Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Hum Genet ; 105(1): 198-212, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31178125

RESUMEN

Motile cilia and sperm flagella share an evolutionarily conserved axonemal structure. Their structural and/or functional defects are associated with primary ciliary dyskinesia (PCD), a genetic disease characterized by chronic respiratory-tract infections and in which most males are infertile due to asthenozoospermia. Among the well-characterized axonemal protein complexes, the outer dynein arms (ODAs), through ATPase activity of their heavy chains (HCs), play a major role for cilia and flagella beating. However, the contribution of the different HCs (γ-type: DNAH5 and DNAH8 and ß-type: DNAH9, DNAH11, and DNAH17) in ODAs from both organelles is unknown. By analyzing five male individuals who consulted for isolated infertility and displayed a loss of ODAs in their sperm cells but not in their respiratory cells, we identified bi-allelic mutations in DNAH17. The isolated infertility phenotype prompted us to compare the protein composition of ODAs in the sperm and ciliary axonemes from control individuals. We show that DNAH17 and DNAH8, but not DNAH5, DNAH9, or DNAH11, colocalize with α-tubulin along the sperm axoneme, whereas the reverse picture is observed in respiratory cilia, thus explaining the phenotype restricted to sperm cells. We also demonstrate the loss of function associated with DNAH17 mutations in two unrelated individuals by performing immunoblot and immunofluorescence analyses on sperm cells; these analyses indicated the absence of DNAH17 and DNAH8, whereas DNAH2 and DNALI, two inner dynein arm components, were present. Overall, this study demonstrates that mutations in DNAH17 are responsible for isolated male infertility and provides information regarding ODA composition in human spermatozoa.


Asunto(s)
Astenozoospermia/complicaciones , Dineínas Axonemales/genética , Infertilidad Masculina/etiología , Mutación , Espermatozoides/patología , Adulto , Humanos , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Masculino , Linaje , Fenotipo , Espermatozoides/metabolismo
2.
Am J Hum Genet ; 105(6): 1148-1167, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31735292

RESUMEN

In humans, structural or functional defects of the sperm flagellum induce asthenozoospermia, which accounts for the main sperm defect encountered in infertile men. Herein we focused on morphological abnormalities of the sperm flagellum (MMAF), a phenotype also termed "short tails," which constitutes one of the most severe sperm morphological defects resulting in asthenozoospermia. In previous work based on whole-exome sequencing of a cohort of 167 MMAF-affected individuals, we identified bi-allelic loss-of-function mutations in more than 30% of the tested subjects. In this study, we further analyzed this cohort and identified five individuals with homozygous truncating variants in TTC29, a gene preferentially and highly expressed in the testis, and encoding a tetratricopeptide repeat-containing protein related to the intraflagellar transport (IFT). One individual carried a frameshift variant, another one carried a homozygous stop-gain variant, and three carried the same splicing variant affecting a consensus donor site. The deleterious effect of this last variant was confirmed on the corresponding transcript and protein product. In addition, we produced and analyzed TTC29 loss-of-function models in the flagellated protist T. brucei and in M. musculus. Both models confirmed the importance of TTC29 for flagellar beating. We showed that in T. brucei the TPR structural motifs, highly conserved between the studied orthologs, are critical for TTC29 axonemal localization and flagellar beating. Overall our work demonstrates that TTC29 is a conserved axonemal protein required for flagellar structure and beating and that TTC29 mutations are a cause of male sterility due to MMAF.


Asunto(s)
Astenozoospermia/etiología , Axonema/patología , Flagelos/patología , Infertilidad Masculina/etiología , Proteínas Asociadas a Microtúbulos/genética , Mutación , Animales , Astenozoospermia/metabolismo , Astenozoospermia/patología , Axonema/genética , Axonema/metabolismo , Evolución Molecular , Femenino , Fertilización In Vitro , Flagelos/genética , Flagelos/metabolismo , Humanos , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Masculino , Ratones Endogámicos C57BL , Trypanosoma brucei brucei/fisiología , Tripanosomiasis
3.
Hum Genet ; 140(7): 1031-1043, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33689014

RESUMEN

Cilia and flagella are formed around an evolutionary conserved microtubule-based axoneme and are required for fluid and mucus clearance, tissue homeostasis, cell differentiation and movement. The formation and maintenance of cilia and flagella require bidirectional transit of proteins along the axonemal microtubules, a process called intraflagellar transport (IFT). In humans, IFT defects contribute to a large group of systemic diseases, called ciliopathies, which often display overlapping phenotypes. By performing exome sequencing of a cohort of 167 non-syndromic infertile men displaying multiple morphological abnormalities of the sperm flagellum (MMAF) we identified two unrelated patients carrying a homozygous missense variant adjacent to a splice donor consensus site of IFT74 (c.256G > A;p.Gly86Ser). IFT74 encodes for a core component of the IFT machinery that is essential for the anterograde transport of tubulin. We demonstrate that this missense variant affects IFT74 mRNA splicing and induces the production of at least two distinct mutant proteins with abnormal subcellular localization along the sperm flagellum. Importantly, while IFT74 deficiency was previously implicated in two cases of Bardet-Biedl syndrome, a pleiotropic ciliopathy with variable expressivity, our data indicate that this missense mutation only results in primary male infertility due to MMAF, with no other clinical features. Taken together, our data indicate that the nature of the mutation adds a level of complexity to the clinical manifestations of ciliary dysfunction, thus contributing to the expanding phenotypical spectrum of ciliopathies.


Asunto(s)
Astenozoospermia/genética , Síndrome de Bardet-Biedl/genética , Proteínas del Citoesqueleto/genética , Flagelos/genética , Infertilidad Masculina/genética , Mutación Missense/genética , Tubulina (Proteína)/genética , Animales , Axonema/genética , Cilios/genética , Homocigoto , Humanos , Masculino , Transporte de Proteínas/genética , Sitios de Empalme de ARN/genética , Cola del Espermatozoide/fisiología , Secuenciación del Exoma/métodos
4.
Am J Hum Genet ; 102(4): 636-648, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29606301

RESUMEN

The multiple morphological abnormalities of the flagella (MMAF) phenotype is among the most severe forms of sperm defects responsible for male infertility. The phenotype is characterized by the presence in the ejaculate of immotile spermatozoa with severe flagellar abnormalities including flagella being short, coiled, absent, and of irregular caliber. Recent studies have demonstrated that MMAF is genetically heterogeneous, and genes thus far associated with MMAF account for only one-third of cases. Here we report the identification of homozygous truncating mutations (one stop-gain and one splicing variant) in CFAP69 of two unrelated individuals by whole-exome sequencing of a cohort of 78 infertile men with MMAF. CFAP69 encodes an evolutionarily conserved protein found at high levels in the testis. Immunostaining experiments in sperm from fertile control individuals showed that CFAP69 localized to the midpiece of the flagellum, and the absence of CFAP69 was confirmed in both individuals carrying CFPA69 mutations. Additionally, we found that sperm from a Cfap69 knockout mouse model recapitulated the MMAF phenotype. Ultrastructural analysis of testicular sperm from the knockout mice showed severe disruption of flagellum structure, but histological analysis of testes from these mice revealed the presence of all stages of the seminiferous epithelium, indicating that the overall progression of spermatogenesis is preserved and that the sperm defects likely arise during spermiogenesis. Together, our data indicate that CFAP69 is necessary for flagellum assembly/stability and that in both humans and mice, biallelic truncating mutations in CFAP69 cause autosomal-recessive MMAF and primary male infertility.


Asunto(s)
Proteínas del Citoesqueleto/genética , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Cola del Espermatozoide/metabolismo , Cola del Espermatozoide/patología , Animales , Axonema/metabolismo , Epidídimo/patología , Epidídimo/ultraestructura , Homocigoto , Humanos , Masculino , Ratones Noqueados , Mutación/genética , Semen/metabolismo , Pieza Intermedia del Espermatozoide/metabolismo , Cola del Espermatozoide/ultraestructura , Espermatogénesis , Testículo/patología , Secuenciación del Exoma
5.
Clin Genet ; 99(5): 684-693, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33462806

RESUMEN

Asthenozoospermia, defined by the absence or reduction of sperm motility, constitutes the most frequent cause of human male infertility. This pathological condition is caused by morphological and/or functional defects of the sperm flagellum, which preclude proper sperm progression. While in the last decade many causal genes were identified for asthenozoospermia associated with severe sperm flagellar defects, the causes of purely functional asthenozoospermia are still poorly defined. We describe here the case of an infertile man, displaying asthenozoospermia without major morphological flagellar anomalies and carrying a homozygous splicing mutation in SLC9C1 (sNHE), which we identified by whole-exome sequencing. SLC9C1 encodes a sperm-specific sodium/proton exchanger, which in mouse regulates pH homeostasis and interacts with the soluble adenylyl cyclase (sAC), a key regulator of the signalling pathways involved in sperm motility and capacitation. We demonstrate by means of RT-PCR, immunodetection and immunofluorescence assays on patient's semen samples that the homozygous splicing mutation (c.2748 + 2 T > C) leads to in-frame exon skipping resulting in a deletion in the cyclic nucleotide-binding domain of the protein. Our work shows that in human, similar to mouse, SLC9C1 is required for sperm motility. Overall, we establish a homozygous truncating mutation in SLC9C1 as a novel cause of human asthenozoospermia and infertility.


Asunto(s)
Astenozoospermia/genética , Fertilidad/fisiología , Intercambiadores de Sodio-Hidrógeno/fisiología , Motilidad Espermática/fisiología , Adulto , Homocigoto , Humanos , Infertilidad/genética , Masculino , Linaje , Empalme del ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Intercambiadores de Sodio-Hidrógeno/genética , Cola del Espermatozoide/patología , Secuenciación del Exoma
6.
Hum Reprod ; 36(11): 2848-2860, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34529793

RESUMEN

STUDY QUESTION: Are ICSI outcomes impaired in cases of severe asthenozoospermia with multiple morphological abnormalities of the flagellum (MMAF phenotype)? SUMMARY ANSWER: Despite occasional technical difficulties, ICSI outcomes for couples with MMAF do not differ from those of other couples requiring ICSI, irrespective of the genetic defect. WHAT IS KNOWN ALREADY: Severe asthenozoospermia, especially when associated with the MMAF phenotype, results in male infertility. Recent findings have confirmed that a genetic aetiology is frequently responsible for this phenotype. In such situations, pregnancies can be achieved using ICSI. However, few studies to date have provided detailed analyses regarding the flagellar ultrastructural defects underlying this phenotype, its genetic aetiologies, and the results of ICSI in such cases of male infertility. STUDY DESIGN, SIZE, DURATION: We performed a retrospective study of 25 infertile men exhibiting severe asthenozoospermia associated with the MMAF phenotype identified through standard semen analysis. They were recruited at an academic centre for assisted reproduction in Paris (France) between 2009 and 2017. Transmission electron microscopy (TEM) and whole exome sequencing (WES) were performed in order to determine the sperm ultrastructural phenotype and the causal mutations, respectively. Finally 20 couples with MMAF were treated by assisted reproductive technologies based on ICSI. PARTICIPANTS/MATERIALS, SETTING, METHODS: Patients with MMAF were recruited based on reduced sperm progressive motility and increased frequencies of absent, short, coiled or irregular flagella compared with those in sperm from fertile control men. A quantitative analysis of the several ultrastructural defects was performed for the MMAF patients and for fertile men. The ICSI results obtained for 20 couples with MMAF were compared to those of 378 men with oligoasthenoteratozoospermia but no MMAF as an ICSI control group. MAIN RESULTS AND THE ROLE OF CHANCE: TEM analysis and categorisation of the flagellar anomalies found in these patients provided important information regarding the structural defects underlying asthenozoospermia and sperm tail abnormalities. In particular, the absence of the central pair of axonemal microtubules was the predominant anomaly observed more frequently than in control sperm (P < 0.01). Exome sequencing, performed for 24 of the 25 patients, identified homozygous or compound heterozygous pathogenic mutations in CFAP43, CFAP44, CFAP69, DNAH1, DNAH8, AK7, TTC29 and MAATS1 in 13 patients (54.2%) (11 affecting MMAF genes and 2 affecting primary ciliary dyskinesia (PCD)-associated genes). A total of 40 ICSI cycles were undertaken for 20 MMAF couples, including 13 cycles (for 5 couples) where a hypo-osmotic swelling (HOS) test was required due to absolute asthenozoospermia. The fertilisation rate was not statistically different between the MMAF (65.7%) and the non-MMAF (66.0%) couples and it did not differ according to the genotype or the flagellar phenotype of the subjects or use of the HOS test. The clinical pregnancy rate per embryo transfer did not differ significantly between the MMAF (23.3%) and the non-MMAF (37.1%) groups. To date, 7 of the 20 MMAF couples have achieved a live birth from the ICSI attempts, with 11 babies born without any birth defects. LIMITATIONS, REASONS FOR CAUTION: The ICSI procedure outcomes were assessed retrospectively on a small number of affected subjects and should be confirmed on a larger cohort. Moreover, TEM analysis could not be performed for all patients due to low sperm concentrations, and WES results are not yet available for all of the included men. WIDER IMPLICATIONS OF THE FINDINGS: An early and extensive phenotypic and genetic investigation should be considered for all men requiring ICSI for severe asthenozoospermia. Although our study did not reveal any adverse ICSI outcomes associated with MMAF, we cannot rule out that some rare genetic causes could result in low fertilisation or pregnancy rates. STUDY FUNDING/COMPETING INTEREST(S): No external funding was used for this study and there are no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Astenozoospermia , Infertilidad Masculina , Astenozoospermia/genética , Femenino , Flagelos , Humanos , Infertilidad Masculina/genética , Masculino , Fenotipo , Embarazo , Estudios Retrospectivos , Inyecciones de Esperma Intracitoplasmáticas , Cola del Espermatozoide , Espermatozoides
7.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669425

RESUMEN

Thanks to the analysis of an Interspecific Recombinant Congenic Strain (IRCS), we previously defined the Mafq1 quantitative trait locus as an interval on mouse Chromosome 1 associated with male hypofertility and ultrastructural abnormalities. We identified the Spermatogenesis associated protein 3 gene (Spata3 or Tsarg1) as a pertinent candidate within the Mafq1 locus and performed the CRISPR-Cas9 mediated complete deletion of the gene to investigate its function. Male mice deleted for Spata3 were normally fertile in vivo but exhibited a drastic reduction of efficiency in in vitro fertilization assays. Mobility parameters were normal but ultrastructural analyses revealed acrosome defects and an overabundance of lipids droplets in cytoplasmic remnants. The deletion of the Spata3 gene reproduces therefore partially the phenotype of the hypofertile IRCS strain.


Asunto(s)
Acrosoma/patología , Fertilización In Vitro/métodos , Eliminación de Gen , Infertilidad Masculina/genética , Proteínas/genética , Acrosoma/metabolismo , Acrosoma/ultraestructura , Animales , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Femenino , Infertilidad Masculina/metabolismo , Gotas Lipídicas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Embarazo , Proteínas/metabolismo , Motilidad Espermática/genética , Espermatogénesis/genética , Testículo/metabolismo
8.
Hum Mol Genet ; 27(7): 1196-1211, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29365104

RESUMEN

Motile cilia and sperm flagella share an extremely conserved microtubule-based cytoskeleton, called the axoneme, which sustains beating and motility of both organelles. Ultra-structural and/or functional defects of this axoneme are well-known to cause primary ciliary dyskinesia (PCD), a disorder characterized by recurrent respiratory tract infections, chronic otitis media, situs inversus, male infertility and in most severe cases, hydrocephalus. Only recently, mutations in genes encoding axonemal proteins with preferential expression in the testis were identified in isolated male infertility; in those cases, individuals displayed severe asthenozoospermia due to Multiple Morphological Abnormalities of the sperm Flagella (MMAF) but not PCD features. In this study, we performed genetic investigation of two siblings presenting MMAF without any respiratory PCD features, and we report the identification of the c.2018T > G (p.Leu673Pro) transversion in AK7, encoding an adenylate kinase, expressed in ciliated tissues and testis. By performing transcript and protein analyses of biological samples from individual carrying the transversion, we demonstrate that this mutation leads to the loss of AK7 protein in sperm cells but not in respiratory ciliated cells, although both cell types carry the mutated transcript and no tissue-specific isoforms were detected. This work therefore, supports the notion that proteins shared by both cilia and sperm flagella may have specific properties and/or function in each organelle, in line with the differences in their mode of assembly and organization. Overall, this work identifies a novel genetic cause of asthenozoospermia due to MMAF and suggests that in humans, more deleterious mutations of AK7 might induce PCD.


Asunto(s)
Adenilato Quinasa/genética , Trastornos de la Motilidad Ciliar/genética , Homocigoto , Infertilidad Masculina/genética , Mutación Missense , Cola del Espermatozoide , Adenilato Quinasa/metabolismo , Adulto , Trastornos de la Motilidad Ciliar/enzimología , Trastornos de la Motilidad Ciliar/patología , Humanos , Infertilidad Masculina/enzimología , Infertilidad Masculina/patología , Masculino
9.
Mol Reprod Dev ; 85(8-9): 682-695, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30118583

RESUMEN

Members of the solute carrier 26 (SLC26) family have emerged as important players in mediating anions fluxes across the plasma membrane of epithelial cells, in cooperation with the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Among them, SLC26A3 acts as a chloride/bicarbonate exchanger, highly expressed in the gastrointestinal, pancreatic and renal tissues. In humans, mutations in the SLC26A3 gene were shown to induce congenital chloride-losing diarrhea (CLD), a rare autosomal recessive disorder characterized by life-long secretory diarrhea. In view of some reports indicating subfertility in some male CLD patients together with SLC26-A3 and -A6 expression in the male genital tract and sperm cells, we analyzed the male reproductive parameters and functions of SLC26A3 deficient mice, which were previously reported to display CLD gastro-intestinal features. We show that in contrast to Slc26a6, deletion of Slc26a3 is associated with severe lesions and abnormal cytoarchitecture of the epididymis, together with sperm quantitative, morphological and functional defects, which altogether compromised male fertility. Overall, our work provides new insight into the pathophysiological mechanisms that may alter the reproductive functions and lead to male subfertility in CLD patients, with a phenotype reminiscent of that induced by CFTR deficiency in the male genital tract.


Asunto(s)
Antiportadores/metabolismo , Epidídimo/metabolismo , Epidídimo/fisiopatología , Fertilización , Infertilidad Masculina/metabolismo , Capacitación Espermática , Transportadores de Sulfato/metabolismo , Animales , Antiportadores/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Diarrea/congénito , Diarrea/etiología , Masculino , Errores Innatos del Metabolismo/etiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fenotipo , Recuento de Espermatozoides , Motilidad Espermática , Espermatozoides/patología , Transportadores de Sulfato/genética , Testículo/fisiopatología
12.
Reprod Biomed Online ; 31(3): 411-20, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26194886

RESUMEN

Traditional medicine has been used worldwide for centuries to cure or prevent disease and for male or female contraception. Only a few studies have directly investigated the effects of herbal compounds on spermatozoa. In this study, essential oil from Thymus munbyanus was extracted and its effect on human spermatozoa in vitro was analysed. Gas chromatography and Gas chromatography-mass spectrometry analyses identified 64 components, accounting for 98.9% of the composition of the oil. The principal components were thymol (52.0%), γ-terpinene (11.0%), ρ-cymene (8.5%) and carvacrol (5.2%). Freshly ejaculated spermatozoa was exposed from control individuals to various doses of the essential oil for different time periods, and recorded the vitality, the mean motility, the movement characteristics (computer-aided sperm analysis), the morphology and the ability to undergo protein hyperphosphorylation and acrosomal reaction, which constitute two markers of sperm capacitation and fertilizing ability. In vitro, both the essential oil extracted from T. munbyanus and thymol, the principal compound present in this oil, impaired human sperm motility and its capacity to undergo hyperphosphorylation and acrosome reaction. These compounds may, therefore, be of interest in the field of reproductive biology, as potential anti-spermatic agents.


Asunto(s)
Aceites Volátiles/farmacología , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Timol/farmacología , Thymus (Planta) , Reacción Acrosómica/efectos de los fármacos , Humanos , Masculino , Capacitación Espermática/efectos de los fármacos
13.
J Immunol ; 189(7): 3339-46, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22933631

RESUMEN

Work over the last decades has led to the identification of the factors that influence the survival and homeostasis of conventional T cells. IL-7 and TCR signaling promote the survival of naive CD4(+) and CD8(+) T cells in lymphoreplete mice and their proliferation in a lymphopenic environment, whereas survival and homeostatic proliferation of memory CD4(+) and CD8(+) T cells crucially depend on a combination of IL-7 and IL-15. In contrast, there is little information regarding the factors driving the proliferation of regulatory CD4(+) T cells in response to lymphopenia. In this study, we investigated whether regulatory CD4(+) T cell proliferation in response to lymphopenia was guided by classical homeostatic resources, such as IL-2, IL-7, or TCR-MHC interactions. Altogether, our data suggest that, although homeostatic proliferation of conventional naive CD4(+) T cells is closely related to IL-7 levels, the proliferation of regulatory CD4(+) T cells in response to lymphopenia appears to be primarily controlled by IL-2. The capacity of IL-7 to augment conventional T cell proliferation with minimal concomitant regulatory T cell expansion may be clinically exploitable in the treatment of patients with lymphopenia, especially in the case of chronic viral diseases or cancer immunotherapy.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Compartimento Celular/inmunología , Homeostasis/inmunología , Interleucina-2/fisiología , Interleucina-7/fisiología , Animales , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/trasplante , Compartimento Celular/genética , Ciclo Celular/genética , Ciclo Celular/inmunología , Proliferación Celular , Células Cultivadas , Genes Reporteros , Homeostasis/genética , Linfopenia/genética , Linfopenia/inmunología , Linfopenia/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
14.
iScience ; 27(3): 109260, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38439971

RESUMEN

Preeclampsia is a major hypertensive pregnancy disorder with a 50% heritability. The first identified gene involved in the disease is STOX1, a transcription factor, whose variant Y153H predisposes to the disease. Two rare mutations were also identified in Colombian women affected by the hemolysis, elevated liver enzyme, low platelet syndrome, a complication of preeclampsia (T188N and R364X). Here, we explore the effects of these variants in trophoblast cell models (BeWo) where STOX1 was previously invalidated. We firstly showed that STOX1 knockout alters response to oxidative stress, cell proliferation, and fusion capacity. Then, we showed that mutant versions of STOX1 trigger alterations in gene profiles, growth, fusion, and oxidative stress management. The results also reveal alterations of the STOX interaction with DNA when the mutations affected the DNA-binding domain of STOX1 (Y153H and T188N). We also reveal here that a major contributor of these effects appears to be the E2F3 transcription factor.

15.
iScience ; 26(8): 107354, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37520705

RESUMEN

Sperm fertilization ability mainly relies on proper sperm progression through the female genital tract and capacitation, which involves phosphorylation signaling pathways triggered by calcium and bicarbonate. We performed exome sequencing of an infertile asthenozoospermic patient and identified truncating variants in MAP7D3, encoding a microtubule-associated protein, and IQCH, encoding a protein of unknown function with enzymatic and signaling features. We demonstrate the deleterious impact of both variants on sperm transcripts and proteins from the patient. We show that, in vitro, patient spermatozoa could not induce the phosphorylation cascades associated with capacitation. We also provide evidence for IQCH association with calmodulin, a well-established calcium-binding protein that regulates the calmodulin kinase. Notably, we describe IQCH spatial distribution around the sperm axoneme, supporting its function within flagella. Overall, our work highlights the cumulative pathological impact of gene mutations and identifies IQCH as a key protein required for sperm motility and capacitation.

16.
Nat Commun ; 9(1): 686, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29449551

RESUMEN

Spermatogenesis defects concern millions of men worldwide, yet the vast majority remains undiagnosed. Here we report men with primary infertility due to multiple morphological abnormalities of the sperm flagella with severe disorganization of the sperm axoneme, a microtubule-based structure highly conserved throughout evolution. Whole-exome sequencing was performed on 78 patients allowing the identification of 22 men with bi-allelic mutations in DNAH1 (n = 6), CFAP43 (n = 10), and CFAP44 (n = 6). CRISPR/Cas9 created homozygous CFAP43/44 male mice that were infertile and presented severe flagellar defects confirming the human genetic results. Immunoelectron and stimulated-emission-depletion microscopy performed on CFAP43 and CFAP44 orthologs in Trypanosoma brucei evidenced that both proteins are located between the doublet microtubules 5 and 6 and the paraflagellar rod. Overall, we demonstrate that CFAP43 and CFAP44 have a similar structure with a unique axonemal localization and are necessary to produce functional flagella in species ranging from Trypanosoma to human.


Asunto(s)
Flagelos/fisiología , Infertilidad Masculina/genética , Proteínas de Microtúbulos/genética , Mutación , Proteínas Nucleares/genética , Péptido Hidrolasas/genética , Espermatozoides/fisiología , Trypanosoma/fisiología , Adulto , Animales , Axonema , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Estudios de Cohortes , Proteínas del Citoesqueleto , Fertilidad , Flagelos/metabolismo , Homocigoto , Humanos , Masculino , Ratones , Ratones Noqueados , Microscopía Inmunoelectrónica , Persona de Mediana Edad , Motilidad Espermática , Espermatozoides/metabolismo , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA