Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(32): e2221533120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37527347

RESUMEN

Alterations in fMRI-based brain functional network connectivity (FNC) are associated with schizophrenia (SCZ) and the genetic risk or subthreshold clinical symptoms preceding the onset of SCZ, which often occurs in early adulthood. Thus, age-sensitive FNC changes may be relevant to SCZ risk-related FNC. We used independent component analysis to estimate FNC from childhood to adulthood in 9,236 individuals. To capture individual brain features more accurately than single-session fMRI, we studied an average of three fMRI scans per individual. To identify potential familial risk-related FNC changes, we compared age-related FNC in first-degree relatives of SCZ patients mostly including unaffected siblings (SIB) with neurotypical controls (NC) at the same age stage. Then, we examined how polygenic risk scores for SCZ influenced risk-related FNC patterns. Finally, we investigated the same risk-related FNC patterns in adult SCZ patients (oSCZ) and young individuals with subclinical psychotic symptoms (PSY). Age-sensitive risk-related FNC patterns emerge during adolescence and early adulthood, but not before. Young SIB always followed older NC patterns, with decreased FNC in a cerebellar-occipitoparietal circuit and increased FNC in two prefrontal-sensorimotor circuits when compared to young NC. Two of these FNC alterations were also found in oSCZ, with one exhibiting reversed pattern. All were linked to polygenic risk for SCZ in unrelated individuals (R2 varied from 0.02 to 0.05). Young PSY showed FNC alterations in the same direction as SIB when compared to NC. These results suggest that age-related neurotypical FNC correlates with genetic risk for SCZ and is detectable with MRI in young participants.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Adulto , Adolescente , Humanos , Niño , Adulto Joven , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Factores de Riesgo
2.
Schizophr Res ; 240: 193-203, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35032904

RESUMEN

OBJECTIVE: Earlier evidence suggested that structural-functional covariation in schizophrenia patients (SCZ) is associated with cognition, a predictor of functioning. Moreover, studies suggested that functional brain abnormalities of schizophrenia may be related with structural network features. However, only few studies have investigated the relationship between structural-functional covariation and both diagnosis and functioning in SCZ. We hypothesized that structural-functional covariation networks associated with diagnosis are related to real-world functioning in SCZ. METHODS: We performed joint Independent Component Analysis on T1 images and resting-state fMRI-based Degree Centrality (DC) maps from 89 SCZ and 285 controls. Structural-functional covariation networks in which we found a main effect of diagnosis underwent correlation analysis to investigate their relationship with functioning. Covariation networks showing a significant association with both diagnosis and functioning underwent univariate analysis to better characterize group-level differences at the spatial level. RESULTS: A structural-functional covariation network characterized by frontal, temporal, parietal and thalamic structural estimates significantly covaried with temporo-parietal resting-state DC. Compared with controls, SCZ had reduced structural-functional covariation within this network (pFDR = 0.005). The same measure correlated positively with both social and occupational functioning (both pFDR = 0.042). Univariate analyses revealed grey matter deviations in SCZ compared with controls within this structural-functional network in hippocampus, cerebellum, thalamus, orbito-frontal cortex, and insula. No group differences were found in DC. CONCLUSIONS: Findings support the existence of a phenotypical association between group-level differences and inter-individual heterogeneity of functional deficits in SCZ. Given that only the joint structural/functional analysis revealed this association, structural-functional covariation may be a potentially relevant schizophrenia phenotype.


Asunto(s)
Esquizofrenia , Encéfalo/diagnóstico por imagen , Corteza Cerebral , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Descanso , Esquizofrenia/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA