Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
PLoS Pathog ; 20(7): e1012282, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38990812

RESUMEN

Haemophilus influenzae is a human respiratory pathogen and inhabits the human respiratory tract as its only niche. Despite this, the molecular mechanisms that allow H. influenzae to establish persistent infections of human epithelia are not well understood. Here, we have investigated how H. influenzae adapts to the host environment and triggers the host immune response using a human primary cell-based infection model that closely resembles human nasal epithelia (NHNE). Physiological assays combined with dualRNAseq revealed that NHNE from five healthy donors all responded to H. influenzae infection with an initial, 'unproductive' inflammatory response that included a strong hypoxia signature but did not produce pro-inflammatory cytokines. Subsequently, an apparent tolerance to large extracellular and intraepithelial burdens of H. influenzae developed, with NHNE transcriptional profiles resembling the pre-infection state. This occurred in parallel with the development of intraepithelial bacterial populations, and appears to involve interruption of NFκB signalling. This is the first time that large-scale, persistence-promoting immunomodulatory effects of H. influenzae during infection have been observed, and we were able to demonstrate that only infections with live, but not heat-killed H. influenzae led to immunomodulation and reduced expression of NFκB-controlled cytokines such as IL-1ß, IL-36γ and TNFα. Interestingly, NHNE were able to re-activate pro-inflammatory responses towards the end of the 14-day infection, resulting in release of IL-8 and TNFα. In addition to providing first molecular insights into mechanisms enabling persistence of H. influenzae in the host, our data further indicate the presence of infection stage-specific gene expression modules, highlighting fundamental similarities between immune responses in NHNE and canonical immune cells, which merit further investigation.


Asunto(s)
Células Epiteliales , Infecciones por Haemophilus , Haemophilus influenzae , Humanos , Haemophilus influenzae/inmunología , Infecciones por Haemophilus/inmunología , Infecciones por Haemophilus/microbiología , Células Epiteliales/microbiología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Mucosa Nasal/microbiología , Mucosa Nasal/inmunología , Mucosa Nasal/metabolismo , Tolerancia Inmunológica , Células Cultivadas , Citocinas/metabolismo
2.
Emerg Infect Dis ; 30(9): 1918-1921, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39174038

RESUMEN

Alphavirus infections are transmitted by mosquitoes, but the mode of transmission for Mycobacterium ulcerans, which causes Buruli ulcer, is contested. Using notification data for Victoria, Australia, during 2017-2022, adjusted for incubation period, we show close alignment between alphavirus and Buruli ulcer seasons, supporting the hypothesis of mosquito transmission of M. ulcerans.


Asunto(s)
Infecciones por Alphavirus , Úlcera de Buruli , Mosquitos Vectores , Mycobacterium ulcerans , Úlcera de Buruli/transmisión , Úlcera de Buruli/epidemiología , Úlcera de Buruli/microbiología , Mycobacterium ulcerans/aislamiento & purificación , Infecciones por Alphavirus/transmisión , Infecciones por Alphavirus/epidemiología , Humanos , Animales , Victoria/epidemiología , Mosquitos Vectores/microbiología , Mosquitos Vectores/virología , Alphavirus/aislamiento & purificación , Culicidae/microbiología , Culicidae/virología , Notificación de Enfermedades
3.
Appl Environ Microbiol ; 90(3): e0129223, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289130

RESUMEN

Fundamental to effective Legionnaires' disease outbreak control is the ability to rapidly identify the environmental source(s) of the causative agent, Legionella pneumophila. Genomics has revolutionized pathogen surveillance, but L. pneumophila has a complex ecology and population structure that can limit source inference based on standard core genome phylogenetics. Here, we present a powerful machine learning approach that assigns the geographical source of Legionnaires' disease outbreaks more accurately than current core genome comparisons. Models were developed upon 534 L. pneumophila genome sequences, including 149 genomes linked to 20 previously reported Legionnaires' disease outbreaks through detailed case investigations. Our classification models were developed in a cross-validation framework using only environmental L. pneumophila genomes. Assignments of clinical isolate geographic origins demonstrated high predictive sensitivity and specificity of the models, with no false positives or false negatives for 13 out of 20 outbreak groups, despite the presence of within-outbreak polyclonal population structure. Analysis of the same 534-genome panel with a conventional phylogenomic tree and a core genome multi-locus sequence type allelic distance-based classification approach revealed that our machine learning method had the highest overall classification performance-agreement with epidemiological information. Our multivariate statistical learning approach maximizes the use of genomic variation data and is thus well-suited for supporting Legionnaires' disease outbreak investigations.IMPORTANCEIdentifying the sources of Legionnaires' disease outbreaks is crucial for effective control. Current genomic methods, while useful, often fall short due to the complex ecology and population structure of Legionella pneumophila, the causative agent. Our study introduces a high-performing machine learning approach for more accurate geographical source attribution of Legionnaires' disease outbreaks. Developed using cross-validation on environmental L. pneumophila genomes, our models demonstrate excellent predictive sensitivity and specificity. Importantly, this new approach outperforms traditional methods like phylogenomic trees and core genome multi-locus sequence typing, proving more efficient at leveraging genomic variation data to infer outbreak sources. Our machine learning algorithms, harnessing both core and accessory genomic variation, offer significant promise in public health settings. By enabling rapid and precise source identification in Legionnaires' disease outbreaks, such approaches have the potential to expedite intervention efforts and curtail disease transmission.


Asunto(s)
Legionella pneumophila , Enfermedad de los Legionarios , Humanos , Legionella pneumophila/genética , Enfermedad de los Legionarios/epidemiología , Tipificación de Secuencias Multilocus/métodos , Genómica/métodos , Epidemiología Molecular/métodos , Brotes de Enfermedades
4.
Microbiol Spectr ; 12(8): e0055524, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38916323

RESUMEN

A Mycobacterium ulcerans human challenge model has the potential to fundamentally advance our understanding of early human immune responses to infection, while rapidly evaluating vaccines and other therapeutic interventions. Here, using a murine tail infection model, we tested a very well-characterized working cell bank of the proposed challenge isolate M. ulcerans JKD8049 in naïve and Mycobacterium bovis bacille Calmette-Guérin (BCG)-vaccinated BALB/c mice. All 10 naïve mice were successfully infected with 20 colony-forming units (CFU) of M. ulcerans [95% confidence interval (CI) 17-22 CFU] with a mean time to visible lesion of 86 days (95% CI 79-92 days). In the 10 vaccinated mice, there was a significant delay in the mean time to lesion compared to the naïve controls of 24 days (P = 0.0003), but all mice eventually developed ulcerative lesions. This study informs a future human infection model by demonstrating the successful application of the challenge agent in this in vivo model and highlights both the promise and the problems with trying to induce protective immunity against M. ulcerans. IMPORTANCE: In preparation for its proposed use in a controlled human infection model (CHIM), this study reports the successful infection of BALB/c mice using a carefully characterized, low-dose inoculum of Mycobacterium ulcerans JKD8049 (our proposed CHIM strain). We also demonstrate that Mycobacterium bovis bacille Calmette-Guérin delays the onset of disease but cannot alter the course of illness once a lesion becomes apparent. We also validate the findings of previous low-dose challenges that used less accurate methods to determine the inoculum, but our presented methodology is practical, accurate, and anticipated to be reproducible.


Asunto(s)
Vacunas Bacterianas , Úlcera de Buruli , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Mycobacterium ulcerans , Animales , Ratones , Mycobacterium ulcerans/inmunología , Proyectos Piloto , Femenino , Humanos , Úlcera de Buruli/inmunología , Úlcera de Buruli/prevención & control , Úlcera de Buruli/microbiología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Mycobacterium bovis/inmunología , Vacunación , Vacuna BCG/inmunología , Vacuna BCG/administración & dosificación
5.
Front Immunol ; 15: 1417220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38868766

RESUMEN

Staphylococcus aureus bacteremia causes significant morbidity and mortality. Treatment of staphylococcal infections is hindered by widespread antibiotic resistance, and attempts to develop an S. aureus vaccine have failed. Improved S. aureus treatment and infection prevention options require a deeper understanding of the correlates of protective immunity. CD4+ T cells have been identified as key orchestrators in the defense against S. aureus, but uncertainties persist regarding the subset, polarity, and breadth of the memory CD4+ T-cell pool required for protection. Here, using a mouse model of systemic S. aureus infection, we discovered that the breadth of bacterium-specific memory CD4+ T-cell pool is a critical factor for protective immunity against invasive S. aureus infections. Seeding mice with a monoclonal bacterium-specific circulating memory CD4+ T-cell population failed to protect against systemic S. aureus infection; however, the introduction of a polyclonal and polyfunctional memory CD4+ T-cell pool significantly reduced the bacterial burden. Our findings support the development of a multi-epitope T-cell-based S. aureus vaccine, as a strategy to mitigate the severity of S. aureus bacteremia.


Asunto(s)
Bacteriemia , Linfocitos T CD4-Positivos , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Bacteriemia/inmunología , Bacteriemia/microbiología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Ratones , Linfocitos T CD4-Positivos/inmunología , Células T de Memoria/inmunología , Memoria Inmunológica , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Femenino , Vacunas Estafilocócicas/inmunología , Índice de Severidad de la Enfermedad
6.
Microb Genom ; 10(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847800

RESUMEN

Sequence comparison of 16S rRNA PCR amplicons is an established approach to taxonomically identify bacterial isolates and profile complex microbial communities. One potential application of recent advances in long-read sequencing technologies is to sequence entire rRNA operons and capture significantly more phylogenetic information compared to sequencing of the 16S rRNA (or regions thereof) alone, with the potential to increase the proportion of amplicons that can be reliably classified to lower taxonomic ranks. Here we describe GROND (Genome-derived Ribosomal Operon Database), a publicly available database of quality-checked 16S-ITS-23S rRNA operons, accompanied by multiple taxonomic classifications. GROND will aid researchers in analysis of their data and act as a standardised database to allow comparison of results between studies.


Asunto(s)
Bacterias , Filogenia , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , ARN Ribosómico 23S/genética , Operón , Operón de ARNr/genética , Bases de Datos Genéticas , Bases de Datos de Ácidos Nucleicos , Análisis de Secuencia de ADN/métodos
7.
Microb Genom ; 10(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833287

RESUMEN

It is now possible to assemble near-perfect bacterial genomes using Oxford Nanopore Technologies (ONT) long reads, but short-read polishing is usually required for perfection. However, the effect of short-read depth on polishing performance is not well understood. Here, we introduce Pypolca (with default and careful parameters) and Polypolish v0.6.0 (with a new careful parameter). We then show that: (1) all polishers other than Pypolca-careful, Polypolish-default and Polypolish-careful commonly introduce false-positive errors at low read depth; (2) most of the benefit of short-read polishing occurs by 25× depth; (3) Polypolish-careful almost never introduces false-positive errors at any depth; and (4) Pypolca-careful is the single most effective polisher. Overall, we recommend the following polishing strategies: Polypolish-careful alone when depth is very low (<5×), Polypolish-careful and Pypolca-careful when depth is low (5-25×), and Polypolish-default and Pypolca-careful when depth is sufficient (>25×).


Asunto(s)
Genoma Bacteriano , Nanoporos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Secuenciación de Nanoporos/métodos , Bacterias/genética , Bacterias/clasificación , Programas Informáticos , Genómica/métodos
8.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38691425

RESUMEN

The endosymbiosis between the pathogenic fungus Rhizopus microsporus and the toxin-producing bacterium Mycetohabitans rhizoxinica represents a unique example of host control by an endosymbiont. Fungal sporulation strictly depends on the presence of endosymbionts as well as bacterially produced secondary metabolites. However, an influence of primary metabolites on host control remained unexplored. Recently, we discovered that M. rhizoxinica produces FO and 3PG-F420, a derivative of the specialized redox cofactor F420. Whether FO/3PG-F420 plays a role in the symbiosis has yet to be investigated. Here, we report that FO, the precursor of 3PG-F420, is essential to the establishment of a stable symbiosis. Bioinformatic analysis revealed that the genetic inventory to produce cofactor 3PG-F420 is conserved in the genomes of eight endofungal Mycetohabitans strains. By developing a CRISPR/Cas-assisted base editing strategy for M. rhizoxinica, we generated mutant strains deficient in 3PG-F420 (M. rhizoxinica ΔcofC) and in both FO and 3PG-F420 (M. rhizoxinica ΔfbiC). Co-culture experiments demonstrated that the sporulating phenotype of apo-symbiotic R. microsporus is maintained upon reinfection with wild-type M. rhizoxinica or M. rhizoxinica ΔcofC. In contrast, R. microsporus is unable to sporulate when co-cultivated with M. rhizoxinica ΔfbiC, even though the fungus was observed by super-resolution fluorescence microscopy to be successfully colonized. Genetic and chemical complementation of the FO deficiency of M. rhizoxinica ΔfbiC led to restoration of fungal sporulation, signifying that FO is indispensable for establishing a functional symbiosis. Even though FO is known for its light-harvesting properties, our data illustrate an important role of FO in inter-kingdom communication.


Asunto(s)
Rhizopus , Simbiosis , Rhizopus/metabolismo , Rhizopus/genética , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Flavinas/metabolismo , Sistemas CRISPR-Cas , Riboflavina/metabolismo
9.
PLoS Negl Trop Dis ; 18(5): e0011979, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701090

RESUMEN

Critical scientific questions remain regarding infection with Mycobacterium ulcerans, the organism responsible for the neglected tropical disease, Buruli ulcer (BU). A controlled human infection model has the potential to accelerate our knowledge of the immunological correlates of disease, to test prophylactic interventions and novel therapeutics. Here we present microbiological evidence supporting M. ulcerans JKD8049 as a suitable human challenge strain. This non-genetically modified Australian isolate is susceptible to clinically relevant antibiotics, can be cultured in animal-free and surfactant-free media, can be enumerated for precise dosing, and has stable viability following cryopreservation. Infectious challenge of humans with JKD8049 is anticipated to imitate natural infection, as M. ulcerans JKD8049 is genetically stable following in vitro passage and produces the key virulence factor, mycolactone. Also reported are considerations for the manufacture, storage, and administration of M. ulcerans JKD8049 for controlled human infection.


Asunto(s)
Úlcera de Buruli , Mycobacterium ulcerans , Mycobacterium ulcerans/genética , Úlcera de Buruli/microbiología , Úlcera de Buruli/inmunología , Humanos , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Australia
10.
Cell Rep ; 43(4): 114082, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38583155

RESUMEN

Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are alarmingly common, and treatment is confined to last-line antibiotics. Vancomycin is the treatment of choice for MRSA bacteremia, and treatment failure is often associated with vancomycin-intermediate S. aureus isolates. The regulatory 3' UTR of the vigR mRNA contributes to vancomycin tolerance and upregulates the autolysin IsaA. Using MS2-affinity purification coupled with RNA sequencing, we find that the vigR 3' UTR also regulates dapE, a succinyl-diaminopimelate desuccinylase required for lysine and peptidoglycan synthesis, suggesting a broader role in controlling cell wall metabolism and vancomycin tolerance. Deletion of the 3' UTR increased virulence, while the isaA mutant is completely attenuated in a wax moth larvae model. Sequence and structural analyses of vigR indicated that the 3' UTR has expanded through the acquisition of Staphylococcus aureus repeat insertions that contribute sequence for the isaA interaction seed and may functionalize the 3' UTR.


Asunto(s)
Regiones no Traducidas 3' , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Regiones no Traducidas 3'/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Mariposas Nocturnas/microbiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/efectos de los fármacos , Vancomicina/farmacología , Virulencia/genética
11.
iScience ; 27(6): 110009, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38868206

RESUMEN

Continuous assessment of the impact of SARS-CoV-2 on the host at the cell-type level is crucial for understanding key mechanisms involved in host defense responses to viral infection. We investigated host response to ancestral-strain and Alpha-variant SARS-CoV-2 infections within air-liquid-interface human nasal epithelial cells from younger adults (26-32 Y) and older children (12-14 Y) using single-cell RNA-sequencing. Ciliated and secretory-ciliated cells formed the majority of highly infected cell-types, with the latter derived from ciliated lineages. Strong innate immune responses were observed across lowly infected and uninfected bystander cells and heightened in Alpha-infection. Alpha highly infected cells showed increased expression of protein-refolding genes compared with ancestral-strain-infected cells in children. Furthermore, oxidative phosphorylation-related genes were down-regulated in bystander cells versus infected and mock-control cells, underscoring the importance of these biological functions for viral replication. Overall, this study highlights the complexity of cell-type-, age- and viral strain-dependent host epithelial responses to SARS-CoV-2.

12.
Nat Microbiol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134708

RESUMEN

Staphylococcus aureus is a pulmonary pathogen associated with substantial human morbidity and mortality. As vaccines targeting virulence determinants have failed to be protective in humans, other factors are likely involved in pathogenesis. Here we analysed transcriptomic responses of human clinical isolates of S. aureus from initial and chronic infections. We observed upregulated collagenase and proline transporter gene expression in chronic infection isolates. Metabolomics of bronchiolar lavage fluid and fibroblast infection, growth assays and analysis of bacterial mutant strains showed that airway fibroblasts produce collagen during S. aureus infection. Host-adapted bacteria upregulate collagenase, which degrades collagen and releases proline. S. aureus then imports proline, which fuels oxidative metabolism via the tricarboxylic acid cycle. Proline metabolism provides host-adapted S. aureus with a metabolic benefit enabling out-competition of non-adapted strains. These data suggest that clinical settings characterized by airway repair processes and fibrosis provide a milieu that promotes S. aureus adaptation and supports infection.

13.
Nat Microbiol ; 9(2): 377-389, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38263454

RESUMEN

Buruli ulcer, a chronic subcutaneous infection caused by Mycobacterium ulcerans, is increasing in prevalence in southeastern Australia. Possums are a local wildlife reservoir for M. ulcerans and, although mosquitoes have been implicated in transmission, it remains unclear how humans acquire infection. We conducted extensive field survey analyses of M. ulcerans prevalence among mosquitoes in the Mornington Peninsula region of southeastern Australia. PCR screening of trapped mosquitoes revealed a significant association between M. ulcerans and Aedes notoscriptus. Spatial scanning statistics revealed overlap between clusters of M. ulcerans-positive Ae. notoscriptus, M. ulcerans-positive possum excreta and Buruli ulcer cases, and metabarcoding analyses showed individual mosquitoes had fed on humans and possums. Bacterial genomic analysis confirmed shared single-nucleotide-polymorphism profiles for M. ulcerans detected in mosquitoes, possum excreta and humans. These findings indicate Ae. notoscriptus probably transmit M. ulcerans in southeastern Australia and highlight mosquito control as a Buruli ulcer prevention measure.


Asunto(s)
Aedes , Úlcera de Buruli , Mycobacterium ulcerans , Animales , Humanos , Úlcera de Buruli/epidemiología , Úlcera de Buruli/genética , Úlcera de Buruli/microbiología , Mycobacterium ulcerans/genética , Australia , Genoma Bacteriano , Aedes/genética
14.
Access Microbiol ; 5(12)2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188239

RESUMEN

Vancomycin-resistant Enterococcus (VRE) is an increasingly identified cause of human disease, with most infections resulting from the vanA and vanB genotypes; less is known about other clinically relevant genotypes. Here we report a genomic exploration of a vanD VRE faecium (VREfm), which arose de novo during a single infectious episode. The genomes of the vancomycin-susceptible E. faecium (VSEfm) recipient and resulting VREfm were subjected to long-read sequencing and closed, with whole-genome alignments, cross-mapping and orthologue clustering used to identify genomic variation. Three key differences were identified. (i) The VREfm chromosome gained a 142.6 kb integrative conjugative element (ICE) harbouring the vanD locus. (ii) The native ligase (ddl) was disrupted by an ISEfm1 insertion. (iii) A large 1.74 Mb chromosomal inversion of unknown consequence occurred. Alignment and phylogenetic-based comparisons of the VREfm with a global collection of vanD-harbouring genomes identified strong similarities in the 120-160 kb genomic region surrounding vanD, suggestive of a common mobile element and integration site, irrespective of the diverse taxonomic, geographical and host origins of the isolates. This isolate diversity revealed that this putative ICE (and its source) is globally disseminated and is capable of being acquired by different genera. Although the incidence of vanD VREfm is low, understanding its emergence and potential for spread is crucial for the ongoing efforts to reduce antimicrobial resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA