Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Development ; 148(7)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824176

RESUMEN

Self-organization is a key feature of many biological and developmental processes, including cell migration. Although cell migration has traditionally been viewed as a biological response to extrinsic signals, advances within the past two decades have highlighted the importance of intrinsic self-organizing properties to direct cell migration on multiple scales. In this Review, we will explore self-organizing mechanisms that lay the foundation for both single and collective cell migration. Based on in vitro and in vivo examples, we will discuss theoretical concepts that underlie the persistent migration of single cells in the absence of directional guidance cues, and the formation of an autonomous cell collective that drives coordinated migration. Finally, we highlight the general implications of self-organizing principles guiding cell migration for biological and medical research.


Asunto(s)
Movimiento Celular/fisiología , Animales , Quimiocinas , Locomoción/fisiología , Modelos Biológicos , Morfogénesis/fisiología
2.
Cell Microbiol ; 21(10): e13082, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31283102

RESUMEN

The myosin superfamily comprises of actin-dependent eukaryotic molecular motors important in a variety of cellular functions. Although well studied in many systems, knowledge of their functions in Plasmodium, the causative agent of malaria, is restricted. Previously, six myosins were identified in this genus, including three Class XIV myosins found only in Apicomplexa and some Ciliates. The well characterized MyoA is a Class XIV myosin essential for gliding motility and invasion. Here, we characterize all other Plasmodium myosins throughout the parasite life cycle and show that they have very diverse patterns of expression and cellular location. MyoB and MyoE, the other two Class XIV myosins, are expressed in all invasive stages, with apical and basal locations, respectively. Gene deletion revealed that MyoE is involved in sporozoite traversal, MyoF and MyoK are likely essential in the asexual blood stages, and MyoJ and MyoB are not essential. Both MyoB and its essential light chain (MCL-B) are localised at the apical end of ookinetes but expressed at completely different time points. This work provides a better understanding of the role of actomyosin motors in Apicomplexan parasites, particularly in the motile and invasive stages of Plasmodium during sexual and asexual development within the mosquito.


Asunto(s)
Miosinas/metabolismo , Plasmodium/crecimiento & desarrollo , Plasmodium/metabolismo , Proteínas Protozoarias/metabolismo , Esporozoítos/metabolismo , Animales , Femenino , Estadios del Ciclo de Vida , Espectrometría de Masas , Ratones , Miosinas/química , Miosinas/genética , Fenotipo , Plasmodium/genética , Dominios Proteicos/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Esporozoítos/crecimiento & desarrollo
3.
J Biol Chem ; 292(43): 17857-17875, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-28893907

RESUMEN

Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain-interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites, and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress, and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC), and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP-binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion.


Asunto(s)
Estadios del Ciclo de Vida/fisiología , Proteínas de la Membrana , Miosinas , Plasmodium berghei , Plasmodium falciparum , Proteínas Protozoarias , Animales , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Miosinas/genética , Miosinas/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
4.
Sci Adv ; 8(37): eadd2488, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36103529

RESUMEN

The sculpting of germ layers during gastrulation relies on the coordinated migration of progenitor cells, yet the cues controlling these long-range directed movements remain largely unknown. While directional migration often relies on a chemokine gradient generated from a localized source, we find that zebrafish ventrolateral mesoderm is guided by a self-generated gradient of the initially uniformly expressed and secreted protein Toddler/ELABELA/Apela. We show that the Apelin receptor, which is specifically expressed in mesodermal cells, has a dual role during gastrulation, acting as a scavenger receptor to generate a Toddler gradient, and as a chemokine receptor to sense this guidance cue. Thus, we uncover a single receptor-based self-generated gradient as the enigmatic guidance cue that can robustly steer the directional migration of mesoderm through the complex and continuously changing environment of the gastrulating embryo.

5.
Cell Host Microbe ; 20(6): 731-743, 2016 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-27978434

RESUMEN

Apicomplexa exhibit a unique form of substrate-dependent gliding motility central for host cell invasion and parasite dissemination. Gliding is powered by rearward translocation of apically secreted transmembrane adhesins via their interaction with the parasite actomyosin system. We report a conserved armadillo and pleckstrin homology (PH) domain-containing protein, termed glideosome-associated connector (GAC), that mediates apicomplexan gliding motility, invasion, and egress by connecting the micronemal adhesins with the actomyosin system. TgGAC binds to and stabilizes filamentous actin and specifically associates with the transmembrane adhesin TgMIC2. GAC localizes to the apical pole in invasive stages of Toxoplasma gondii and Plasmodium berghei, and apical positioning of TgGAC depends on an apical lysine methyltransferase, TgAKMT. GAC PH domain also binds to phosphatidic acid, a lipid mediator associated with microneme exocytosis. Collectively, these findings indicate a central role for GAC in spatially and temporally coordinating gliding motility and invasion.


Asunto(s)
Apicomplexa/citología , Apicomplexa/fisiología , Lípidos , Proteínas de Microfilamentos/fisiología , Proteínas Motoras Moleculares/fisiología , Proteínas Protozoarias/fisiología , Citoesqueleto de Actina/fisiología , Actinas/fisiología , Animales , Apicomplexa/metabolismo , Moléculas de Adhesión Celular/fisiología , Movimiento Celular , Exocitosis/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Metiltransferasas/metabolismo , Proteínas de Microfilamentos/metabolismo , Modelos Moleculares , Orgánulos , Ácidos Fosfatidicos/metabolismo , Plasmodium berghei/metabolismo , Plasmodium berghei/fisiología , Conformación Proteica , Infecciones por Protozoos/parasitología , Proteínas Protozoarias/metabolismo , Conejos , Toxoplasma/citología , Toxoplasma/metabolismo , Toxoplasma/fisiología , Toxoplasmosis/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA