triphosphate). Metabolic flux analysis of chemostat data with the wild type and a deletion mutant of the proton-pumping pyrophosphatase showed that a PPi-generating mechanism must be present that operates according to ATP + Pi → ADP + PPi Both organisms also produced significant amounts of amino acids in cellobiose-limited cultures. It was anticipated that this phenomenon would be suppressed by growth under nitrogen limitation. Surprisingly, nitrogen-limited chemostat cultivation of wild-type C. thermocellum revealed a bottleneck in pyruvate oxidation, as large amounts of pyruvate and amino acids, mainly valine, were excreted; up to 50% of the nitrogen consumed was excreted again as amino acids.IMPORTANCE This study discusses the fate of pyrophosphate in the metabolism of two thermophilic anaerobes that lack a soluble irreversible pyrophosphatase as present in Escherichia coli but instead use a reversible membrane-bound proton-pumping enzyme. In such organisms, the charging of tRNA with amino acids may become more reversible. This may contribute to the observed excretion of amino acids during sugar fermentation by Clostridium thermocellum and Thermoanaerobacterium saccharolyticum Calculation of the energetic advantage of reversible pyrophosphate-dependent glycolysis, as occurs in Clostridium thermocellum, could not be properly evaluated, as currently available genome-scale models neglect the anabolic generation of pyrophosphate in, for example, polymerization of amino acids to protein. This anabolic pyrophosphate replaces ATP and thus saves energy. Its amount is, however, too small to cover the pyrophosphate requirement of sugar catabolism in glycolysis. Consequently, pyrophosphate for catabolism is generated according to ATP + Pi → ADP + PPi.


Asunto(s)
Clostridium thermocellum/metabolismo , Difosfatos/metabolismo , Nitrógeno/metabolismo , Thermoanaerobacterium/metabolismo , Reactores Biológicos , Análisis de Flujos Metabólicos
9.
J Immunol ; 200(11): 3729-3738, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29678951

RESUMEN

Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) activity and are commonly used for pain relief and fever reduction. NSAIDs are used following childhood vaccinations and cancer immunotherapies; however, how NSAIDs influence the development of immunity following these therapies is unknown. We hypothesized that NSAIDs would modulate the development of an immune response to Listeria monocytogenes-based immunotherapy. Treatment of mice with the nonspecific COX inhibitor indomethacin impaired the generation of cell-mediated immunity. This phenotype was due to inhibition of the inducible COX-2 enzyme, as treatment with the COX-2-selective inhibitor celecoxib similarly inhibited the development of immunity. In contrast, loss of COX-1 activity improved immunity to L. monocytogenes Impairments in immunity were independent of bacterial burden, dendritic cell costimulation, or innate immune cell infiltrate. Instead, we observed that PGE2 production following L. monocytogenes is critical for the formation of an Ag-specific CD8+ T cell response. Use of the alternative analgesic acetaminophen did not impair immunity. Taken together, our results suggest that COX-2 is necessary for optimal CD8+ T cell responses to L. monocytogenes, whereas COX-1 is detrimental. Use of pharmacotherapies that spare COX-2 activity and the production of PGE2 like acetaminophen will be critical for the generation of optimal antitumor responses using L. monocytogenes.


Asunto(s)
Ciclooxigenasa 1/inmunología , Ciclooxigenasa 2/inmunología , Inmunidad/inmunología , Listeria monocytogenes/inmunología , Proteínas de la Membrana/inmunología , Acetaminofén/farmacología , Animales , Antiinflamatorios no Esteroideos/inmunología , Antiinflamatorios no Esteroideos/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Inhibidores de la Ciclooxigenasa 2/farmacología , Dinoprostona/inmunología , Femenino , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Listeriosis/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL
10.
Metab Eng ; 54: 301-316, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31078792

RESUMEN

Zymomonas mobilis is an industrially relevant bacterium notable for its ability to rapidly ferment simple sugars to ethanol using the Entner-Doudoroff (ED) glycolytic pathway, an alternative to the well-known Embden-Meyerhof-Parnas (EMP) pathway used by most organisms. Recent computational studies have predicted that the ED pathway is substantially more thermodynamically favorable than the EMP pathway, a potential factor explaining the high glycolytic rate in Z. mobilis. Here, to investigate the in vivo thermodynamics of the ED pathway and central carbon metabolism in Z. mobilis, we implemented a network-level approach that integrates quantitative metabolomics with 2H and 13C metabolic flux analysis to estimate reversibility and Gibbs free energy (ΔG) of metabolic reactions. This analysis revealed a strongly thermodynamically favorable ED pathway in Z. mobilis that is nearly twice as favorable as the EMP pathway in E. coli or S. cerevisiae. The in vivo step-by-step thermodynamic profile of the ED pathway was highly similar to previous in silico predictions, indicating that maximizing ΔG for each pathway step likely constitutes a cellular objective in Z. mobilis. Our analysis also revealed novel features of Z. mobilis metabolism, including phosphofructokinase-like enzyme activity, tricarboxylic acid cycle anaplerosis via PEP carboxylase, and a metabolic imbalance in the pentose phosphate pathway resulting in excretion of shikimate pathway intermediates. The integrated approach we present here for in vivo ΔG quantitation may be applied to the thermodynamic profiling of pathways and metabolic networks in other microorganisms and will contribute to the development of quantitative models of metabolism.


Asunto(s)
Proteínas Bacterianas , Análisis de Flujos Metabólicos , Modelos Biológicos , Zymomonas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Deuterio/química , Deuterio/metabolismo , Glucólisis , Vía de Pentosa Fosfato , Termodinámica , Zymomonas/genética , Zymomonas/metabolismo
11.
Appl Environ Microbiol ; 84(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30315080

RESUMEN

Freshwater lakes harbor complex microbial communities, but these ecosystems are often dominated by acI Actinobacteria Members of this cosmopolitan lineage are proposed to bolster heterotrophic growth using phototrophy because their genomes encode actino-opsins (actR). This model has been difficult to validate experimentally because acI Actinobacteria are not consistently culturable. Based primarily on genomes from single cells and metagenomes, we provide a detailed biosynthetic route for members of acI clades A and B to synthesize retinal and its carotenoid precursors. Consequently, acI cells should be able to natively assemble light-driven actinorhodopsins (holo-ActR) to pump protons, unlike many bacteria that encode opsins but may need to exogenously obtain retinal because they lack retinal machinery. Moreover, we show that all acI clades contain genes for a secondary branch of the carotenoid pathway, implying synthesis of a complex carotenoid. Transcription analysis of acI Actinobacteria in a eutrophic lake shows that all retinal and carotenoid pathway operons are transcribed and that actR is among the most highly transcribed of all acI genes. Furthermore, heterologous expression of acI retinal pathway genes showed that lycopene, retinal, and ActR can be made using the genes encoded in these organisms. Model cells producing ActR and the key acI retinal-producing ß-carotene oxygenase formed holo-ActR and acidified solution during illumination. Taken together, our results prove that acI Actinobacteria containing both ActR and acI retinal production machinery have the capacity to natively synthesize a green light-dependent outward proton-pumping rhodopsin.IMPORTANCE Microbes play critical roles in determining the quality of freshwater ecosystems, which are vital to human civilization. Because acI Actinobacteria are ubiquitous and abundant in freshwater lakes, clarifying their ecophysiology is a major step in determining the contributions that they make to nitrogen and carbon cycling. Without accurate knowledge of these cycles, freshwater systems cannot be incorporated into climate change models, ecosystem imbalances cannot be predicted, and policy for service disruption cannot be planned. Our work fills major gaps in microbial light utilization, secondary metabolite production, and energy cycling in freshwater habitats.


Asunto(s)
Actinobacteria/genética , Actinobacteria/metabolismo , Genes Bacterianos/genética , Lagos/microbiología , Retinaldehído/biosíntesis , Retinaldehído/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Carotenoides/genética , Carotenoides/metabolismo , Ecosistema , Redes y Vías Metabólicas/genética , Modelos Moleculares , Opsinas/genética , Opsinas/metabolismo , Procesos Fototróficos , Bombas de Protones , Rodopsina , Análisis de Secuencia de Proteína
12.
Metab Eng ; 41: 182-191, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28400329

RESUMEN

Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. While recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H2), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To investigate approaches to decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in an essentially wild type strain of C. thermocellum. Deletion of glnA reduced levels of secreted valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine levels indicative of nitrogen-rich conditions. We propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum.


Asunto(s)
Proteínas Bacterianas/genética , Clostridium thermocellum , Etanol/metabolismo , Eliminación de Gen , Glutamato Sintasa/genética , Nitrógeno/metabolismo , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo
13.
Appl Environ Microbiol ; 81(17): 5761-72, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26070680

RESUMEN

An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using (13)C-labeled sugars and [(15)N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals.


Asunto(s)
Amidas/farmacología , Inhibidores Enzimáticos/farmacología , Escherichia coli/metabolismo , Fenol/farmacología , Purinas/biosíntesis , Pirimidinas/biosíntesis , Amidofosforribosiltransferasa/antagonistas & inhibidores , Amidofosforribosiltransferasa/genética , Amidofosforribosiltransferasa/metabolismo , Vías Biosintéticas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
14.
BMC Genomics ; 15: 1066, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25477200

RESUMEN

BACKGROUND: Bacteria in the genus Ruminococcus are ubiquitous members of the mammalian gastrointestinal tract. In particular, they are important in ruminants where they digest a wide range of plant cell wall polysaccharides. For example, Ruminococcus albus 7 is a primary cellulose degrader that produces acetate usable by its bovine host. Moreover, it is one of the few organisms that ferments cellulose to form ethanol at mesophilic temperatures in vitro. The mechanism of cellulose degradation by R. albus 7 is not well-defined and is thought to involve pilin-like proteins, unique carbohydrate-binding domains, a glycocalyx, and cellulosomes. Here, we used a combination of comparative genomics, fermentation analyses, and transcriptomics to further clarify the cellulolytic and fermentative potential of R. albus 7. RESULTS: A comparison of the R. albus 7 genome sequence against the genome sequences of related bacteria that either encode or do not encode cellulosomes revealed that R. albus 7 does not encode for most canonical cellulosomal components. Fermentation analysis of R. albus 7 revealed the ability to produce ethanol and acetate on a wide range of fibrous substrates in vitro. Global transcriptomic analysis of R. albus 7 grown at identical dilution rates on cellulose and cellobiose in a chemostat showed that this bacterium, when growing on cellulose, utilizes a carbohydrate-degrading strategy that involves increased transcription of the rare carbohydrate-binding module (CBM) family 37 domain and the tryptophan biosynthetic operon. CONCLUSIONS: Our data suggest that R. albus 7 does not use canonical cellulosomal components to degrade cellulose, but rather up-regulates the expression of CBM37-containing enzymes and tryptophan biosynthesis. This study contributes to a revised model of carbohydrate degradation by this key member of the rumen ecosystem.


Asunto(s)
Celulosa/metabolismo , Celulosomas/metabolismo , Rumen/microbiología , Ruminococcus/genética , Ruminococcus/metabolismo , Transcriptoma , Acetatos/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Celulasas/genética , Celulasas/metabolismo , Etanol/metabolismo , Fermentación , Perfilación de la Expresión Génica , Hidrólisis , Filogenia , Ruminococcus/clasificación , Especificidad por Sustrato , Transcripción Genética , Triptófano/metabolismo
15.
bioRxiv ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38712277

RESUMEN

Intracellular pools of deoxynucleoside triphosphates (dNTPs) are strictly maintained throughout the cell cycle to ensure accurate and efficient DNA replication. DNA synthesis requires an abundance of dNTPs, but elevated dNTP concentrations in nonreplicating cells delay entry into S phase. Enzymes known as deoxyguanosine triphosphate triphosphohydrolases (Dgts) hydrolyze dNTPs into deoxynucleosides and triphosphates, and we propose that Dgts restrict dNTP concentrations to promote the G1 to S phase transition. We characterized a Dgt from the bacterium Caulobacter crescentus termed flagellar signaling suppressor C (fssC) to clarify the role of Dgts in cell cycle regulation. Deleting fssC increases dNTP levels and extends the G1 phase of the cell cycle. We determined that the segregation and duplication of the origin of replication (oriC) is delayed in ΔfssC, but the rate of replication elongation is unchanged. We conclude that dNTP hydrolysis by FssC promotes the initiation of DNA replication through a novel nucleotide signaling pathway. This work further establishes Dgts as important regulators of the G1 to S phase transition, and the high conservation of Dgts across all domains of life implies that Dgt-dependent cell cycle control may be widespread in both prokaryotic and eukaryotic organisms.

16.
bioRxiv ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38293011

RESUMEN

C-di-AMP is an essential second messenger in many bacteria but its levels must be regulated. Unregulated c-di-AMP accumulation attenuates the virulence of many bacterial pathogens, including those that do not require c-di-AMP for growth. However, the mechanisms by which c-di-AMP regulates bacterial pathogenesis remain poorly understood. In Listeria monocytogenes , a mutant lacking both c-di-AMP phosphodiesterases, denoted as the ΔPDE mutant, accumulates a high c-di-AMP level and is significantly attenuated in the mouse model of systemic infection. All key L. monocytogenes virulence genes are transcriptionally upregulated by the master transcription factor PrfA, which is activated by reduced glutathione (GSH) during infection. Our transcriptomic analysis revealed that the ΔPDE mutant is significantly impaired for the expression of virulence genes within the PrfA core regulon. Subsequent quantitative gene expression analyses validated this phenotype both at the basal level and upon PrfA activation by GSH. A constitutively active PrfA * variant, PrfA G145S, which mimics the GSH-bound conformation, restores virulence gene expression in ΔPDE but only partially rescues virulence defect. Through GSH quantification and uptake assays, we found that the ΔPDE strain is significantly depleted for GSH, and that c-di-AMP inhibits GSH uptake. Constitutive expression of gshF (encoding a GSH synthetase) does not restore GSH levels in the ΔPDE strain, suggesting that c-di-AMP inhibits GSH synthesis activity or promotes GSH catabolism. Taken together, our data reveals GSH metabolism as another pathway that is regulated by c-di-AMP. C-di-AMP accumulation depletes cytoplasmic GSH levels within L. monocytogenes that leads to impaired virulence program expression. IMPORTANCE: C-di-AMP regulates both bacterial pathogenesis and interactions with the host. Although c-di-AMP is essential in many bacteria, its accumulation also attenuates the virulence of many bacterial pathogens. Therefore, disrupting c-di-AMP homeostasis is a promising antibacterial treatment strategy, and has inspired several studies that screened for chemical inhibitors of c-di-AMP phosphodiesterases. However, the mechanisms by which c-di-AMP accumulation diminishes bacterial pathogenesis are poorly understood. Such understanding will reveal the molecular function of c-di-AMP, and inform therapeutic development strategies. Here, we identify GSH metabolism as a pathway regulated by c-di-AMP that is pertinent to L. monocytogenes replication in the host. Given the role of GSH as a virulence signal, nutrient, and antioxidant, GSH depletion impairs virulence program expression and likely diminishes host adaptation.

17.
mBio ; 15(3): e0253523, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38289141

RESUMEN

The gut microbiome engenders colonization resistance against the diarrheal pathogen Clostridioides difficile, but the molecular basis of this colonization resistance is incompletely understood. A prominent class of gut microbiome-produced metabolites important for colonization resistance against C. difficile is short-chain fatty acids (SCFAs). In particular, one SCFA (butyrate) decreases the fitness of C. difficile in vitro and is correlated with C. difficile-inhospitable gut environments, both in mice and in humans. Here, we demonstrate that butyrate-dependent growth inhibition in C. difficile occurs under conditions where C. difficile also produces butyrate as a metabolic end product. Furthermore, we show that exogenous butyrate is internalized into C. difficile cells and is incorporated into intracellular CoA pools where it is metabolized in a reverse (energetically unfavorable) direction to crotonyl-CoA and (S)-3-hydroxybutyryl-CoA and/or 4-hydroxybutyryl-CoA. This internalization of butyrate and reverse metabolic flow of a butyrogenic pathway(s) in C. difficile coincides with alterations in toxin release and sporulation. Together, this work highlights butyrate as a marker of a C. difficile-inhospitable environment to which C. difficile responds by releasing its diarrheagenic toxins and producing environmentally resistant spores necessary for transmission between hosts. These findings provide foundational data for understanding the molecular and genetic basis of how C. difficile growth is inhibited by butyrate and how butyrate alters C. difficile virulence in the face of a highly competitive and dynamic gut environment.IMPORTANCEThe gut microbiome engenders colonization resistance against the diarrheal pathogen Clostridioides difficile, but the molecular basis of this colonization resistance is incompletely understood, which hinders the development of novel therapeutic interventions for C. difficile infection (CDI). We investigated how C. difficile responds to butyrate, an end-product of gut microbiome community metabolism which inhibits C. difficile growth. We show that exogenously produced butyrate is internalized into C. difficile, which inhibits C. difficile growth by interfering with its own butyrate production. This growth inhibition coincides with increased toxin release from C. difficile cells and the production of environmentally resistant spores necessary for transmission between hosts. Future work to disentangle the molecular mechanisms underlying these growth and virulence phenotypes will likely lead to new strategies to restrict C. difficile growth in the gut and minimize its pathogenesis during CDI.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Humanos , Animales , Ratones , Clostridioides , Butiratos , Virulencia , Diarrea
18.
Appl Microbiol Biotechnol ; 97(19): 8719-27, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23955503

RESUMEN

The effect of dietary nitrate supplementation on rumen bacterial community composition was examined in beef steers fed either a nitrate-N diet or urea-N diet. An automated method of ribosomal intergenic spacer analysis was applied to solid and liquid fractions of ruminal contents to allow comparison of bacterial communities. Supplemental N source affected relative population size of four amplicon lengths (ALs) in the liquid fraction and three ALs in the solid fraction. Five ALs were more prevalent after adaptation to nitrate. Correspondence analysis indicated that feeding the steers the nitrate-N diet versus urea-N diet changed the bacterial community composition in the liquid but not in the solid fraction. This led to an investigation of the relative sizes of potential nitrate-reducing populations. Mannheimia succiniciproducens, Veillonella parvula, and Campylobacter fetus were obtained from nitrate enrichment culture and quantified by real-time PCR based on 16S rRNA sequence. Nitrate supplementation increased the percentage of C. fetus in the liquid and solid phases, and in solid phase, the percentage of M. succiniciproducens increased. No change in species prevalence was observed for V. parvula. However, even after adaptation to dietary nitrate, the relative population sizes for all three putative nitrate-reducing species were very low (<0.06 % of 16S rRNA gene copy number). The liquid-associated bacterial community composition changed due to nitrate supplementation, and at least part of this change reflects an increase in the species prevalence of C. fetus, a species which is not typically regarded as a ruminal inhabitant.


Asunto(s)
Biota , Campylobacter fetus/aislamiento & purificación , Dieta/métodos , Nitratos/administración & dosificación , Pasteurellaceae/aislamiento & purificación , Rumen/microbiología , Veillonella/aislamiento & purificación , Alimentación Animal , Animales , Campylobacter fetus/genética , Bovinos , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Datos de Secuencia Molecular , Pasteurellaceae/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Veillonella/genética
19.
bioRxiv ; 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36711537

RESUMEN

Listeria monocytogenes is a remarkably well-adapted facultative intracellular pathogen that can thrive in a wide range of ecological niches. L. monocytogenes maximizes its ability to generate energy from diverse carbon sources using a respiro-fermentative metabolism that can function under both aerobic and anaerobic conditions. Cellular respiration maintains redox homeostasis by regenerating NAD + while also generating a proton motive force (PMF). The end products of the menaquinone (MK) biosynthesis pathway are essential to drive both aerobic and anaerobic cellular respiration. We previously demonstrated that intermediates in the MK biosynthesis pathway, notably 1,4-dihydroxy-2-naphthoate (DHNA), are required for the survival and virulence of L. monocytogenes independent of their role in respiration. Furthermore, we found that restoration of NAD + /NADH ratio through expression of water-forming NADH oxidase (NOX) could rescue phenotypes associated with DHNA deficiency. Here we extend these findings to demonstrate that endogenous production or direct supplementation of DHNA restored both the cellular redox homeostasis and metabolic output of fermentation in L. monocytogenes . Further, exogenous supplementation of DHNA rescues the in vitro growth and ex vivo virulence of L. monocytogenes DHNA-deficient mutants. Finally, we demonstrate that exogenous DHNA restores redox balance in L. monocytogenes specifically through the recently annotated NADH dehydrogenase Ndh2, independent of the extracellular electron transport (EET) pathway. These data suggest that the production of DHNA may represent an additional layer of metabolic adaptability by L. monocytogenes to drive energy metabolism in the absence of respiration-favorable conditions.

20.
bioRxiv ; 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37461482

RESUMEN

The gut microbiome engenders colonization resistance against the diarrheal pathogen Clostridioides difficile but the molecular basis of this colonization resistance is incompletely understood. A prominent class of gut microbiome-produced metabolites important for colonization resistance against C. difficile is short chain fatty acids (SCFAs). In particular, one SCFA (butyrate) decreases the fitness of C. difficile in vitro and is correlated with C. difficile-inhospitable gut environments, both in mice and in humans. Here, we demonstrate that butyrate-dependent growth inhibition in C. difficile occurs under conditions where C. difficile also produces butyrate as a metabolic end product. Furthermore, we show that exogenous butyrate is internalized into C. difficile cells, is incorporated into intracellular CoA pools where it is metabolized in a reverse (energetically unfavorable) direction to crotonyl-CoA and (S)-3-hydroxybutyryl-CoA and/or 4-hydroxybutyryl-CoA. This internalization of butyrate and reverse metabolic flow of butyrogenic pathway(s) in C. difficile coincides with alterations in toxin production and sporulation. Together, this work highlights butyrate as a signal of a C. difficile inhospitable environment to which C. difficile responds by producing its diarrheagenic toxins and producing environmentally-resistant spores necessary for transmission between hosts. These findings provide foundational data for understanding the molecular and genetic basis of how C. difficile growth is inhibited by butyrate and how butyrate serves as a signal to alter C. difficile virulence in the face of a highly competitive and dynamic gut environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA