Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612916

RESUMEN

Eukaryotic REV1 serves as a scaffold protein for the coordination of DNA polymerases during DNA translesion synthesis. Besides this structural role, REV1 is a Y-family DNA polymerase with its own distributive deoxycytidyl transferase activity. However, data about the accuracy and efficiency of DNA synthesis by REV1 in the literature are contrasting. Here, we expressed and purified the full-length human REV1 from Saccharomyces cerevisiae and characterized its activity on undamaged DNA and a wide range of damaged DNA templates. We demonstrated that REV1 carried out accurate synthesis opposite 8-oxoG and O6-meG with moderate efficiency. It also replicated thymine glycol surprisingly well in an error-prone manner, but was blocked by the intrastrand 1,2-GG cisplatin crosslink. By using the 1,N6-ethenoadenine and 7-deaza-adenine lesions, we have provided biochemical evidence of the importance for REV1 functioning of the Hoogsteen face of template A, the second preferable template after G.


Asunto(s)
Adenina , Humanos , Cisplatino , Daño del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN , Nucleotidiltransferasas/genética , Saccharomyces cerevisiae/genética
2.
Chromosoma ; 129(3-4): 201-214, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32500264

RESUMEN

Heterochromatin protein 1a (HP1a) is a well-known component of pericentromeric and telomeric heterochromatin in Drosophila. However, its role and the mechanisms of its binding in the chromosome arms (ChAs) remain largely unclear. Here, we identified HP1a-interacting domains in the somatic cells of Drosophila ovaries using a DamID-seq approach and compared them with insertion sites of transposable elements (TEs) revealed by genome sequencing. Although HP1a domains cover only 13% of ChAs, they non-randomly associate with 42% of TE insertions. Furthermore, HP1a on average propagates at 2-kb distances from the TE insertions. These data confirm the role of TEs in formation of HP1a islands in ChAs. However, only 18% of HP1a domains have adjacent TEs, indicating the existence of other mechanisms of HP1a domain formation besides spreading from TEs. In particular, many TE-independent HP1a domains correspond to the regions attached to the nuclear pore complexes (NPCs) or contain active gene promoters. However, HP1a occupancy on the promoters does not significantly influence expression of corresponding genes. At the same time, the steady-state transcript level of many genes located outside of HP1a domains was altered upon HP1a knockdown in the somatic cells of ovaries, thus pointing to the strong indirect effect of HP1a depletion. Collectively, our results support an existence of at least three different mechanisms of HP1a domain emergence in ChAs: spreading from TE insertions, transient interactions with the chromatin located near NPCs, and targeting to the promoters of moderately expressed genes.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Drosophila/fisiología , Eucromatina/metabolismo , Ovario/fisiología , Animales , Sitios de Unión , Secuenciación de Inmunoprecipitación de Cromatina , Homólogo de la Proteína Chromobox 5 , Mapeo Cromosómico , Cromosomas/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Eucromatina/genética , Femenino , Técnica del Anticuerpo Fluorescente , Genómica/métodos , Unión Proteica
3.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34948223

RESUMEN

Insertions of transposable elements (TEs) in eukaryotic genomes are usually associated with repressive chromatin, which spreads to neighbouring genomic sequences. In ovaries of Drosophila melanogaster, the Piwi-piRNA pathway plays a key role in the transcriptional silencing of TEs considered to be exerted mostly through the establishment of H3K9me3 histone marks recruiting Heterochromatin Protein 1a (HP1a). Here, using RNA-seq, we investigated the expression of TEs and the adjacent genomic regions upon Piwi and HP1a germline knockdowns sharing a similar genetic background. We found that the depletion of Piwi and HP1a led to the derepression of only partially overlapping TE sets. Several TEs were silenced predominantly by HP1a, whereas the upregulation of some other TEs was more pronounced upon Piwi knockdown and, surprisingly, was diminished upon a Piwi/HP1a double-knockdown. We revealed that HP1a loss influenced the expression of thousands of protein-coding genes mostly not adjacent to TE insertions and, in particular, downregulated a putative transcriptional factor required for TE activation. Nevertheless, our results indicate that Piwi and HP1a cooperatively exert repressive effects on the transcription of euchromatic loci flanking the insertions of some Piwi-regulated TEs. We suggest that this mechanism controls the silencing of a small set of TE-adjacent tissue-specific genes, preventing their inappropriate expression in ovaries.


Asunto(s)
Proteínas Argonautas/metabolismo , Homólogo de la Proteína Chromobox 5/metabolismo , Elementos Transponibles de ADN , Proteínas de Drosophila/metabolismo , Células Germinativas/metabolismo , Ovario/metabolismo , RNA-Seq , Animales , Proteínas Argonautas/genética , Homólogo de la Proteína Chromobox 5/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino
4.
Int J Mol Sci ; 21(3)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046213

RESUMEN

Drosophila key nuclear piRNA silencing pathway protein Piwi of the Argonaute family has been classically studied as a factor controlling transposable elements and fertility. Piwi has been shown to concentrate in the nucleolus for reasons largely unknown. Ribosomal RNA is the main component of the nucleolus. In this work the effect of a piwi mutation on rRNA is described. This work led to three important conclusions: A mutation in piwi induces antisense 5S rRNA expression, a processing defect of 2S rRNA orthologous to the 3'-end of eukaryotic 5.8S rRNA, and accumulation of fragments of all five rRNAs in Drosophila melanogaster ovaries. Hypotheses to explain these phenomena are proposed, possibly involving the interaction of the components of the piRNA pathway with the RNA surveillance machinery.


Asunto(s)
Proteínas Argonautas/genética , Proteínas de Drosophila/genética , Mutación , Ovario/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/genética , Animales , Drosophila melanogaster , Femenino , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Ribosómico/metabolismo
5.
Nucleic Acids Res ; 42(10): 6208-18, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24782529

RESUMEN

The Piwi-interacting RNA (piRNA)-interacting Piwi protein is involved in transcriptional silencing of transposable elements in ovaries of Drosophila melanogaster. Here we characterized the genome-wide effect of nuclear Piwi elimination on the presence of the heterochromatic H3K9me3 mark and HP1a, as well as on the transcription-associated mark H3K4me2. Our results demonstrate that a significant increase in the H3K4me2 level upon nuclear Piwi loss is not accompanied by the alterations in H3K9me3 and HP1a levels for several germline-expressed transposons, suggesting that in this case Piwi prevents transcription by a mechanism distinct from H3K9 methylation. We found that the targets of Piwi-dependent chromatin repression are mainly related to the elements that display a higher level of H3K4me2 modification in the absence of silencing, i.e. most actively transcribed elements. We also show that Piwi-guided silencing does not significantly influence the chromatin state of dual-strand piRNA-producing clusters. In addition, host protein-coding gene expression is essentially not affected due to the nuclear Piwi elimination, but we noted an increase in small nuclear spliceosomal RNAs abundance and propose Piwi involvement in their post-transcriptional regulation. Our work reveals new aspects of transposon silencing in Drosophila, indicating that transcription of transposons can underpin their Piwi dependent silencing, while canonical heterochromatin marks are not obligatory for their repression.


Asunto(s)
Proteínas Argonautas/metabolismo , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Silenciador del Gen , Animales , Proteínas Argonautas/genética , Núcleo Celular/genética , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Femenino , Histonas/metabolismo , Ovario/metabolismo , ARN Nuclear Pequeño/metabolismo , Retroelementos
6.
Proc Natl Acad Sci U S A ; 108(46): 18760-5, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22065765

RESUMEN

Piwi-interacting RNAs (piRNAs) and Piwi proteins have the evolutionarily conserved function of silencing of repetitive genetic elements in germ lines. The founder of the Piwi subfamily, Drosophila nuclear Piwi protein, was also shown to be required for the maintenance of germ-line stem cells (GSCs). Hence, null mutant piwi females exhibit two types of abnormalities, overexpression of transposons and severely underdeveloped ovaries. It remained unknown whether the failure of GSC maintenance is related to transposon derepression or if GSC self-renewal and piRNA silencing are two distinct functions of the Piwi protein. We have revealed a mutation, piwi(Nt), removing the nuclear localization signal of the Piwi protein. piwi(Nt) females retain the ability of GSC self-renewal and a near-normal number of egg chambers in the ovarioles but display a drastic transposable element derepression and nuclear accumulation of their transcripts in the germ line. piwi(Nt) mutants are sterile most likely because of the disturbance of piRNA-mediated transposon silencing. Analysis of chromatin modifications in the piwi(Nt) ovaries indicated that Piwi causes chromatin silencing only of certain types of transposons, whereas others are repressed in the nuclei without their chromatin modification. Thus, Piwi nuclear localization that is required for its silencing function is not essential for the maintenance of GSCs. We suggest that the Piwi function in GSC self-renewal is independent of transposon repression and is normally realized in the cytoplasm of GSC niche cells.


Asunto(s)
Proteínas Argonautas/genética , Elementos Transponibles de ADN , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células Madre/citología , Animales , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citoplasma/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Silenciador del Gen , Hibridación in Situ , Masculino , Modelos Genéticos , Mutación , Oogénesis
7.
Nucleic Acids Res ; 35(16): 5430-8, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17702759

RESUMEN

Silencing of genomic repeats, including transposable elements, in Drosophila melanogaster is mediated by repeat-associated short interfering RNAs (rasiRNAs) interacting with proteins of the Piwi subfamily. rasiRNA-based silencing is thought to be mechanistically distinct from both the RNA interference and microRNA pathways. We show that the amount of rasiRNAs of a wide range of retroelements is drastically reduced in ovaries and testes of flies carrying a mutation in the spn-E gene. To address the mechanism of rasiRNA-dependent silencing of retrotransposons, we monitored their chromatin state in ovaries and somatic tissues. This revealed that the spn-E mutation causes chromatin opening of retroelements in ovaries, resulting in an increase in histone H3 K4 dimethylation and a decrease in histone H3 K9 di/trimethylation. The strongest chromatin changes have been detected for telomeric HeT-A elements that correlates with the most dramatic increase of their transcript level, compared to other mobile elements. The spn-E mutation also causes depletion of HP1 content in the chromatin of transposable elements, especially along HeT-A arrays. We also show that mutations in the genes controlling the rasiRNA pathway cause no derepression of the same retrotransposons in somatic tissues. Our results provide evidence that germinal Piwi-associated short RNAs induce chromatin modifications of their targets.


Asunto(s)
Cromatina/genética , Drosophila melanogaster/genética , Silenciador del Gen , ARN Interferente Pequeño/metabolismo , Retroelementos , Adenosina Trifosfatasas/genética , Animales , Cromatina/química , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Femenino , Mutación , Ovario/metabolismo
8.
RNA Biol ; 1(1): 54-8, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-17194939

RESUMEN

RNA interference (RNAi) is considered as a defense against expansion of transposable elements. The proteins related to RNA helicase and Argonaute families are involved in RNAi process in different organisms. It was shown that Argonaute AUBERGINE and putative RNA helicase SPINDLE-E proteins were essential for RNAi in Drosophila. Here, we describe the role of aubergine (aub) and spindle-E (spn-E) genes in the control of LTR retrotransposon copia and nonLTR telomeric Het-A and I retrotransposons in ovaries. spn-E mutation causes a drastically increased lacZ expression driven by copia LTR. For the first time we show the involvement of AUBERGINE protein and VASA RNA helicase, essential for oocyte patterning, in the retrotransposon silencing. spn-E, vasa and aub mutations cause similar accumulation of both I element and Het-A transcripts in the developing oocyte. VASA and AUBERGINE proteins are known as components of perinuclear ribonucleoprotein particles in germ cells, and spn-E mutation disturbs protein content of the particles. We suggest participation of these proteins in the same silencing pathway.


Asunto(s)
ARN Helicasas DEAD-box/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Silenciador del Gen , Factores de Iniciación de Péptidos/fisiología , Interferencia de ARN , Retroelementos/genética , Animales , ARN Helicasas DEAD-box/fisiología , Elementos Transponibles de ADN , Proteínas de Drosophila/química , Drosophila melanogaster , Femenino , Operón Lac , Mutación , Ovario/metabolismo , ARN Helicasas/química , Secuencias Repetidas Terminales
9.
Mol Biol Cell ; 22(18): 3410-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21775629

RESUMEN

Proteins of the PIWI subfamily Aub and AGO3 associated with the germline-specific perinuclear granules (nuage) are involved in the silencing of retrotransposons and other selfish repetitive elements in the Drosophila genome. PIWI proteins and their 25- to 30-nt PIWI-interacting RNA (piRNAs) are considered as key participants of the piRNA pathway. Using immunostaining, we found a large, nuage-associated organelle in the testes, the piNG-body (piRNA nuage giant body), which was significantly more massive than an ordinary nuage granule. This body contains known ovarian nuage proteins, including Vasa, Aub, AGO3, Tud, Spn-E, Bel, Squ, and Cuff, as well as AGO1, the key component of the microRNA pathway. piNG-bodies emerge at the primary spermatocyte stage of spermatogenesis during the period of active transcription. Aub, Vasa, and Tud are located at the periphery of the piNG-body, whereas AGO3 is found in its core. Mutational analysis revealed that Vasa, Aub, and AGO3 were crucial for both the maintenance of the piNG-body structure and the silencing of selfish Stellate repeats. The piNG-body destruction caused by csul mutations that abolish specific posttranslational symmetrical arginine methylation of PIWI proteins is accompanied by strong derepression of Stellate genes known to be silenced via the piRNA pathway.


Asunto(s)
Drosophila melanogaster/genética , Células Germinativas/metabolismo , Orgánulos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Sustitución de Aminoácidos , Animales , Arginina/metabolismo , Proteínas Argonautas/metabolismo , ARN Helicasas DEAD-box/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Genes de Insecto , Masculino , Profase Meiótica I , Microscopía Fluorescente , Mutagénesis Sitio-Dirigida , Tamaño de los Orgánulos , Factores de Iniciación de Péptidos/metabolismo , Proteína Metiltransferasas/genética , Proteína Metiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteína-Arginina N-Metiltransferasas , ARN Interferente Pequeño/genética , Testículo/citología , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA