Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(27): e2123227119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35759659

RESUMEN

DNA methyltransferase inhibitors (DNMTis) reexpress hypermethylated genes in cancers and leukemias and also activate endogenous retroviruses (ERVs), leading to interferon (IFN) signaling, in a process known as viral mimicry. In the present study we show that in the subset of acute myeloid leukemias (AMLs) with mutations in TP53, associated with poor prognosis, DNMTis, important drugs for treatment of AML, enable expression of ERVs and IFN and inflammasome signaling in a STING-dependent manner. We previously reported that in solid tumors poly ADP ribose polymerase inhibitors (PARPis) combined with DNMTis to induce an IFN/inflammasome response that is dependent on STING1 and is mechanistically linked to generation of a homologous recombination defect (HRD). We now show that STING1 activity is actually increased in TP53 mutant compared with wild-type (WT) TP53 AML. Moreover, in TP53 mutant AML, STING1-dependent IFN/inflammatory signaling is increased by DNMTi treatment, whereas in AMLs with WT TP53, DNMTis alone have no effect. While combining DNMTis with PARPis increases IFN/inflammatory gene expression in WT TP53 AML cells, signaling induced in TP53 mutant AML is still several-fold higher. Notably, induction of HRD in both TP53 mutant and WT AMLs follows the pattern of STING1-dependent IFN and inflammatory signaling that we have observed with drug treatments. These findings increase our understanding of the mechanisms that underlie DNMTi + PARPi treatment, and also DNMTi combinations with immune therapies, suggesting a personalized approach that statifies by TP53 status, for use of such therapies, including potential immune activation of STING1 in AML and other cancers.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , ADN-Citosina Metilasas , Leucemia Mieloide Aguda , Proteínas de la Membrana , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteína p53 Supresora de Tumor , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , ADN-Citosina Metilasas/antagonistas & inhibidores , Recombinación Homóloga/genética , Humanos , Inflamasomas/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Proteínas de la Membrana/inmunología , Mutación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(30): 17785-17795, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32651270

RESUMEN

Poly(ADP ribose) polymerase inhibitors (PARPi) have efficacy in triple negative breast (TNBC) and ovarian cancers (OCs) harboring BRCA mutations, generating homologous recombination deficiencies (HRDs). DNA methyltransferase inhibitors (DNMTi) increase PARP trapping and reprogram the DNA damage response to generate HRD, sensitizing BRCA-proficient cancers to PARPi. We now define the mechanisms through which HRD is induced in BRCA-proficient TNBC and OC. DNMTi in combination with PARPi up-regulate broad innate immune and inflammasome-like signaling events, driven in part by stimulator of interferon genes (STING), to unexpectedly directly generate HRD. This inverse relationship between inflammation and DNA repair is critical, not only for the induced phenotype, but also appears as a widespread occurrence in The Cancer Genome Atlas datasets and cancer subtypes. These discerned interactions between inflammation signaling and DNA repair mechanisms now elucidate how epigenetic therapy enhances PARPi efficacy in the setting of BRCA-proficient cancer. This paradigm will be tested in a phase I/II TNBC clinical trial.


Asunto(s)
Recombinación Homóloga/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína BRCA1/genética , Proteína BRCA2/genética , Línea Celular Tumoral , Biología Computacional , Metilasas de Modificación del ADN/antagonistas & inhibidores , Reparación del ADN/efectos de los fármacos , Anemia de Fanconi/genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interferones/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Factor de Necrosis Tumoral alfa/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(45): 22609-22618, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31591209

RESUMEN

A minority of cancers have breast cancer gene (BRCA) mutations that confer sensitivity to poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis), but the role for PARPis in BRCA-proficient cancers is not well established. This suggests the need for novel combination therapies to expand the use of these drugs. Recent reports that low doses of DNA methyltransferase inhibitors (DNMTis) plus PARPis enhance PARPi efficacy in BRCA-proficient AML subtypes, breast, and ovarian cancer open up the possibility that this strategy may apply to other sporadic cancers. We identify a key mechanistic aspect of this combination therapy in nonsmall cell lung cancer (NSCLC): that the DNMTi component creates a BRCAness phenotype through downregulating expression of key homologous recombination and nonhomologous end-joining (NHEJ) genes. Importantly, from a translational perspective, the above changes in DNA repair processes allow our combinatorial PARPi and DNMTi therapy to robustly sensitize NSCLC cells to ionizing radiation in vitro and in vivo. Our combinatorial approach introduces a biomarker strategy and a potential therapy paradigm for treating BRCA-proficient cancers like NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Metilasas de Modificación del ADN/antagonistas & inhibidores , Inhibidores Enzimáticos/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Animales , Antineoplásicos , Proteína BRCA1/genética , Proteína BRCA2/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Terapia Combinada , Metilasas de Modificación del ADN/metabolismo , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Quimioterapia Combinada , Femenino , Recombinación Homóloga/efectos de los fármacos , Recombinación Homóloga/efectos de la radiación , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ftalazinas/administración & dosificación , Radiación Ionizante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA