Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biol Chem ; 295(38): 13277-13286, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32723862

RESUMEN

The EAG (ether-à-go-go) family of voltage-gated K+ channels are important regulators of neuronal and cardiac action potential firing (excitability) and have major roles in human diseases such as epilepsy, schizophrenia, cancer, and sudden cardiac death. A defining feature of EAG (Kv10-12) channels is a highly conserved domain on the N terminus, known as the eag domain, consisting of a Per-ARNT-Sim (PAS) domain capped by a short sequence containing an amphipathic helix (Cap domain). The PAS and Cap domains are both vital for the normal function of EAG channels. Using heme-affinity pulldown assays and proteomics of lysates from primary cortical neurons, we identified that an EAG channel, hERG3 (Kv11.3), binds to heme. In whole-cell electrophysiology experiments, we identified that heme inhibits hERG3 channel activity. In addition, we expressed the Cap and PAS domain of hERG3 in Escherichia coli and, using spectroscopy and kinetics, identified the PAS domain as the location for heme binding. The results identify heme as a regulator of hERG3 channel activity. These observations are discussed in the context of the emerging role for heme as a regulator of ion channel activity in cells.


Asunto(s)
Corteza Cerebral/química , Canales de Potasio Éter-A-Go-Go/química , Hemo/química , Neuronas/química , Corteza Cerebral/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Hemo/metabolismo , Humanos , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos
2.
Proc Natl Acad Sci U S A ; 113(14): 3785-90, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27006498

RESUMEN

Heme iron has many and varied roles in biology. Most commonly it binds as a prosthetic group to proteins, and it has been widely supposed and amply demonstrated that subtle variations in the protein structure around the heme, including the heme ligands, are used to control the reactivity of the metal ion. However, the role of heme in biology now appears to also include a regulatory responsibility in the cell; this includes regulation of ion channel function. In this work, we show that cardiac KATP channels are regulated by heme. We identify a cytoplasmic heme-binding CXXHX16H motif on the sulphonylurea receptor subunit of the channel, and mutagenesis together with quantitative and spectroscopic analyses of heme-binding and single channel experiments identified Cys628 and His648 as important for heme binding. We discuss the wider implications of these findings and we use the information to present hypotheses for mechanisms of heme-dependent regulation across other ion channels.


Asunto(s)
Hemo/metabolismo , Canales KATP/metabolismo , Receptores de Sulfonilureas/química , Secuencias de Aminoácidos/genética , Animales , Línea Celular , Células HEK293 , Humanos , Canales KATP/genética , Miocardio/metabolismo , Unión Proteica/genética , Estructura Terciaria de Proteína , Ratas , Ratas Wistar , Receptores de Sulfonilureas/genética
4.
Anal Chem ; 87(20): 10605-12, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26407187

RESUMEN

Raman microspectroscopy has been used to monitor changes in the redox and ligand-coordination states of the heme complex in myoglobin during the preconditioning of ex vivo cardiomyocytes with pharmacological drugs that release nitric oxide (NO). These chemical agents are known to confer protection on heart tissue against ischemia-reperfusion injury. Subsequent changes in the redox and ligand-coordination states during experimental simulations of ischemia and reperfusion have also been monitored. We found that these measurements, in real time, could be used to evaluate the preconditioning treatment of cardiomyocytes and to predict the likelihood of cell survival following a potentially lethal period of ischemia. Evaluation of the preconditioning treatment was done at the single-cell level. The binding of NO to myoglobin, giving a 6-coordinate ferrous-heme complex, was inferred from the measured Raman bands of a cardiomyocyte by comparison to pure solution of the protein in the presence of NO. A key change in the Raman spectrum was observed after perfusion of the NO-donor was completed, where, if the preconditioning treatment was successful, the bands corresponding to the nitrosyl complex were replaced by bands corresponding to metmyoglobin, Mb(III). An observation of Mb(III) bands in the Raman spectrum was made for all of the cardiomyocytes that recovered contractile function, whereas the absence of Mb(III) bands always indicated that the cardiomyocyte would be unable to recover contractile function following the simulated conditions of ischemia and reperfusion in these experiments.


Asunto(s)
Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Mioglobina/metabolismo , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico/metabolismo , 2,4-Dinitrofenol/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Ligandos , Masculino , Óxido Nítrico/química , Nitroprusiato/farmacología , Oxidación-Reducción , Compuestos de Amonio Cuaternario/farmacología , Ratas , Ratas Wistar , Daño por Reperfusión/inducido químicamente , Análisis de la Célula Individual , Espectrometría Raman , Relación Estructura-Actividad
5.
Glia ; 61(10): 1620-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23893870

RESUMEN

Microglia are the resident immune cells of the brain, which are important therapeutic targets for regulating the inflammatory responses particularly neurodegeneration in the aging human brain. The activation, chemotaxis and migration of microglia are regulated through G-protein coupled receptors by chemokines such as stromal cell-derived factor (SDF)-1α and bioactive lysophospholipids such as lysophosphatidic acid (LPA). Potassium channels play important roles in microglial function and cell fate decisions; however, the regulation of microglial potassium channels has not been fully elucidated. Here we show reciprocal action of SDF-1α and LPA, on potassium currents through Kir2.1 channels in primary murine microglia. The potassium channel modulation is mediated by the same small GTPases, Rac and Rho that regulate the actin cytoskeleton. SDF-1α rapidly increased the Kir2.1 current amplitude and cell spreading. These effects were mimicked by dialysing the cells with constitutively active Rac1 protein, and they were blocked by inhibiting the phosphatidylinositol 3-kinase (PI3K) with wortmannin. In contrast, LPA and constitutively active RhoA decreased the Kir2.1 currents and stimulated cell contraction. Thus, SDF-1α and LPA regulate both the actin cytoskeleton and the Kir2.1 potassium channels through the same Rho GTPase signaling pathways. The inhibition of Kir2.1 with chloroethylclonidine produced cell contraction independently of chemokine action. This suggests that potassium channels are essential for the morphological phenotype and functioning of microglia. In conclusion, the small GTPases, Rac and Rho, modulate Kir2.1 channels and block of Kir2.1 channels causes changes in microglia morphology.


Asunto(s)
Quimiocina CXCL12/farmacología , Lisofosfolípidos/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Canales de Potasio de Rectificación Interna/fisiología , Proteínas de Unión al GTP rho/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Animales Recién Nacidos , Antígenos de Diferenciación/metabolismo , Tamaño de la Célula/efectos de los fármacos , Corteza Cerebral/citología , Clonidina/análogos & derivados , Clonidina/farmacología , Ratones , Microscopía Confocal , Técnicas de Placa-Clamp , Fosfatidilinositol 3-Quinasas/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Receptores CXCR4/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transfección , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/genética
6.
Am J Physiol Heart Circ Physiol ; 305(10): H1508-18, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24014680

RESUMEN

ATP-sensitive K(+) (KATP) channels are abundant membrane proteins in cardiac myocytes that are directly gated by intracellular ATP and form a signaling complex with metabolic enzymes, such as creatine kinase. KATP channels are known to be essential for adaption to cardiac stress, such as ischemia; however, how all the molecular components of the stress response interact is not fully understood. We examined the effects of decreasing the KATP current density on Ca(2+) and mitochondrial homeostasis and ischemic preconditioning. Acute knockdown of the pore-forming subunit, Kir6.2, was achieved using adenoviral delivery of short hairpin RNA targeted to Kir6.2. The acute nature of the knockdown of Kir6.2 accurately shows the effects of Kir6.2 depletion without any compensatory effects that may arise in transgenic studies. We also investigated the effect of reducing the KATP current while maintaining KATP channel protein in the sarcolemmal membrane using a nonconducting Kir6.2 construct. Only 50% KATP current remained after Kir6.2 knockdown, yet there were profound effects on myocyte responses to metabolic stress. Kir6.2 was essential for cardiac myocyte Ca(2+) homeostasis under both baseline conditions before any metabolic stress and after metabolic stress. Expression of nonconducting Kir6.2 also resulted in increased Ca(2+) overload, showing the importance of K(+) conductance in the protective response. Both ischemic preconditioning and protection during ischemia were lost when Kir6.2 was knocked down. KATP current density was also important for the mitochondrial membrane potential at rest and prevented mitochondrial membrane potential oscillations during oxidative stress. KATP channel density is important for adaption to metabolic stress.


Asunto(s)
Señalización del Calcio , Ventrículos Cardíacos/metabolismo , Precondicionamiento Isquémico Miocárdico , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Estrés Fisiológico , Animales , Células HEK293 , Homeostasis , Humanos , Masculino , Potencial de la Membrana Mitocondrial , Contracción Miocárdica , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Estrés Oxidativo , Canales de Potasio de Rectificación Interna/genética , Interferencia de ARN , Ratas , Ratas Wistar , Sarcolema/metabolismo , Factores de Tiempo , Transfección
7.
J Cell Biol ; 158(7): 1251-62, 2002 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-12356869

RESUMEN

The neurotropic virus, herpes simplex type 1 (HSV-1), inhibits the excitability of peripheral mammalian neurons, but the molecular mechanism of this effect has not been identified. Here, we use voltage-clamp measurement of ionic currents and an antibody against sodium channels to show that loss of excitability results from the selective, precipitous, and complete internalization of voltage-activated sodium channel proteins from the plasma membrane of neurons dissociated from rat dorsal root ganglion. The internalization process requires viral protein synthesis but not viral encapsulation, and does not alter the density of voltage-activated calcium or potassium channels. However, internalization is blocked completely when viruses lack the neurovirulence factor, infected cell protein 34.5, or when endocytosis is inhibited with bafilomycin A(1) or chloroquine. Although it has been recognized for many years that viruses cause cell pathology by interfering with signal transduction pathways, this is the first example of viral pathology resulting from selective internalization of an integral membrane protein. In studying the HSV-induced redistribution of sodium channels, we have uncovered a previously unknown pathway for the rapid and dynamic control of excitability in sensory neurons by internalization of sodium channels.


Asunto(s)
Endocitosis/fisiología , Ganglios Espinales/metabolismo , Herpes Simple/metabolismo , Macrólidos , Canales de Sodio/metabolismo , Potenciales de Acción , Animales , Antibacterianos/farmacología , Antimaláricos/farmacología , Cloroquina/farmacología , Endocitosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Ganglios Espinales/virología , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/metabolismo , Humanos , Técnicas para Inmunoenzimas , Masculino , Neuronas/metabolismo , Neuronas/virología , ATPasas de Translocación de Protón/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Proteínas Virales/genética , Proteínas Virales/metabolismo , Activación Viral
8.
Nat Commun ; 9(1): 907, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500353

RESUMEN

Despite being highly toxic, carbon monoxide (CO) is also an essential intracellular signalling molecule. The mechanisms of CO-dependent cell signalling are poorly defined, but are likely to involve interactions with heme proteins. One such role for CO is in ion channel regulation. Here, we examine the interaction of CO with KATP channels. We find that CO activates KATP channels and that heme binding to a CXXHX16H motif on the SUR2A receptor is required for the CO-dependent increase in channel activity. Spectroscopic and kinetic data were used to quantify the interaction of CO with the ferrous heme-SUR2A complex. The results are significant because they directly connect CO-dependent regulation to a heme-binding event on the channel. We use this information to present molecular-level insight into the dynamic processes that control the interactions of CO with a heme-regulated channel protein, and we present a structural framework for understanding the complex interplay between heme and CO in ion channel regulation.


Asunto(s)
Monóxido de Carbono/metabolismo , Canales Iónicos/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Células HEK293 , Hemo/metabolismo , Humanos , Activación del Canal Iónico , Canales KATP/metabolismo , Modelos Moleculares , Espectrometría Raman , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/metabolismo
9.
Nat Commun ; 9(1): 3354, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120224

RESUMEN

The originally published version of this article contained an error in the subheading 'Heme is required for CO-dependent channel activation', which was incorrectly given as 'Hame is required for CO-dependent channel activation'. This has now been corrected in both the PDF and HTML versions of the Article.

10.
Curr Biol ; 12(1): 27-33, 2002 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-11790300

RESUMEN

BACKGROUND: Previous studies of ion channel regulation by G proteins have focused on the larger, heterotrimeric GTPases, which are activated by heptahelical membrane receptors. In contrast, studies of the Rho family of smaller, monomeric, Ras-related GTPases, which are activated by cytoplasmic guanine nucleotide exchange factors, have focused on their role in cytoskeletal regulation. RESULTS: Here we demonstrate novel functions for the Rho family GTPases Rac and Rho in the opposing hormonal regulation of voltage-activated, ether-a-go-go-related potassium channels (ERG) in a rat pituitary cell line, GH(4)C(1). The hypothalamic neuropeptide, thyrotropin-releasing hormone (TRH) inhibits ERG channel activity through a PKC-independent process that is blocked by RhoA(19N) and the Clostridium botulinum C3 toxin, which inhibit Rho signaling. The constitutively active, GTPase-deficient mutant of RhoA(63L) rapidly inhibits the channels when the protein is dialysed directly into the cell through the patch pipette, and inhibition persists when the protein is overexpressed. In contrast, GTPase-deficient Rac1(61L) stimulates ERG channel activity. The thyroid hormone triiodothyronine (T3), which antagonizes TRH action in the pituitary, also stimulates ERG channel activity through a rapid process that is blocked by Rac1(17N) and wortmannin but not by RhoA(19N). CONCLUSIONS: Rho stimulation by G(13)-coupled receptors and Rac stimulation by nuclear hormones through PI3-kinase may be general mechanisms for regulating ion channel activity in many cell types. Disruption of these novel signaling cascades is predicted to contribute to several specific human neurological diseases, including epilepsy and deafness.


Asunto(s)
Hipófisis/fisiología , Bloqueadores de los Canales de Potasio , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Proteína de Unión al GTP rac1/fisiología , Proteína de Unión al GTP rhoA/fisiología , Potenciales de Acción , Animales , Línea Celular , Membrana Celular/fisiología , Canal de Potasio ERG1 , Conductividad Eléctrica , Canales de Potasio Éter-A-Go-Go , Cinética , Mutación , Técnicas de Placa-Clamp , Transducción de Señal , Hormona Liberadora de Tirotropina/farmacología , Triyodotironina/farmacología , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rhoA/genética
11.
Novartis Found Symp ; 241: 144-53; discussion 153-8, 226-32, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11771643

RESUMEN

Electrophysiological studies have revealed that the properties of voltage-gated Na+ channels can be modified by phosphorylation. Na+ channels have multiple sites for phosphorylation by protein kinases A and C (PKA and PKC). A change in the phosphorylation state of Na+ channels is an important mechanism of neuromodulation for both central and peripheral neurons. In isolated primary afferent sensory neurons, application of an inflammatory mediator, prostaglandin E2 (PGE2), causes an increase in excitability associated with a hyperpolarizing shift in the activation curve of the tetrodotoxin-resistant (TTX-R) Na+ currents. The experimental evidence indicates that the effect of PGE2 is mediated by an elevation in cAMP levels and activation of PKA. This potentiation of TTX-R Na+ channel activity is in marked contrast to the inhibitory effects of PKA and PKC on tetrodotoxin-sensitive (TTX-S) currents in central neurons. Infection of dorsal root ganglion neurons with Herpes simplex virus (HSV) results in an abolition of excitability associated with a selective loss of both TTX-S and TTX-R Na+ currents: voltage-gated Ca2+ and K+ channels are unaffected by HSV infection. The loss of Na+ current is due to a virally induced internalization process and requires extracellular Na+.


Asunto(s)
Vías Aferentes/fisiología , Neuronas/fisiología , Canales de Sodio/metabolismo , Animales , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dinoprostona/farmacología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Humanos , Hiperalgesia/fisiopatología , Fosforilación , Simplexvirus/fisiología , Canales de Sodio/efectos de los fármacos , Canales de Sodio/fisiología
13.
PLoS One ; 7(3): e33004, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22412973

RESUMEN

Glucagon like peptide-1 (GLP-1) is released from intestinal L-cells in response to nutrient ingestion and acts upon pancreatic ß-cells potentiating glucose-stimulated insulin secretion and stimulating ß-cell proliferation, differentiation, survival and gene transcription. These effects are mediated through the activation of multiple signal transduction pathways including the extracellular regulated kinase (ERK) pathway. We have previously reported that GLP-1 activates ERK through a mechanism dependent upon the influx of extracellular Ca(2+) through L-type voltage gated Ca(2+) channels (VGCC). However, the mechanism by which L-type VGCCs couple to the ERK signalling pathway in pancreatic ß-cells is poorly understood. In this report, we characterise the relationship between L-type VGCC mediated changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) and the activation of ERK, and demonstrate that the sustained activation of ERK (up to 30 min) in response to GLP-1 requires the continual activation of the L-type VGCC yet does not require a sustained increase in global [Ca(2+)](i) or Ca(2+) efflux from the endoplasmic reticulum. Moreover, sustained elevation of [Ca(2+)](i) induced by ionomycin is insufficient to stimulate the prolonged activation of ERK. Using the cell permeant Ca(2+) chelators, EGTA-AM and BAPTA-AM, to determine the spatial dynamics of L-type VGCC-dependent Ca(2+) signalling to ERK, we provide evidence that a sustained increase in Ca(2+) within the microdomain of the L-type VGCC is sufficient for signalling to ERK and that this plays an important role in GLP-1- stimulated ERK activation.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Animales , Línea Celular , Activación Enzimática/efectos de los fármacos , Péptido 1 Similar al Glucagón/farmacología , Ratones , Transducción de Señal/efectos de los fármacos
14.
Proc Natl Acad Sci U S A ; 103(13): 5197-201, 2006 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-16549781

RESUMEN

Many nuclear hormones have physiological effects that are too rapid to be explained by changes in gene expression and are often attributed to unidentified or novel G protein-coupled receptors. Thyroid hormone is essential for normal human brain development, but the molecular mechanisms responsible for its effects remain to be identified. Here, we present direct molecular evidence for potassium channel stimulation in a rat pituitary cell line (GH(4)C(1)) by a nuclear receptor for thyroid hormone, TRbeta, acting rapidly at the plasma membrane through phosphatidylinositol 3-kinase (PI3K) to slow the deactivation of KCNH2 channels already in the membrane. Signaling was disrupted by heterologous expression of TRbeta receptors with mutations in the ligand-binding domain that are associated with neurological disorders in humans, but not by mutations that disrupt DNA binding. More importantly, PI3K-dependent signaling was reconstituted in cell-free patches of membrane from CHO cells by heterologous expression of human KCNH2 channels and TRbeta, but not TRalpha, receptors. TRbeta signaling through PI3K provides a molecular explanation for the essential role of thyroid hormone in human brain development and adult lipid metabolism.


Asunto(s)
Membrana Celular/metabolismo , Transducción de Señal , Receptores beta de Hormona Tiroidea/metabolismo , Triyodotironina/metabolismo , Animales , Línea Celular , Membrana Celular/efectos de los fármacos , Cricetinae , Canal de Potasio ERG1 , Electrofisiología , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Activación del Canal Iónico , Técnicas de Placa-Clamp , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas , Ratas , Transducción de Señal/efectos de los fármacos , Receptores beta de Hormona Tiroidea/genética , Factores de Tiempo , Triyodotironina/farmacología
15.
J Biol Chem ; 278(35): 33319-26, 2003 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-12807917

RESUMEN

The loss of intracellular potassium is a pivotal step in the induction of apoptosis but the mechanisms underlying this response are poorly understood. Here we report caspase-dependent stimulation of potassium channels by the Fas receptor in a human Jurkat T cell line. Receptor activation with Fas ligand for 30 min increased the amplitude of voltage-activated potassium currents 2-fold on average. This produces a sustained outward current, approximately 10 pA, at physiological membrane potentials during Fas ligand-induced apoptosis. Both basal and Fas ligand-induced currents were blocked completely by toxins that selectively inhibit Kv1.3 potassium channels. Kv1.3 stimulation required the expression of Fas-associated death domain protein and activation of caspase 8, but did not require activation of caspase 3 or protein synthesis. Furthermore, Kv1.3 stimulation by Fas ligand was prevented by chronic stimulation of protein kinase C with 20 nm phorbol 12-myristate 13-acetate during Fas ligand treatment, which also blocks apoptosis. Thus, Fas ligand increases Kv1.3 channel activity through the same canonical apoptotic signaling cascade that is required for potassium efflux, cell shrinkage, and apoptosis.


Asunto(s)
Apoptosis , Proteínas de Arabidopsis , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Western Blotting , Caspasa 3 , Caspasa 8 , Caspasa 9 , Caspasas/metabolismo , Separación Celular , Electrofisiología , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Proteína Ligando Fas , Ácido Graso Desaturasas/metabolismo , Citometría de Flujo , Humanos , Iones , Células Jurkat , Canal de Potasio Kv1.3 , Glicoproteínas de Membrana/metabolismo , Potenciales de la Membrana , Potasio/metabolismo , Canales de Potasio/química , Propidio/farmacología , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal , Acetato de Tetradecanoilforbol/farmacología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA