Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Vox Sang ; 119(5): 496-504, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38326223

RESUMEN

BACKGROUND AND OBJECTIVES: Polymorphic molecules expressed on the surface of certain blood cells are traditionally categorized as blood groups and human platelet or neutrophil antigens. CD36 is widely considered a platelet antigen (Naka) and anti-CD36 can cause foetal/neonatal alloimmune thrombocytopenia (FNAIT) in CD36-negative pregnant women. CD36 is used as a marker of differentiation in early erythroid culture. During the experimental culture of CD34+ cells from random blood donors, we observed that one individual lacked CD36. We sought to investigate this observation further and determine if CD36 fulfils the International Society of Blood Transfusion criteria for becoming a blood group. MATERIALS AND METHODS: Surface markers were monitored by flow cytometry on developing cells during the erythroid culture of CD34+ cells. Genetic and flow cytometric analyses on peripheral blood cells were performed. Proteomic datasets were analysed, and clinical case reports involving anti-CD36 and foetal anaemia were scrutinized. RESULTS: Sequencing of CD36-cDNA identified homozygosity for c.1133G>T/p.Gly378Val in the CD36-negative donor. The minor allele frequency of rs146027667:T is 0.1% globally and results in abolished CD36 expression. CD36 has been considered absent from mature red blood cells (RBCs); however, we detected CD36 expression on RBCs and reticulocytes from 20 blood donors. By mining reticulocyte and RBC datasets, we found evidence for CD36-derived peptides enriched in the membrane fractions. Finally, our literature review revealed severe cases of foetal anaemia attributed to anti-CD36. CONCLUSIONS: Based on these findings, we conclude that CD36 fulfils the criteria for becoming a new blood group system and that anti-CD36 is implicated not only in FNAIT but also foetal anaemia.


Asunto(s)
Antígenos CD36 , Eritrocitos , Antígenos CD36/genética , Antígenos CD36/sangre , Humanos , Femenino , Eritrocitos/metabolismo , Embarazo , Antígenos de Grupos Sanguíneos/genética , Masculino , Recién Nacido , Trombocitopenia Neonatal Aloinmune/sangre , Trombocitopenia Neonatal Aloinmune/genética , Relevancia Clínica
2.
Transfusion ; 63(12): 2297-2310, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37921035

RESUMEN

BACKGROUND: Accurate blood type data are essential for blood bank management, but due to costs, few of 43 blood group systems are routinely determined in Danish blood banks. However, a more comprehensive dataset of blood types is useful in scenarios such as rare blood type allocation. We aimed to investigate the viability and accuracy of predicting blood types by leveraging an existing dataset of imputed genotypes for two cohorts of approximately 90,000 each (Danish Blood Donor Study and Copenhagen Biobank) and present a more comprehensive overview of blood types for our Danish donor cohort. STUDY DESIGN AND METHODS: Blood types were predicted from genome array data using known variant determinants. Prediction accuracy was confirmed by comparing with preexisting serological blood types. The Vel blood group was used to test the viability of using genetic prediction to narrow down the list of candidate donors with rare blood types. RESULTS: Predicted phenotypes showed a high balanced accuracy >99.5% in most cases: A, B, C/c, Coa /Cob , Doa /Dob , E/e, Jka /Jkb , Kna /Knb , Kpa /Kpb , M/N, S/s, Sda , Se, and Yta /Ytb , while some performed slightly worse: Fya /Fyb , K/k, Lua /Lub , and Vel ~99%-98% and CW and P1 ~96%. Genetic prediction identified 70 potential Vel negatives in our cohort, 64 of whom were confirmed correct using polymerase chain reaction (negative predictive value: 91.5%). DISCUSSION: High genetic prediction accuracy in most blood groups demonstrated the viability of generating blood types using preexisting genotype data at no cost and successfully narrowed the pool of potential individuals with the rare Vel-negative phenotype from 180,000 to 70.


Asunto(s)
Antígenos de Grupos Sanguíneos , Humanos , Antígenos de Grupos Sanguíneos/genética , Genotipo , Fenotipo , Donantes de Sangre , Reacción en Cadena de la Polimerasa
3.
Vox Sang ; 118(8): 690-694, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37265146

RESUMEN

BACKGROUND AND OBJECTIVES: The extremely rare Rhnull phenotype is characterized by the absence of all Rh antigens on erythrocytes. It is divided into the regulator and amorph types based on the underlying genetic background. The more common regulator type depends on critical variants silencing RHAG, which encodes RhAG glycoprotein, necessary for RhD/RhCE expression. Rhnull cells have altered expression of glycophorin B and LW glycoprotein. MATERIALS AND METHODS: Four unrelated Rhnull individuals were investigated. Serological testing was performed according to standard blood bank practice. RHD/RHCE and S/s allele-specific Polymerase chain reaction (PCR) genotyping was done on genomic DNA using in-house PCR assays. RHAG, and in some cases also RHD/RHCE, were sequenced. Initial s phenotyping results triggered additional serological investigation. RESULTS: Anti-Rh29 was identified in all four individuals. Extended typing with anti-S and anti-s showed that the three samples predicted to type as s+ failed to react with 2 of 5 anti-s. Sequence analysis of all 10 RHAG exons and the immediate intron/exon boundaries revealed a single nucleotide variant in the 3'-end of intron 6, c.946 -2a>g in all samples. RHD/RHCE showed no alterations. CONCLUSION: A novel Nordic Rhnull allele was identified. In addition, it was shown that s+ Rhnull red blood cells are not only U- but also have qualitative changes in their s antigen expression.


Asunto(s)
Antígenos de Grupos Sanguíneos , Sistema del Grupo Sanguíneo Rh-Hr , Sistema del Grupo Sanguíneo Rh-Hr/genética , Fenotipo , Secuencia de Bases , Reacción en Cadena de la Polimerasa
4.
Vox Sang ; 117(11): 1332-1344, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36121188

RESUMEN

BACKGROUND AND OBJECTIVES: Under the ISBT, the Working Party (WP) for Red Cell Immunogenetics and Blood Group Terminology is charged with ratifying blood group systems, antigens and alleles. This report presents the outcomes from four WP business meetings, one located in Basel in 2019 and three held as virtual meetings during the COVID-19 pandemic in 2020 and 2021. MATERIALS AND METHODS: As in previous meetings, matters pertaining to blood group antigen nomenclature were discussed. New blood group systems and antigens were approved and named according to the serologic, genetic, biochemical and cell biological evidence presented. RESULTS: Seven new blood group systems, KANNO (defined numerically as ISBT 037), SID (038), CTL2 (039), PEL (040), MAM (041), EMM (042) and ABCC1 (043) were ratified. Two (039 and 043) were de novo discoveries, and the remainder comprised reported antigens where the causal genes were previously unknown. A further 15 blood group antigens were added to the existing blood group systems: MNS (002), RH (004), LU (005), DI (010), SC (013), GE (020), KN (022), JMH (026) and RHAG (030). CONCLUSION: The ISBT now recognizes 378 antigens, of which 345 are clustered within 43 blood group systems while 33 still have an unknown genetic basis. The ongoing discovery of new blood group systems and antigens underscores the diverse and complex biology of the red cell membrane. The WP continues to update the blood group antigen tables and the allele nomenclature tables. These can be found on the ISBT website (http://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology/).


Asunto(s)
Antígenos de Grupos Sanguíneos , COVID-19 , Eritrocitos , Humanos , Antígenos de Grupos Sanguíneos/genética , Transfusión Sanguínea , Inmunogenética , Pandemias , Eritrocitos/inmunología
5.
Transfus Med ; 32(2): 168-174, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33987889

RESUMEN

OBJECTIVE: To evaluate the effect of platelet:erythrocyte (P:E) ratios on Plasmodium falciparum erythrocyte invasion. BACKGROUND: Recent reports have shown that platelets are directly involved in the immune response towards P. falciparum during erythrocyte invasion. However, the literature both supports and conflicts with a role for platelets in limiting invasion. Also, the effect of platelet numbers on invasion (parasitemia) has not been thoroughly investigated. METHODS/MATERIALS: The P. falciparum strains FCR3S1.2 and W2mef were cultured with group O erythrocytes. The cultures were synchronised and supplemented with pooled platelets at P:E ratios ranging from 1:100 to 1:2. Parasitemia was measured at 40 h by flow cytometry and by microscopy of blood smears. RESULTS: A linear relationship was observed between reduced invasion and increased platelet numbers at P:E ratios ranging from 1:100 to 1:20. However, this effect was reversed at lower ratios (1:10-1:2). Microscopic evaluation revealed aggregation and attachment of platelets to erythrocytes, but not specifically to parasitised erythrocytes. CONCLUSION: We have shown that under physiological P:E ratios (approx. 1:10-1:40), platelets inhibited P. falciparum invasion in a dose-dependent manner. At ratios of 1:10 and below, platelets did not further increase the inhibitory effect and, although the trend was reversed, inhibition was still maintained.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Plaquetas , Eritrocitos , Humanos , Parasitemia
7.
Blood ; 132(3): 334-338, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-29748255

RESUMEN

The Xga blood group is differentially expressed on erythrocytes from men and women. The underlying gene, PBDX, was identified in 1994, but the molecular background for Xga expression remains undefined. This gene, now designated XG, partly resides in pseudoautosomal region 1 and encodes a protein of unknown function from the X chromosome. By comparing calculated Xga allele frequencies in different populations with 2612 genetic variants in the XG region, rs311103 showed the strongest correlation to the expected distribution. The same single-nucleotide polymorphism (SNP) had the most significant impact on XG transcript levels in whole blood (P = 2.0 × 10-22). The minor allele, rs311103C, disrupts a GATA-binding motif 3.7 kb upstream of the transcription start point. This silences erythroid XG messenger RNA expression and causes the Xg(a-) phenotype, a finding corroborated by SNP genotyping in 158 blood donors. Binding of GATA1 to biotinylated oligonucleotide probes with rs311103G but not rs311103C was observed by electrophoretic mobility shift assay and proven by mass spectrometry. Finally, a luciferase reporter assay indicated this GATA motif to be active for rs311103G but not rs311103C in HEL cells. By using an integrated bioinformatic and molecular biological approach, we elucidated the underlying genetic basis for the last unresolved blood group system and made Xga genotyping possible.


Asunto(s)
Sitios de Unión , Antígenos de Grupos Sanguíneos/genética , Moléculas de Adhesión Celular/genética , Factor de Transcripción GATA1/metabolismo , Regulación de la Expresión Génica , Motivos de Nucleótidos , Alelos , Antígenos de Grupos Sanguíneos/metabolismo , Moléculas de Adhesión Celular/metabolismo , Eritrocitos/metabolismo , Femenino , Frecuencia de los Genes , Genes Reporteros , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Sitio de Iniciación de la Transcripción
8.
Vox Sang ; 115(5): 472-477, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32201961

RESUMEN

BACKGROUND AND OBJECTIVES: The Mi(a+) GP(B-A-B) hybrid phenotypes occur with a prevalence of 2%-23% across Southeast Asia. While the s antigen is alleged to be altered, no evidence for specific variants is known. Screening using a monoclonal IgM anti-s mistyped six S-s+ RBC units as S-s-. Further, alloanti-s was identified in an S+s+ patient. Our objective was to investigate the s antigen further. MATERIALS AND METHODS: DNA from 63 Thai blood donor samples PCR-positive for a GYP(B-A-B) hybrid was sequenced with primers spanning GYPB exons 3-4. Flow cytometry was used for semiquantitative analysis of s expression and correlated with the glycophorin genotype. RESULTS: DNA sequencing showed that GYP*Mur was carried by 56/63 samples (88·9%) of which 5/56 lacked normal GYPB: three of these were GYP*Mur homozygotes, one was a compound heterozygote carrying GYP*Mur and a GYP*Bun-like allele (designated GYP*Thai), and the fifth sample carried GYP*Mur and another GYP*Bun-like allele. Seven samples (7/63) were GYP*Thai heterozygotes. IgM monoclonal anti-s (P3BER) did not react with the s antigen carried by GP.Mur or GP.Bun, whereas two IgG anti-s showed enhanced reactivity. CONCLUSIONS: We confirmed that GYP*Mur is the most frequent variant in Thai blood donors and also identified GYP*Thai with a frequency of 1·1%. We showed that s antigen on Mi(a+) GP(B-A-B) hybrids is qualitatively altered and should be considered when selecting reagents for phenotyping where such hybrids are prevalent, endemically and in blood centres worldwide.


Asunto(s)
Alelos , Glicoforinas/genética , Mutación , Donantes de Sangre , Antígenos de Grupos Sanguíneos/genética , Duplicación de Gen , Humanos , Análisis de Secuencia de ADN , Tailandia
9.
Immunohematology ; 36(1): 4-6, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32324038

RESUMEN

CONCLUSIONS: This update of the Xg blood group system (Johnson NC. XG: The forgotten blood group system. Immunohematology 2011;27:68-71) notes the identification of a cis-regulatory element of both XG and CD99 expression, remarkably by two independent groups during 2018, and confirmed by another in 2019. A single nucleotide change at the XG locus (rs311103) abolishes GATA1 binding and suppresses both XG and CD99. The last blood group system to resist elucidation of its genetic basis was thereby resolved. Soon afterwards, it was discovered that the rare anti-Xga response, mainly seen in men, is produced by individuals primarily carrying a large deletion in the X chromosome that truncates XG and leads to the Xgnull phenotype.


Asunto(s)
Antígenos de Grupos Sanguíneos/inmunología , Humanos , Masculino , Fenotipo
10.
Transfus Med Hemother ; 47(4): 326-336, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32884505

RESUMEN

The U antigen (MNS5) is one of 49 antigens belonging to the MNS blood group system (ISBT002) carried on glycophorins A (GPA) and B (GPB). U is present on the red blood cells in almost all Europeans and Asians but absent in approximately 1.0% of Black Africans. U negativity coincides with negativity for S (MNS3) and s (MNS4) on GPB, thus be called S-s-U-, and is thought to arise from homozygous deletion of GYPB. Little is known about the molecular background of these deletions. Bioinformatic analysis of the 1000 Genomes Project data revealed several candidate regions with apparent deletions in GYPB. Highly specific Gap-PCRs, only resulting in positive amplification from DNAs with deletions present, allowed for the exact genetic localization of 3 different breakpoints; 110.24- and 103.26-kb deletions were proven to be the most frequent in Black Americans and Africans. Among 157 CEPH DNAs, deletions in 6 out of 8 African ethnicities were present. Allele frequencies of the deletions within African ethnicities varied greatly and reached a cumulative 23.3% among the Mbuti Pygmy people from the Congo. Similar observations were made for U+var alleles, known to cause strongly reduced GPB expression. The 110- and 103-kb deletional GYPB haplotypes were found to represent the most prevalent hereditary factors causative of the MNS blood group phenotype S-s-U-. Respective GYPB deletions are now accessible by molecular detection of homo- and hemizygous transmission.

11.
Int J Mol Sci ; 21(16)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823905

RESUMEN

Preeclampsia (PE) is a human specific syndrome with unknown etiology causing maternal and fetal morbidities and mortalities. In PE, maternal inflammatory responses are more exaggerated if the fetus is male than female. Other pregnancy complications such as spontaneous abortions are also more common if the fetus is male. Recent transcriptome findings showed an increased expression of CD99 in erythroid cells from male cord blood in PE. The single nucleotide polymorphism (SNP) rs311103, located in a GATA-binding site in a regulatory region on the X/Y chromosomes, governs a coordinated expression of the Xg blood group members CD99 and Xga in hematopoietic cells in a sex-dependent fashion. The rs311103C disrupts the GATA-binding site, resulting in decreased CD99 expression. We aimed to investigate the association between PE and the allele frequency of rs311103 in pregnancies in a fetal sex-dependent fashion. In a case-controlled study, we included 241 pregnant women, i.e., 105 PE cases and 136 normotensive controls. A SNP allelic discrimination analysis was performed on DNA from maternal venous blood and fetal cord blood by qPCR. A statistically significant association was observed between rs311103 allele frequency and PE in mothers carrying male fetuses. Therefore, the rs311103 genotype may play a role in the pathogenesis of PE in a fetal sex-specific manner.


Asunto(s)
Antígeno 12E7/genética , Feto/patología , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple/genética , Preeclampsia/genética , Adulto , Etiopía , Femenino , Frecuencia de los Genes/genética , Humanos , Masculino , Embarazo , Resultado del Embarazo
12.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008134

RESUMEN

α1-microglobulin (A1M) is a small protein present in vertebrates including humans. It has several physiologically relevant properties, including binding of heme and radicals as well as enzymatic reduction, that are used in the protection of cells and tissue. Research has revealed that A1M can ameliorate heme and ROS-induced injuries in cell cultures, organs, explants and animal models. Recently, it was shown that A1M could reduce hemolysis in vitro, observed with several different types of insults and sources of RBCs. In addition, in a recently published study, it was observed that mice lacking A1M (A1M-KO) developed a macrocytic anemia phenotype. Altogether, this suggests that A1M may have a role in RBC development, stability and turnover. This opens up the possibility of utilizing A1M for therapeutic purposes in pathological conditions involving erythropoietic and hemolytic abnormalities. Here, we provide an overview of A1M and its potential therapeutic effect in the context of the following erythropoietic and hemolytic conditions: Diamond-Blackfan anemia (DBA), 5q-minus myelodysplastic syndrome (5q-MDS), blood transfusions (including storage), intraventricular hemorrhage (IVH), preeclampsia (PE) and atherosclerosis.


Asunto(s)
alfa-Globulinas/genética , Eritrocitos/metabolismo , Eritropoyesis/genética , Síndromes Mielodisplásicos/genética , alfa-Globulinas/metabolismo , Animales , Femenino , Hemo/genética , Hemo/metabolismo , Hemólisis/genética , Homeostasis , Humanos , Ratones , Ratones Noqueados , Síndromes Mielodisplásicos/metabolismo , Síndromes Mielodisplásicos/terapia
13.
Transfusion ; 59(5): 1843-1849, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30938838

RESUMEN

BACKGROUND: The PBDX/XG gene encoding the Xga blood group antigen was described in 1994, but the genetic determinant of XG expression on RBCs was reported only in 2018. However, the frequencies of Xg(a-) individuals could not explain the rarity of anti-Xga makers. We therefore sought to elucidate the molecular basis of the Xg(a-) phenotype in people producing anti-Xga . STUDY DESIGN AND METHODS: Two genomic DNA (gDNA) and 13 plasma-derived cell-free DNA (cfDNA) samples from anti-Xga makers were investigated (14 males and one female). PBDX/XG exon sequencing was attempted on one gDNA sample. Polymerase chain reaction assays were developed and bioinformatics used to define a suspected deletion in all samples. RESULTS: Investigation of one gDNA sample revealed a 114-kb deletion (esv2662319) on the X chromosome that spans XG exons 4 through 10 and the downstream GYG2 gene. A 3555-bp fragment bridging this deletion was amplified to confirm its presence. Another deletion-specific polymerase chain reaction of 714 bp enabled identification of esv2662319 in both gDNA samples and eight cfDNA samples while ruling it out in one cfDNA. Males were hemizygous for esv2662319 and the female likely homozygous. Four cfDNA sample results were inconclusive, probably due to poor sample quality. Sanger sequencing recognized the recombination junctions as a heterogeneous LTR6B sequence. CONCLUSION: We identified a large deletion on the X chromosome, resulting in a true, tissue-wide Xgnull phenotype. This deletion was found in 10 of 11 anti-Xga makers from which DNA could be amplified. One sample remained unexplained, indicating further heterogeneity to be explored.


Asunto(s)
Antígenos de Grupos Sanguíneos/genética , Cromosomas Humanos X/genética , Eliminación de Gen , Cromosomas Humanos Y/genética , Exones/genética , Femenino , Humanos , Masculino , Fenotipo , Reacción en Cadena de la Polimerasa
14.
Vox Sang ; 114(1): 95-102, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30421425

RESUMEN

BACKGROUND AND OBJECTIVES: The International Society of Blood Transfusion (ISBT) Working Party for Red Cell Immunogenetics and Blood Group Terminology meets in association with the ISBT congress and has met three times since the last report: at the international meetings held in Dubai, United Arab Emirates, September 2016 and Toronto, Canada, June 2018; and at a regional congress in Copenhagen, Denmark, June 2017 for an interim session. METHODS: As in previous meetings, matters pertaining to blood group antigen nomenclature and classification were discussed. New blood group antigens were approved and named according to the serologic and molecular evidence presented. RESULTS AND CONCLUSIONS: Fifteen new blood group antigens were added to eight blood group systems. One antigen was made obsolete based on additional data. Consequently, the current total of blood group antigens recognized by the ISBT is 360, of which 322 are clustered within 36 blood groups systems. The remaining 38 antigens are currently unassigned to a known system. Clinically significant blood group antigens continue to be discovered, through serology/sequencing and/or recombinant or genomic technologies.


Asunto(s)
Transfusión Sanguínea , Congresos como Asunto , Inmunogenética , Terminología como Asunto , Canadá , Dinamarca , Humanos , Sociedades Científicas , Emiratos Árabes Unidos
16.
Transfusion ; 58(7): 1752-1762, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29656499

RESUMEN

BACKGROUND: Blood group phenotype variation has been attributed to potential resistance to pathogen invasion. Variation was mapped in blood donors from Lampang (northern region) and Saraburi (central region), Thailand, where malaria is endemic. The previously unknown blood group allele profiles were characterized and the data were correlated with phenotypes. The high incidence of the Vel-negative phenotype previously reported in Thais was investigated. STUDY DESIGN AND METHODS: DNA from 396 blood donors was analyzed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Outliers were investigated by serology and DNA sequencing. Allele discrimination assays for SMIM1 rs1175550A/G and ACKR1 rs118062001C/T were performed and correlated with antigen expression. RESULTS: All samples were phenotyped for Rh, MNS, and K. Genotyping/phenotyping for RhD, K, and S/s showed 100% concordance. Investigation of three RHCE outliers revealed an e-variant antigen encoded by RHCE*02.22. Screening for rs147357308 (RHCE c.667T) revealed a frequency of 3.3%. MN typing discrepancies in 41 samples revealed glycophorin variants, of which 40 of 41 were due to Mia . Nine samples (2.3%) were heterozygous for FY*01W.01 (c.265C > T), and six samples (1.5%) were heterozygous for JK*02N.01. All samples were wildtype SMIM1 homozygotes with 97% homozygosity for rs1175550A. CONCLUSIONS: Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry is an efficient method for rapid routine genotyping and investigation of outliers identified novel variation among our samples. The expected high prevalence of the Mi(a+) phenotype was observed from both regions. Of potential clinical relevance in a region where transfusion-dependent thalassemia is common, we identified two RHCE*02 alleles known to encode an e-variant antigen.


Asunto(s)
Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Sistema del Grupo Sanguíneo ABO/genética , Antígenos de Grupos Sanguíneos/genética , Citometría de Flujo , Frecuencia de los Genes/genética , Genotipo , Haplotipos/genética , Humanos , Fenotipo , Polimorfismo Genético/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Sistema del Grupo Sanguíneo Rh-Hr/genética , Tailandia
19.
J Immunol ; 194(5): 2309-18, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25637016

RESUMEN

Shiga toxin (Stx)-producing Escherichia coli (STEC) cause hemolytic uremic syndrome (HUS). This study investigated whether Stx2 induces hemolysis and whether complement is involved in the hemolytic process. RBCs and/or RBC-derived microvesicles from patients with STEC-HUS (n = 25) were investigated for the presence of C3 and C9 by flow cytometry. Patients exhibited increased C3 deposition on RBCs compared with controls (p < 0.001), as well as high levels of C3- and C9-bearing RBC-derived microvesicles during the acute phase, which decreased after recovery. Stx2 bound to P1 (k) and P2 (k) phenotype RBCs, expressing high levels of the P(k) Ag (globotriaosylceramide), the known Stx receptor. Stx2 induced the release of hemoglobin and lactate dehydrogenase in whole blood, indicating hemolysis. Stx2-induced hemolysis was not demonstrated in the absence of plasma and was inhibited by heat inactivation, as well as by the terminal complement pathway Ab eculizumab, the purinergic P2 receptor antagonist suramin, and EDTA. In the presence of whole blood or plasma/serum, Stx2 induced the release of RBC-derived microvesicles coated with C5b-9, a process that was inhibited by EDTA, in the absence of factor B, and by purinergic P2 receptor antagonists. Thus, complement-coated RBC-derived microvesicles are elevated in HUS patients and induced in vitro by incubation of RBCs with Stx2, which also induced hemolysis. The role of complement in Stx2-mediated hemolysis was demonstrated by its occurrence only in the presence of plasma and its abrogation by heat inactivation, EDTA, and eculizumab. Complement activation on RBCs could play a role in the hemolytic process occurring during STEC-HUS.


Asunto(s)
Vesículas Cubiertas/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Infecciones por Escherichia coli/sangre , Escherichia coli O157/patogenicidad , Síndrome Hemolítico-Urémico/sangre , Toxina Shiga/toxicidad , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/farmacología , Niño , Preescolar , Vesículas Cubiertas/química , Vesículas Cubiertas/inmunología , Activación de Complemento/efectos de los fármacos , Complemento C3/química , Complemento C9/química , Complejo de Ataque a Membrana del Sistema Complemento/química , Ácido Edético/farmacología , Eritrocitos/química , Eritrocitos/inmunología , Eritrocitos/patología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Escherichia coli O157/inmunología , Escherichia coli O157/metabolismo , Femenino , Expresión Génica , Hemólisis/efectos de los fármacos , Síndrome Hemolítico-Urémico/inmunología , Síndrome Hemolítico-Urémico/microbiología , Síndrome Hemolítico-Urémico/patología , Humanos , Lactante , L-Lactato Deshidrogenasa/metabolismo , Masculino , Persona de Mediana Edad , Antagonistas del Receptor Purinérgico P2/farmacología , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/inmunología , Toxina Shiga/química , Toxina Shiga/inmunología , Suramina/farmacología , Trihexosilceramidas/inmunología
20.
Immunohematology ; 33(2): 56-59, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28657763

RESUMEN

CONCLUSIONS: The blood group antigen Vel has been one of immunohematology's greatest enigmas: the variation in antigen strength from one individual to another, the property of anti-Vel to readily hemolyze Vel+ red blood cells (RBCs), and the difficulty to screen for sufficient numbers of Vel- blood donors had made Vel a tough nut to crack. In 2013, a small, previously unknown protein called small integral membrane protein 1 (SMIM1) was identified on the RBC by three independent research groups using different approaches, and all three groups demonstrated that Vel- RBCs lacked SMIM1. This discovery correlated with homozygosity for deletion c.64_60del in SMIM1 and meant that for the first time there was a universal method to screen for Vel- blood donors. This finding was not the whole answer, however, and an explanation behind the variability in antigen strength was later shown to be due to polymorphism in SMIM1 intron 2, a region that is responsible for gene transcription. Clinically, anti-Vel is important and has caused severe transfusion reactions, although hemolytic disease of the fetus and newborn caused by anti-Vel is uncommon. However, while screening for Vel- blood donors has become easier, the function of SMIM1 is still unknown, and despite its well-conserved sequence across the animal kingdom, the enigma continues.


Asunto(s)
Antígenos de Grupos Sanguíneos/inmunología , Animales , Donantes de Sangre , Eritrocitos , Humanos , Proteínas de la Membrana , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA