Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Curr Biol ; 34(7): 1403-1413.e5, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38460514

RESUMEN

Microbes are evolutionarily robust organisms capable of rapid adaptation to complex stress, which enables them to colonize harsh environments. In nature, microbes are regularly challenged by starvation, which is a particularly complex stress because resource limitation often co-occurs with changes in pH, osmolarity, and toxin accumulation created by metabolic waste. Often overlooked are the additional complications introduced by eventual resource replenishment, as successful microbes must withstand rapid environmental shifts before swiftly capitalizing on replenished resources to avoid invasion by competing species. To understand how microbes navigate trade-offs between growth and survival, ultimately adapting to thrive in environments with extreme fluctuations, we experimentally evolved 16 Escherichia coli populations for 900 days in repeated feast/famine conditions with cycles of 100-day starvation before resource replenishment. Using longitudinal population-genomic analysis, we found that evolution in response to extreme feast/famine is characterized by narrow adaptive trajectories with high mutational parallelism and notable mutational order. Genetic reconstructions reveal that early mutations result in trade-offs for biofilm and motility but trade-ups for growth and survival, as these mutations conferred positively correlated advantages during both short-term and long-term culture. Our results demonstrate how microbes can navigate the adaptive landscapes of regularly fluctuating conditions and ultimately follow mutational trajectories that confer benefits across diverse environments.


Asunto(s)
Adaptación Fisiológica , Escherichia coli , Mutación , Adaptación Fisiológica/genética
2.
bioRxiv ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38464051

RESUMEN

Fluctuating environments that consist of regular cycles of co-occurring stress are a common challenge faced by cellular populations. For a population to thrive in constantly changing conditions, an ability to coordinate a rapid cellular response is essential. Here, we identify a mutation conferring an arginine-to-histidine (Arg to His) substitution in the transcription terminator Rho. The rho R109H mutation frequently arose in E. coli populations experimentally evolved under repeated long-term starvation conditions, during which feast and famine result in drastic environmental pH fluctuations. Metagenomic sequencing revealed that populations containing the rho mutation also possess putative loss-of-function mutations in ydcI, which encodes a recently characterized transcription factor associated with pH homeostasis. Genetic reconstructions of these mutations show that the rho allele confers a plastic alkaline-induced reduction of Rho function that, when found in tandem with a ΔydcI allele, leads to intracellular alkalinization and genetic assimilation of Rho mutant function. We further identify Arg to His substitutions at analogous sites in rho alleles from species originating from fluctuating alkaline environments. Our results suggest that Arg to His substitutions in global regulators of gene expression can serve to rapidly coordinate complex responses through pH sensing and shed light on how cellular populations across the tree of life use environmental cues to coordinate rapid responses to complex, fluctuating environments.

3.
Evolution ; 74(12): 2549-2559, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33047822

RESUMEN

Following widespread infections of the most recent coronavirus known to infect humans, SARS-CoV-2, attention has turned to potential therapeutic options. With no drug or vaccine yet approved, one focal point of research is to evaluate the potential value of repurposing existing antiviral treatments, with the logical strategy being to identify at least a short-term intervention to prevent within-patient progression, while long-term vaccine strategies unfold. Here, we offer an evolutionary/population-genetic perspective on one approach that may overwhelm the capacity for pathogen defense (i.e., adaptation) - induced mutational meltdown - providing an overview of key concepts, review of previous theoretical and experimental work of relevance, and guidance for future research. Applied with appropriate care, including target specificity, induced mutational meltdown may provide a general, rapidly implemented approach for the within-patient eradication of a wide range of pathogens or other undesirable microorganisms.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Modelos Genéticos , Mutación , SARS-CoV-2/genética , Antivirales/uso terapéutico , Evolución Molecular , Extinción Biológica , Flujo Genético , Genoma Viral , Humanos , Mutagénesis , Pandemias , SARS-CoV-2/patogenicidad , Selección Genética
4.
Sci Total Environ ; 580: 425-429, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28040211

RESUMEN

Urbanization of Earth's habitats has led to considerable loss of biodiversity, but the driving ecological mechanism(s) are not always clear. Vertebrates like birds typically experience urban alterations to diet, habitat availability, and levels of predation or competition, but may also be exposed to greater or more pathogenic communities of microbes. Birds have been popular subjects of urban ecological research but, to our knowledge, no study has assessed how urban conditions influence the microbial communities on bird plumage. Birds carry a large variety of microorganisms on their plumage and some of them have the capacity to degrade feather keratin and alter plumage integrity. To limit the negative effects of these feather-degrading bacteria, birds coat their feathers with preen gland secretions containing antibacterial substances. Here we examined urban-rural variation in feather microbial abundance and preen gland size in house finches (Haemorhous mexicanus). We found that, although urban and rural finches carry similar total-cultivable microbial loads on their plumage, the abundance of feather-degrading bacteria was on average three times higher on the plumage of urban birds. We also found an increase in preen gland size along the gradient of urbanization, suggesting that urban birds may coat their feathers with more preen oil to limit the growth or activity of feather-degrading microbes. Given that greater investment in preening is traded-off against other immunological defenses and that feather-degrading bacteria can alter key processes like thermoregulation, aerodynamics, and coloration, our findings highlight the importance of plumage microbes and microbial defenses on the ecology of urban birds.


Asunto(s)
Bacterias/aislamiento & purificación , Plumas/microbiología , Aseo Animal , Passeriformes/microbiología , Glándulas Sebáceas , Urbanización , Animales , Arizona
5.
J Mol Biol ; 427(5): 1061-74, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24792419

RESUMEN

Assembly of the ß-barrel outer membrane proteins (OMPs) is an essential cellular process in Gram-negative bacteria and in the mitochondria and chloroplasts of eukaryotes--two organelles of bacterial origin. Central to this process is the conserved ß-barrel OMP that belongs to the Omp85 superfamily. In Escherichia coli, BamA is the core ß-barrel OMP and, together with four outer membrane lipoproteins, BamBCDE, constitutes the ß-barrel assembly machine (BAM). In this paper, we investigated the roles of BamD, an essential lipoprotein, and BamB in BamA biogenesis. Depletion of BamD caused impairment in BamA biogenesis and cessation of cell growth. These defects of BamD depletion were partly reversed by single-amino-acid substitutions mapping within the ß-barrel domain of BamA. However, in the absence of BamB, the positive effects of the ß-barrel substitutions on BamA biogenesis under BamD depletion conditions were nullified. By employing a BamA protein bearing one such substitution, F474L, it was demonstrated that the mutant BamA protein could not only assemble without BamD but also facilitate the assembly of wild-type BamA expressed in trans. Based on these data, we propose a model in which the Bam lipoproteins, which are localized to the outer membrane by the BAM-independent Lol pathway, aid in the creation of new BAM complexes by serving as outer membrane receptors and folding factors for nascent BamA molecules. The newly assembled BAM holocomplex then catalyzes the assembly of substrate OMPs and BamA. These in vivo findings are corroborated by recently published in vitro data.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Sustitución de Aminoácidos/fisiología , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Biogénesis de Organelos , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA