Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Ther ; 32(6): 1701-1720, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38549375

RESUMEN

Leukoencephalopathy with vanishing white matter (VWM) is a progressive incurable white matter disease that most commonly occurs in childhood and presents with ataxia, spasticity, neurological degeneration, seizures, and premature death. A distinctive feature is episodes of rapid neurological deterioration provoked by stressors such as infection, seizures, or trauma. VWM is caused by autosomal recessive mutations in one of five genes that encode the eukaryotic initiation factor 2B complex, which is necessary for protein translation and regulation of the integrated stress response. The majority of mutations are in EIF2B5. Astrocytic dysfunction is central to pathophysiology, thereby constituting a potential therapeutic target. Herein we characterize two VWM murine models and investigate astrocyte-targeted adeno-associated virus serotype 9 (AAV9)-mediated EIF2B5 gene supplementation therapy as a therapeutic option for VWM. Our results demonstrate significant rescue in body weight, motor function, gait normalization, life extension, and finally, evidence that gene supplementation attenuates demyelination. Last, the greatest rescue results from a vector using a modified glial fibrillary acidic protein (GFAP) promoter-AAV9-gfaABC(1)D-EIF2B5-thereby supporting that astrocytic targeting is critical for disease correction. In conclusion, we demonstrate safety and early efficacy through treatment with a translatable astrocyte-targeted gene supplementation therapy for a disease that has no cure.


Asunto(s)
Astrocitos , Dependovirus , Modelos Animales de Enfermedad , Factor 2B Eucariótico de Iniciación , Terapia Genética , Vectores Genéticos , Leucoencefalopatías , Animales , Dependovirus/genética , Ratones , Leucoencefalopatías/terapia , Leucoencefalopatías/genética , Leucoencefalopatías/etiología , Terapia Genética/métodos , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Astrocitos/metabolismo , Astrocitos/patología , Factor 2B Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Humanos
2.
Hum Mol Genet ; 26(18): 3600-3614, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28911205

RESUMEN

X-linked adrenoleukodystrophy (ALD) is a devastating inherited neurodegenerative disease caused by defects in the ABCD1 gene and affecting peripheral and central nervous system myelin. ABCD1 encodes a peroxisomal transmembrane protein required for very long chain fatty acid (VLCFA) metabolism. We show that zebrafish (Danio rerio) Abcd1 is highly conserved at the amino acid level with human ABCD1, and during development is expressed in homologous regions including the central nervous system and adrenal glands. We used TALENs to generate five zebrafish abcd1 mutant allele lines introducing premature stop codons in exon 1, as well as obtained an abcd1 allele from the Zebrafish Mutation Project carrying a point mutation in a splice donor site. Similar to patients with ALD, zebrafish abcd1 mutants have elevated VLCFA levels. Interestingly, we found that CNS development of the abcd1 mutants is disrupted, with hypomyelination in the spinal cord, abnormal patterning and decreased numbers of oligodendrocytes, and increased cell death. By day of life five abcd1 mutants demonstrate impaired motor function, and overall survival to adulthood of heterozygous and homozygous mutants is decreased. Expression of human ABCD1 in oligodendrocytes rescued apoptosis in the abcd1 mutant. In summary, we have established a zebrafish model of ALD that recapitulates key features of human disease pathology and which reveals novel features of underlying disease pathogenesis.


Asunto(s)
Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/metabolismo , Adrenoleucodistrofia/genética , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/genética , Transportadoras de Casetes de Unión a ATP/genética , Adrenoleucodistrofia/metabolismo , Alelos , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Exones , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Humanos , Mutación , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Pez Cebra
3.
J Neurosci ; 35(44): 14794-808, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26538650

RESUMEN

Modulation of connectivity formation in the developing brain in response to external stimuli is poorly understood. Here, we show that the raphe nucleus and its serotonergic projections regulate pathfinding of commissural axons in zebrafish. We found that the raphe neurons extend projections toward midline-crossing axons and that when serotonergic signaling is blocked by pharmacological inhibition or by raphe neuron ablation, commissural pathfinding is disrupted. We demonstrate that the serotonin receptor htr2a is expressed on these commissural axons and that genetic knock-down of htr2a disrupts crossing. We further show that knock-down of htr2a or ablation of the raphe neurons increases ephrinB2a protein levels in commissural axons. An ephrinB2a mutant can rescue midline crossing when serotonergic signaling is blocked. Furthermore, we found that regulation of serotonin expression in the raphe neurons is modulated in response to the developmental environment. Hypoxia causes the raphe to decrease serotonin levels, leading to a reduction in midline crossing. Increasing serotonin in the setting of hypoxia restored midline crossing. Our findings demonstrate an instructive role for serotonin in axon guidance acting through ephrinB2a and reveal a novel mechanism for developmental interpretation of the environmental milieu in the generation of mature neural circuitry. SIGNIFICANCE STATEMENT: We show here that serotonin has a novel role in regulating connectivity in response to the developmental environment. We demonstrate that serotonergic projections from raphe neurons regulate pathfinding of crossing axons. The neurons modulate their serotonin levels, and thus alter crossing, in response to the developmental environment including hypoxia. The findings suggest that modification of the serotonergic system by early exposures may contribute to permanent CNS connectivity alterations. This has important ramifications because of the association between premature birth and accompanying hypoxia, and increased risk of autism and evidence associating in utero exposure to some antidepressants and neurodevelopmental disorders. Finally, this work demonstrates that the vertebrate CNS can modulate its connectivity in response to the external environment.


Asunto(s)
Axones/metabolismo , Ambiente , Efrina-B2/biosíntesis , Red Nerviosa/embriología , Red Nerviosa/metabolismo , Receptor de Serotonina 5-HT2A/deficiencia , Animales , Animales Modificados Genéticamente , Femenino , Neurogénesis/fisiología , Embarazo , Núcleos del Rafe/embriología , Núcleos del Rafe/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Serotonina/deficiencia , Serotonina/metabolismo , Pez Cebra
4.
BMC Genomics ; 17: 334, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27146468

RESUMEN

BACKGROUND: Despite the fundamental biological importance and clinical relevance of characterizing the effects of chronic hypoxia exposure on central nervous system (CNS) development, the changes in gene expression from hypoxia are unknown. It is not known if there are unifying principles, properties, or logic in the response of the developing CNS to hypoxic exposure. Here, we use the small vertebrate zebrafish (Danio rerio) to study the effects of hypoxia on connectivity gene expression across development. We perform transcriptional profiling at high temporal resolution to systematically determine and then experimentally validate the response of CNS connectivity genes to hypoxia exposure. RESULTS: We characterized mRNA changes during development, comparing the effects of chronic hypoxia exposure at different time-points. We focused on changes in expression levels of a subset of 1270 genes selected for their roles in development of CNS connectivity, including axon pathfinding and synapse formation. We found that the majority of CNS connectivity genes were unaffected by hypoxia. However, for a small subset of genes hypoxia significantly affected their gene expression profiles. In particular, hypoxia appeared to affect both the timing and levels of expression, including altering expression of interacting gene pairs in a fashion that would potentially disrupt normal function. CONCLUSIONS: Overall, our study identifies the response of CNS connectivity genes to hypoxia exposure during development. While for most genes hypoxia did not significantly affect expression, for a subset of genes hypoxia changed both levels and timing of expression. Importantly, we identified that some genes with interacting proteins, for example receptor/ligand pairs, had dissimilar responses to hypoxia that would be expected to interfere with their function. The observed dysynchrony of gene expression could impair the development of normal CNS connectivity maps.


Asunto(s)
Conectoma/métodos , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Hipoxia Encefálica/genética , Pez Cebra/embriología , Animales , Regulación del Desarrollo de la Expresión Génica , Hipoxia Encefálica/veterinaria , Análisis de Secuencia de ARN , Pez Cebra/genética , Proteínas de Pez Cebra/genética
5.
PLoS Genet ; 8(4): e1002638, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22511881

RESUMEN

The mechanisms of hypoxic injury to the developing human brain are poorly understood, despite being a major cause of chronic neurodevelopmental impairments. Recent work in the invertebrate Caenorhabditis elegans has shown that hypoxia causes discrete axon pathfinding errors in certain interneurons and motorneurons. However, it is unknown whether developmental hypoxia would have similar effects in a vertebrate nervous system. We have found that developmental hypoxic injury disrupts pathfinding of forebrain neurons in zebrafish (Danio rerio), leading to errors in which commissural axons fail to cross the midline. The pathfinding defects result from activation of the hypoxia-inducible transcription factor (hif1) pathway and are mimicked by chemical inducers of the hif1 pathway or by expression of constitutively active hif1α. Further, we found that blocking transcriptional activation by hif1α helped prevent the guidance defects. We identified ephrinB2a as a target of hif1 pathway activation, showed that knock-down of ephrinB2a rescued the guidance errors, and showed that the receptor ephA4a is expressed in a pattern complementary to the misrouting axons. By targeting a constitutively active form of ephrinB2a to specific neurons, we found that ephrinB2a mediates the pathfinding errors via a reverse-signaling mechanism. Finally, magnesium sulfate, used to improve neurodevelopmental outcomes in preterm births, protects against pathfinding errors by preventing upregulation of ephrinB2a. These results demonstrate that evolutionarily conserved genetic pathways regulate connectivity changes in the CNS in response to hypoxia, and they support a potential neuroprotective role for magnesium.


Asunto(s)
Efrina-B2/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia , Hipoxia , Sulfato de Magnesio/farmacología , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Pez Cebra , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Axones/fisiología , Sistema Nervioso Central/metabolismo , Efrina-B2/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hipoxia/metabolismo , Hipoxia/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neuronas/patología , Receptor EphA4/genética , Receptor EphA4/metabolismo , Transducción de Señal , Activación Transcripcional , Pez Cebra/genética , Pez Cebra/fisiología
6.
Front Pediatr ; 12: 1326886, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357503

RESUMEN

Background: Mitchell syndrome is a rare, neurodegenerative disease caused by an ACOX1 gain-of-function mutation (c.710A>G; p.N237S), with fewer than 20 reported cases. Affected patients present with leukodystrophy, seizures, and hearing loss. ACOX1 serves as the rate-limiting enzyme in peroxisomal beta-oxidation of very long-chain fatty acids. The N237S substitution has been shown to stabilize the active ACOX1 dimer, resulting in dysregulated enzymatic activity, increased oxidative stress, and glial damage. Mitchell syndrome lacks a vertebrate model, limiting insights into the pathophysiology of ACOX1-driven white matter damage and neuroinflammatory insults. Methods: We report a patient presenting with rapidly progressive white matter damage and neurological decline, who was eventually diagnosed with an ACOX1 N237S mutation through whole genome sequencing. We developed a zebrafish model of Mitchell syndrome using transient ubiquitous overexpression of the human ACOX1 N237S variant tagged with GFP. We assayed zebrafish behavior, oligodendrocyte numbers, expression of white matter and inflammatory transcripts, and analysis of peroxisome counts. Results: The patient experienced progressive leukodystrophy and died 2 years after presentation. The transgenic zebrafish showed a decreased swimming ability, which was restored with the reactive microglia-targeted antioxidant dendrimer-N-acetyl-cysteine conjugate. The mutants showed no effect on oligodendrocyte counts but did display activation of the integrated stress response (ISR). Using a novel SKL-targeted mCherry reporter, we found that mutants had reduced density of peroxisomes. Conclusions: We developed a vertebrate (zebrafish) model of Mitchell syndrome using transient ubiquitous overexpression of the human ACOX1 N237S variant. The transgenic mutants exhibited motor impairment and showed signs of activated ISR, but interestingly, there were no changes in oligodendrocyte counts. However, the mutants exhibited a deficiency in the number of peroxisomes, suggesting a possible shared mechanism with the Zellweger spectrum disorders.

7.
Front Neurosci ; 18: 1275744, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38352041

RESUMEN

Vanishing white matter (VWM) is a devastating autosomal recessive leukodystrophy, resulting in neurological deterioration and premature death, and without curative treatment. Pathogenic hypomorphic variants in subunits of the eukaryotic initiation factor 2B (eIF2B) cause VWM. eIF2B is required for regulating the integrated stress response (ISR), a physiological response to cellular stress. In patients' central nervous system, reduced eIF2B activity causes deregulation of the ISR. In VWM mouse models, the extent of ISR deregulation correlates with disease severity. One approach to restoring eIF2B activity is by inhibition of GSK3ß, a kinase that phosphorylates eIF2B and reduces its activity. Lithium, an inhibitor of GSK3ß, is thus expected to stimulate eIF2B activity and ameliorate VWM symptoms. The effects of lithium were tested in zebrafish and mouse VWM models. Lithium improved motor behavior in homozygous eif2b5 mutant zebrafish. In lithium-treated 2b4he2b5ho mutant mice, a paradoxical increase in some ISR transcripts was found. Furthermore, at the dosage tested, lithium induced significant polydipsia in both healthy controls and 2b4he2b5ho mutant mice and did not increase the expression of other markers of lithium efficacy. In conclusion, lithium is not a drug of choice for further development in VWM based on the limited or lack of efficacy and significant side-effect profile.

8.
Micromachines (Basel) ; 15(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38258168

RESUMEN

Zebrafish have emerged as a useful model for biomedical research and have been used in environmental toxicology studies. However, the presence of the chorion during the embryo stage limits cellular exposure to toxic elements and creates the possibility of a false-negative or reduced sensitivity in fish embryo toxicity testing (FET). This paper presents the use of electroporation as a technique to improve the delivery of toxic elements inside the chorion, increasing the exposure level of the toxins at an early embryo stage (<3 h post-fertilization). A custom-made electroporation device with the required electrical circuitry has been developed to position embryos between electrodes that provide electrical pulses to expedite the entry of molecules inside the chorion. The optimized parameters facilitate material entering into the chorion without affecting the survival rate of the embryos. The effectiveness of the electroporation system is demonstrated using Trypan blue dye and gold nanoparticles (AuNPs, 20-40 nm). Our results demonstrate the feasibility of controlling the concentration of dye and nanoparticles delivered inside the chorion by optimizing the electrical parameters, including pulse width, pulse number, and amplitude. Next, we tested silver nanoparticles (AgNPs, 10 nm), a commonly used toxin that can lower mortality, affect heart rate, and cause phenotypic defects. We found that electroporation of AgNPs reduces the exposure time required for toxicity testing from 4 days to hours. Electroporation for FET can provide rapid entry of potential toxins into zebrafish embryos, reducing the time required for toxicity testing and drug delivery experiments.

9.
Biotechnol Rep (Amst) ; 40: e00814, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37840570

RESUMEN

Electroporation is regularly used to deliver agents into cells, including transgenic materials, but it is not used for mutating zebrafish embryos due to the lack of suitable systems, information on appropriate operating parameters, and the challenges posed by the protective chorion. Here, a novel method for gene delivery in zebrafish embryos was developed by combining microinjection into the space between the chorion and the embryo followed by electroporation. This method eliminates the need for chorion removal and injecting into the space between the chorion and embryo eliminates the need for finding and identifying key cell locations before performing an injection, making the process much simpler and more automatable. We also developed a microfluidic electroporation system and optimized electric pulse parameters for transgenesis of embryos. The study provided a novel method for gene delivery in zebrafish embryos that can be potentially implemented in a high throughput transgenesis or mutagenesis system.

10.
Dev Biol ; 352(2): 393-404, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21276790

RESUMEN

The dopaminergic neurons of the basal ganglia play critical roles in CNS function and human disease, but specification of dopamine neuron phenotype is poorly understood in vertebrates. We performed an in vivo screen in zebrafish to identify dopaminergic neuron enhancers, in order to facilitate studies on the specification of neuronal identity, connectivity, and function in the basal ganglia. Based primarily on identification of conserved non-coding elements, we tested 54 DNA elements from four species (zebrafish, pufferfish, mouse, and rat), that included 21 genes with known or putative roles in dopaminergic neuron specification or function. Most elements failed to drive CNS expression or did not express specifically in dopaminergic neurons. However, we did isolate a discrete enhancer from the otpb gene that drove specific expression in diencephalic dopaminergic neurons, although it did not share sequence conservation with regulatory regions of otpa or other dopamine-specific genes. For the otpb enhancer, regulation of expression in dopamine neurons requires multiple elements spread across a large genomic area. In addition, we compared our in vivo testing with in silico analysis of genomic regions for genes involved in dopamine neuron function, but failed to find conserved regions that functioned as enhancers. We conclude that regulation of dopaminergic neuron phenotype in vertebrates is regulated by dispersed regulatory elements.


Asunto(s)
Dopamina/metabolismo , Elementos de Facilitación Genéticos , Neuronas/citología , Neuronas/metabolismo , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Modelos Neurológicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Fenotipo , Ratas , Tetraodontiformes , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
11.
J Clin Invest ; 131(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33690217

RESUMEN

X-linked adrenoleukodystrophy (ALD) is a progressive neurodegenerative disease caused by mutations in ABCD1, the peroxisomal very long-chain fatty acid (VLCFA) transporter. ABCD1 deficiency results in accumulation of saturated VLCFAs. A drug screen using a phenotypic motor assay in a zebrafish ALD model identified chloroquine as the top hit. Chloroquine increased expression of stearoyl-CoA desaturase-1 (scd1), the enzyme mediating fatty acid saturation status, suggesting that a shift toward monounsaturated fatty acids relieved toxicity. In human ALD fibroblasts, chloroquine also increased SCD1 levels and reduced saturated VLCFAs. Conversely, pharmacological inhibition of SCD1 expression led to an increase in saturated VLCFAs, and CRISPR knockout of scd1 in zebrafish mimicked the motor phenotype of ALD zebrafish. Importantly, saturated VLCFAs caused ER stress in ALD fibroblasts, whereas monounsaturated VLCFA did not. In parallel, we used liver X receptor (LXR) agonists to increase SCD1 expression, causing a shift from saturated toward monounsaturated VLCFA and normalizing phospholipid profiles. Finally, Abcd1-/y mice receiving LXR agonist in their diet had VLCFA reductions in ALD-relevant tissues. These results suggest that metabolic rerouting of saturated to monounsaturated VLCFAs may alleviate lipid toxicity, a strategy that may be beneficial in ALD and other peroxisomal diseases in which VLCFAs play a key role.


Asunto(s)
Adrenoleucodistrofia/enzimología , Cloroquina/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Receptores X del Hígado/agonistas , Estearoil-CoA Desaturasa/biosíntesis , Proteínas de Pez Cebra/metabolismo , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/genética , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/metabolismo , Adrenoleucodistrofia/tratamiento farmacológico , Adrenoleucodistrofia/genética , Animales , Línea Celular , Ácidos Grasos/metabolismo , Humanos , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Ratones , Ratones Noqueados , Mutación , Estearoil-CoA Desaturasa/genética , Pez Cebra , Proteínas de Pez Cebra/genética
12.
eNeuro ; 7(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32001551

RESUMEN

Hypoxic injury to the developing human brain is a complication of premature birth and is associated with long-term impairments of motor function. Disruptions of axon and synaptic connectivity have been linked to developmental hypoxia, but the fundamental mechanisms impacting motor function from altered connectivity are poorly understood. We investigated the effects of hypoxia on locomotor development in zebrafish. We found that developmental hypoxia resulted in decreased spontaneous swimming behavior in larva, and that this motor impairment persisted into adulthood. In evaluation of the diencephalic dopaminergic neurons, which regulate early development of locomotion and constitute an evolutionarily conserved component of the vertebrate dopaminergic system, hypoxia caused a decrease in the number of synapses from the descending dopaminergic diencephalospinal tract (DDT) to spinal cord motor neurons. Moreover, dopamine signaling from the DDT was coupled jointly to motor neuron synaptogenesis and to locomotor development. Together, these results demonstrate the developmental processes regulating early locomotor development and a requirement for dopaminergic projections and motor neuron synaptogenesis. Our findings suggest new insights for understanding the mechanisms leading to motor disability from hypoxic injury of prematurity.


Asunto(s)
Personas con Discapacidad , Trastornos Motores , Adulto , Animales , Dopamina , Femenino , Humanos , Hipoxia , Neuronas Motoras , Embarazo , Pez Cebra
13.
Elife ; 92020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33300869

RESUMEN

Vanishing white matter disease (VWM) is a severe leukodystrophy of the central nervous system caused by mutations in subunits of the eukaryotic initiation factor 2B complex (eIF2B). Current models only partially recapitulate key disease features, and pathophysiology is poorly understood. Through development and validation of zebrafish (Danio rerio) models of VWM, we demonstrate that zebrafish eif2b mutants phenocopy VWM, including impaired somatic growth, early lethality, effects on myelination, loss of oligodendrocyte precursor cells, increased apoptosis in the CNS, and impaired motor swimming behavior. Expression of human EIF2B2 in the zebrafish eif2b2 mutant rescues lethality and CNS apoptosis, demonstrating conservation of function between zebrafish and human. In the mutants, intron 12 retention leads to expression of a truncated eif2b5 transcript. Expression of the truncated eif2b5 in wild-type larva impairs motor behavior and activates the ISR, suggesting that a feed-forward mechanism in VWM is a significant component of disease pathophysiology.


Asunto(s)
Modelos Animales de Enfermedad , Factor 2B Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/metabolismo , Leucoencefalopatías/genética , Leucoencefalopatías/metabolismo , Animales , Humanos , Leucoencefalopatías/fisiopatología , Mutación , Estrés Fisiológico/fisiología , Pez Cebra
14.
eNeuro ; 5(2)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29766040

RESUMEN

Axon guidance in vertebrates is controlled by genetic cascades as well as by intrinsic activity-dependent refinement of connections. Midline axon crossing is one of the best studied pathfinding models and is fundamental to the establishment of bilaterally symmetric nervous systems. However, it is not known whether crossing requires intrinsic activity in axons, and what controls that activity. Further, a mechanism linking neuronal activity and gene expression has not been identified for axon pathfinding. Using embryonic zebrafish, we found that the NMDA receptor (NMDAR) NR1.1 subunit (grin1a) is expressed in commissural axons. Pharmacological inhibition of grin1a, hypoxia exposure reduction of grin1a expression, or CRISPR knock-down of grin1a leads to defects in midline crossing. Inhibition of neuronal activity phenocopies the effects of grin1a loss on midline crossing. By combining pharmacological inhibition of the NMDAR with optogenetic stimulation to precisely restore neuronal activity, we observed rescue of midline crossing. This suggests that the NMDAR controls pathfinding by an activity-dependent mechanism. We further show that the NMDAR may act, via modulating activity, on the transcription factor arxa (mammalian Arx), a known regulator of midline pathfinding. These findings uncover a novel role for the NMDAR in controlling activity to regulate commissural pathfinding and identify arxa as a key link between the genetic and activity-dependent regulation of midline axon guidance.


Asunto(s)
Axones/fisiología , Sistema Nervioso Central/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Animales Modificados Genéticamente , Embrión no Mamífero , Hipoxia/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Pez Cebra , Proteínas de Pez Cebra
15.
PLoS One ; 13(3): e0193180, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29543903

RESUMEN

Zebrafish are a valuable model organism in biomedical research. Their rapid development, ability to model human diseases, utility for testing genetic variants identified from next-generation sequencing, amenity to CRISPR mutagenesis, and potential for therapeutic compound screening, has led to their wide-spread adoption in diverse fields of study. However, their power for large-scale screens is limited by the absence of automated genotyping tools for live animals. This constrains potential drug screen options, limits analysis of embryonic and larval phenotypes, and requires raising additional animals to adulthood to ensure obtaining an animal of the desired genotype. Our objective was to develop an automated system that would rapidly obtain cells and DNA from zebrafish embryos and larvae for genotyping, and that would keep the animals alive. We describe the development, testing, and validation of a zebrafish embryonic genotyping device, termed "ZEG" (Zebrafish Embryo Genotyper). Using microfluidic harmonic oscillation of the animal on a roughened glass surface, the ZEG is able to obtain genetic material (cells and DNA) for use in genotyping, from 24 embryos or larvae simultaneously in less than 10 minutes. Loading and unloading of the ZEG is performed manually with a standard pipette tip or transfer pipette. The obtained genetic material is amplified by PCR and can be used for subsequent analysis including sequencing, gel electrophoresis, or high-resolution melt-analysis. Sensitivity of genotyping and survival of animals are both greater than 90%. There are no apparent effects on body morphology, development, or motor behavior tests. In summary, the ZEG device enables rapid genotyping of live zebrafish embryos and larvae, and animals are available for downstream applications, testing, or raising.


Asunto(s)
Automatización , Separación Celular/métodos , Técnicas de Genotipaje/métodos , Técnicas Analíticas Microfluídicas/métodos , Pez Cebra/embriología , Pez Cebra/genética , Animales
16.
Sci Rep ; 6: 18734, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26728131

RESUMEN

Tools for genetically-determined visualization of synaptic circuits and interactions are necessary to build connectomics of the vertebrate brain and to screen synaptic properties in neurological disease models. Here we develop a transgenic FingR (fibronectin intrabodies generated by mRNA display) technology for monitoring synapses in live zebrafish. We demonstrate FingR labeling of defined excitatory and inhibitory synapses, and show FingR applicability for dissecting synapse dynamics in normal and disease states. Using our system we show that chronic hypoxia, associated with neurological defects in preterm birth, affects dopaminergic neuron synapse number depending on the developmental timing of hypoxia.


Asunto(s)
Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Animales Modificados Genéticamente , Rastreo Celular , Fibronectinas/genética , Técnica del Anticuerpo Fluorescente , Expresión Génica , Orden Génico , Genes Reporteros , Vectores Genéticos/genética , Hipoxia/metabolismo , Inmunohistoquímica , Pez Cebra
17.
J Vis Exp ; (84): e51138, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24561516

RESUMEN

Zebrafish is a powerful vertebrate model system for studying development, modeling disease, and performing drug screening. Recently a variety of genetic tools have been introduced, including multiple strategies for inducing mutations and generating transgenic lines. However, large-scale screening is limited by traditional genotyping methods, which are time-consuming and labor-intensive. Here we describe a technique to analyze zebrafish genotypes by PCR combined with high-resolution melting analysis (HRMA). This approach is rapid, sensitive, and inexpensive, with lower risk of contamination artifacts. Genotyping by PCR with HRMA can be used for embryos or adult fish, including in high-throughput screening protocols.


Asunto(s)
Técnicas de Genotipaje/métodos , Reacción en Cadena de la Polimerasa/métodos , Pez Cebra/genética , Animales , ADN/análisis , ADN/química , ADN/genética , Programas Informáticos
18.
Neurology ; 82(15): 1322-30, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24647030

RESUMEN

OBJECTIVE: We describe a novel congenital motor neuron disease with early demise due to respiratory insufficiency with clinical overlap with spinal muscular atrophy with respiratory distress (SMARD) type 1 but lacking a mutation in the IGHMBP2 gene. METHODS: Exome sequencing was used to identify a de novo mutation in the LAS1L gene in the proband. Pathogenicity of the mutation was validated using a zebrafish model by morpholino-mediated knockdown of las1l. RESULTS: We identified a de novo mutation in the X-linked LAS1L gene in the proband (p.S477N). The mutation is in a highly conserved region of the LAS1L gene predicted to be deleterious by bioinformatic analysis. Morpholino-based knockdown of las1l, the orthologous gene in zebrafish, results in early lethality and disruption of muscle and peripheral nerve architecture. Coinjection of wild-type but not mutant human RNA results in partial rescue of the phenotype. CONCLUSION: We report a patient with a SMARD phenotype due to a mutation in LAS1L, a gene important in coordinating processing of the 45S pre-rRNA and maturation of the large 60S ribosomal subunit. Similarly, the IGHMB2 gene associated with SMARD type 1 has been suggested to have an important role in ribosomal biogenesis from its role in processing the 45S pre-rRNA. We propose that disruption of ribosomal maturation may be a common pathogenic mechanism linking SMARD phenotypes caused by both IGHMBP2 and LAS1L.


Asunto(s)
Atrofia Muscular Espinal/genética , Proteínas Nucleares/genética , Ribosomas/metabolismo , Animales , Genotipo , Humanos , Lactante , Recién Nacido , Atrofia Muscular Espinal/congénito , Atrofia Muscular Espinal/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Pez Cebra
19.
PLoS One ; 7(8): e43968, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22937139

RESUMEN

foxP2, a forkhead-domain transcription factor, is critical for speech and language development in humans, but its role in the establishment of CNS connectivity is unclear. While in vitro studies have identified axon guidance molecules as targets of foxP2 regulation, and cell culture assays suggest a role for foxP2 in neurite outgrowth, in vivo studies have been lacking regarding a role for foxP2 in axon pathfinding. We used a modified zinc finger nuclease methodology to generate mutations in the zebrafish foxP2 gene. Using PCR-based high resolution melt curve analysis (HRMA) of G0 founder animals, we screened and identified three mutants carrying nonsense mutations in the 2(nd) coding exon: a 17 base-pair (bp) deletion, an 8bp deletion, and a 4bp insertion. Sequence analysis of cDNA confirmed that these were frameshift mutations with predicted early protein truncations. Homozygous mutant fish were viable and fertile, with unchanged body morphology, and no apparent differences in CNS apoptosis, proliferation, or patterning at embryonic stages. There was a reduction in expression of the known foxP2 target gene cntnap2 that was rescued by injection of wild-type foxP2 transcript. When we examined axon pathfinding using a pan-axonal marker or transgenic lines, including a foxP2-neuron-specific enhancer, we did not observe any axon guidance errors. Our findings suggest that foxP2 is not necessary for axon pathfinding during development.


Asunto(s)
Axones/metabolismo , Encéfalo/metabolismo , Factores de Transcripción Forkhead/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Factores de Transcripción Forkhead/metabolismo , Mutación , Neuritas/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , Dedos de Zinc/genética
20.
Cell ; 130(3): 427-39, 2007 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-17693254

RESUMEN

The autosomal dominant mutation in the human alphaB-crystallin gene inducing a R120G amino acid exchange causes a multisystem, protein aggregation disease including cardiomyopathy. The pathogenesis of cardiomyopathy in this mutant (hR120GCryAB) is poorly understood. Here, we show that transgenic mice overexpressing cardiac-specific hR120GCryAB recapitulate the cardiomyopathy in humans and find that the mice are under reductive stress. The myopathic hearts show an increased recycling of oxidized glutathione (GSSG) to reduced glutathione (GSH), which is due to the augmented expression and enzymatic activities of glucose-6-phosphate dehydrogenase (G6PD), glutathione reductase, and glutathione peroxidase. The intercross of hR120GCryAB cardiomyopathic animals with mice with reduced G6PD levels rescues the progeny from cardiac hypertrophy and protein aggregation. These findings demonstrate that dysregulation of G6PD activity is necessary and sufficient for maladaptive reductive stress and suggest a novel therapeutic target for abrogating R120GCryAB cardiomyopathy and heart failure in humans.


Asunto(s)
Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Mutación Missense , Estrés Oxidativo/genética , Cadena B de alfa-Cristalina/genética , Animales , Arginina/genética , Cardiomiopatías/enzimología , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Glutatión/metabolismo , Glicina/genética , Humanos , Ratones , Ratones Transgénicos , Oxidación-Reducción , Proteínas/metabolismo , Cadena B de alfa-Cristalina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA