Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Mol Cell ; 84(8): 1570-1584.e7, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38537638

RESUMEN

Spatiotemporal regulation of intracellular signaling molecules, such as the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), ensures proper cellular function. Liquid-liquid phase separation (LLPS) of the ubiquitous PKA regulatory subunit RIα promotes cAMP compartmentation and signaling specificity. However, the molecular determinants of RIα LLPS remain unclear. Here, we reveal that two separate dimerization interfaces, combined with the cAMP-induced unleashing of the PKA catalytic subunit (PKA-C) from the pseudosubstrate inhibitory sequence, drive RIα condensate formation in the cytosol of mammalian cells, which is antagonized by docking to A-kinase anchoring proteins. Strikingly, we find that the RIα pseudosubstrate region is critically involved in forming a non-canonical R:C complex, which recruits active PKA-C to RIα condensates to maintain low basal PKA activity in the cytosol. Our results suggest that RIα LLPS not only facilitates cAMP compartmentation but also spatially restrains active PKA-C, thus highlighting the functional versatility of biomolecular condensates in driving signaling specificity.


Asunto(s)
Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico , Separación de Fases , Animales , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/química , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Transducción de Señal , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mamíferos/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(1): e2310727120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38150499

RESUMEN

Intrinsically disordered regions (IDR) and short linear motifs (SLiMs) play pivotal roles in the intricate signaling networks governed by phosphatases and kinases. B56δ (encoded by PPP2R5D) is a regulatory subunit of protein phosphatase 2A (PP2A) with long IDRs that harbor a substrate-mimicking SLiM and multiple phosphorylation sites. De novo missense mutations in PPP2R5D cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Our single-particle cryo-EM structures of the PP2A-B56δ holoenzyme reveal that the long, disordered arms at the B56δ termini fold against each other and the holoenzyme core. This architecture suppresses both the phosphatase active site and the substrate-binding protein groove, thereby stabilizing the enzyme in a closed latent form with dual autoinhibition. The resulting interface spans over 190 Šand harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is coupled to an allosteric network responsive to phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations increase the holoenzyme activity and perturb the phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the normal variant.


Asunto(s)
Proteína Fosfatasa 2 , Proteína Fosfatasa 2/metabolismo , Jordania , Fosforilación , Mutación , Holoenzimas/genética , Holoenzimas/metabolismo
3.
Mol Cell ; 67(6): 922-935.e5, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28918902

RESUMEN

The mechanisms that link environmental and intracellular stimuli to mitochondrial functions, including fission/fusion, ATP production, metabolite biogenesis, and apoptosis, are not well understood. Here, we demonstrate that the nutrient-sensing mechanistic/mammalian target of rapamycin complex 1 (mTORC1) stimulates translation of mitochondrial fission process 1 (MTFP1) to control mitochondrial fission and apoptosis. Expression of MTFP1 is coupled to pro-fission phosphorylation and mitochondrial recruitment of the fission GTPase dynamin-related protein 1 (DRP1). Potent active-site mTOR inhibitors engender mitochondrial hyperfusion due to the diminished translation of MTFP1, which is mediated by translation initiation factor 4E (eIF4E)-binding proteins (4E-BPs). Uncoupling MTFP1 levels from the mTORC1/4E-BP pathway upon mTOR inhibition blocks the hyperfusion response and leads to apoptosis by converting mTOR inhibitor action from cytostatic to cytotoxic. These data provide direct evidence for cell survival upon mTOR inhibition through mitochondrial hyperfusion employing MTFP1 as a critical effector of mTORC1 to govern cell fate decisions.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/enzimología , Dinámicas Mitocondriales , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Apoptosis , Sistemas CRISPR-Cas , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular , Dinaminas/genética , Dinaminas/metabolismo , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de la Membrana/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/efectos de los fármacos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Transducción de Señal , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Transfección
4.
Cerebellum ; 23(5): 2042-2049, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38735882

RESUMEN

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bß2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bß2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Noqueados , Dinámicas Mitocondriales , Espasticidad Muscular , Ataxias Espinocerebelosas , Animales , Dinámicas Mitocondriales/fisiología , Ratones , Espasticidad Muscular/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/congénito , Ratones Endogámicos C57BL , Dinaminas/genética , Dinaminas/metabolismo
5.
J Cell Sci ; 134(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34228795

RESUMEN

Neurodevelopmental disorders (NDDs), including intellectual disability (ID), autism and schizophrenia, have high socioeconomic impact, yet poorly understood etiologies. A recent surge of large-scale genome or exome sequencing studies has identified a multitude of mostly de novo mutations in subunits of the protein phosphatase 2A (PP2A) holoenzyme that are strongly associated with NDDs. PP2A is responsible for at least 50% of total Ser/Thr dephosphorylation in most cell types and is predominantly found as trimeric holoenzymes composed of catalytic (C), scaffolding (A) and variable regulatory (B) subunits. PP2A can exist in nearly 100 different subunit combinations in mammalian cells, dictating distinct localizations, substrates and regulatory mechanisms. PP2A is well established as a regulator of cell division, growth, and differentiation, and the roles of PP2A in cancer and various neurodegenerative disorders, such as Alzheimer's disease, have been reviewed in detail. This Review summarizes and discusses recent reports on NDDs associated with mutations of PP2A subunits and PP2A-associated proteins. We also discuss the potential impact of these mutations on the structure and function of the PP2A holoenzymes and the etiology of NDDs.


Asunto(s)
Discapacidad Intelectual , Proteína Fosfatasa 2 , Animales , Humanos , Discapacidad Intelectual/genética , Mutación , Fosforilación , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Subunidades de Proteína/metabolismo
6.
J Biol Chem ; 296: 100082, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33199366

RESUMEN

Proper brain development and function requires finely controlled mechanisms for protein turnover, and disruption of genes involved in proteostasis is a common cause of neurodevelopmental disorders. Kelch-like 15 (KLHL15) is a substrate adaptor for cullin3-containing E3 ubiquitin ligases, and KLHL15 gene mutations were recently described as a cause of severe X-linked intellectual disability. Here, we used a bioinformatics approach to identify a family of neuronal microtubule-associated proteins as KLHL15 substrates, which are themselves critical for early brain development. We biochemically validated doublecortin (DCX), also an X-linked disease protein, and doublecortin-like kinase 1 and 2 as bona fide KLHL15 interactors and mapped KLHL15 interaction regions to their tandem DCX domains. Shared with two previously identified KLHL15 substrates, a FRY tripeptide at the C-terminal edge of the second DCX domain is necessary for KLHL15-mediated ubiquitination of DCX and doublecortin-like kinase 1 and 2 and subsequent proteasomal degradation. Conversely, silencing endogenous KLHL15 markedly stabilizes these DCX domain-containing proteins and prolongs their half-life. Functionally, overexpression of KLHL15 in the presence of WT DCX reduces dendritic complexity of cultured hippocampal neurons, whereas neurons expressing FRY-mutant DCX are resistant to KLHL15. Collectively, our findings highlight the critical importance of the E3 ubiquitin ligase adaptor KLHL15 in proteostasis of neuronal microtubule-associated proteins and identify a regulatory network important for development of the mammalian nervous system.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropéptidos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Western Blotting , Células COS , Chlorocebus aethiops , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Células HEK293 , Humanos , Inmunoprecipitación , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Proteínas de Microfilamentos/genética , Proteínas Asociadas a Microtúbulos/genética , Neuronas/metabolismo , Neuropéptidos/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética , Ubiquitinación/fisiología
7.
J Neurosci ; 40(15): 3119-3129, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32144179

RESUMEN

Mitochondrial fission catalyzed by dynamin-related protein 1 (Drp1) is necessary for mitochondrial biogenesis and maintenance of healthy mitochondria. However, excessive fission has been associated with multiple neurodegenerative disorders, and we recently reported that mice with smaller mitochondria are sensitized to ischemic stroke injury. Although pharmacological Drp1 inhibition has been put forward as neuroprotective, the specificity and mechanism of the inhibitor used is controversial. Here, we provide genetic evidence that Drp1 inhibition is neuroprotective. Drp1 is activated by dephosphorylation of an inhibitory phosphorylation site, Ser637. We identify Bß2, a mitochondria-localized protein phosphatase 2A (PP2A) regulatory subunit, as a neuron-specific Drp1 activator in vivo Bß2 KO mice of both sexes display elongated mitochondria in neurons and are protected from cerebral ischemic injury. Functionally, deletion of Bß2 and maintained Drp1 Ser637 phosphorylation improved mitochondrial respiratory capacity, Ca2+ homeostasis, and attenuated superoxide production in response to ischemia and excitotoxicity in vitro and ex vivo Last, deletion of Bß2 rescued excessive stroke damage associated with dephosphorylation of Drp1 S637 and mitochondrial fission. These results indicate that the state of mitochondrial connectivity and PP2A/Bß2-mediated dephosphorylation of Drp1 play a critical role in determining the severity of cerebral ischemic injury. Therefore, Bß2 may represent a target for prophylactic neuroprotective therapy in populations at high risk of stroke.SIGNIFICANCE STATEMENT With recent advances in clinical practice including mechanical thrombectomy up to 24 h after the ischemic event, there is resurgent interest in neuroprotective stroke therapies. In this study, we demonstrate reduced stroke damage in the brain of mice lacking the Bß2 regulatory subunit of protein phosphatase 2A, which we have shown previously acts as a positive regulator of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). Importantly, we provide evidence that deletion of Bß2 can rescue excessive ischemic damage in mice lacking the mitochondrial PKA scaffold AKAP1, apparently via opposing effects on Drp1 S637 phosphorylation. These results highlight reversible phosphorylation in bidirectional regulation of Drp1 activity and identify Bß2 as a potential pharmacological target to protect the brain from stroke injury.


Asunto(s)
Isquemia Encefálica/genética , Isquemia Encefálica/prevención & control , Dinaminas/genética , Neuronas/metabolismo , Animales , Calcio/metabolismo , Dinaminas/metabolismo , Femenino , Homeostasis , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Fosforilación , Cultivo Primario de Células , Proteína Fosfatasa 2/genética , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/prevención & control , Superóxidos/metabolismo
8.
J Biol Chem ; 295(17): 5654-5668, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32156701

RESUMEN

Protein phosphatase 2A (PP2A) is a large enzyme family responsible for most cellular Ser/Thr dephosphorylation events. PP2A substrate specificity, localization, and regulation by second messengers rely on more than a dozen regulatory subunits (including B/R2, B'/R5, and B″/R3), which form the PP2A heterotrimeric holoenzyme by associating with a dimer comprising scaffolding (A) and catalytic (C) subunits. Because of partial redundancy and high endogenous expression of PP2A holoenzymes, traditional approaches of overexpressing, knocking down, or knocking out PP2A regulatory subunits have yielded only limited insights into their biological roles and substrates. To this end, here we sought to reduce the complexity of cellular PP2A holoenzymes. We used tetracycline-inducible expression of pairs of scaffolding and regulatory subunits with complementary charge-reversal substitutions in their interaction interfaces. For each of the three regulatory subunit families, we engineered A/B charge-swap variants that could bind to one another, but not to endogenous A and B subunits. Because endogenous Aα was targeted by a co-induced shRNA, endogenous B subunits were rapidly degraded, resulting in expression of predominantly a single PP2A heterotrimer composed of the A/B charge-swap pair and the endogenous catalytic subunit. Using B'δ/PPP2R5D, we show that PP2A complexity reduction, but not PP2A overexpression, reveals a role of this holoenzyme in suppression of extracellular signal-regulated kinase signaling and protein kinase A substrate dephosphorylation. When combined with global phosphoproteomics, the PP2A/B'δ reduction approach identified consensus dephosphorylation motifs in its substrates and suggested that residues surrounding the phosphorylation site play roles in PP2A substrate specificity.


Asunto(s)
Proteína Fosfatasa 2/metabolismo , Animales , Células COS , Dominio Catalítico , Chlorocebus aethiops , Células HEK293 , Humanos , Modelos Moleculares , Fosforilación , Mapas de Interacción de Proteínas , Multimerización de Proteína , Proteína Fosfatasa 2/análisis , Subunidades de Proteína/análisis , Subunidades de Proteína/metabolismo
9.
J Biol Chem ; 294(44): 16164-16171, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31511325

RESUMEN

The self-labeling protein HaloTag has been used extensively to determine the localization and turnover of proteins of interest at the single-cell level. To this end, halogen-substituted alkanes attached to diverse fluorophores are commercially available that allow specific, irreversible labeling of HaloTag fusion proteins; however, measurement of protein of interest half-life by pulse-chase of HaloTag ligands is not widely employed because residual unbound ligand continues to label newly synthesized HaloTag fusions even after extensive washing. Excess unlabeled HaloTag ligand can be used as a blocker of undesired labeling, but this is not economical. In this study, we screened several inexpensive, low-molecular-weight haloalkanes as blocking agents in pulse-chase labeling experiments with the cell-permeable tetramethylrhodamine HaloTag ligand. We identified 7-bromoheptanol as a high-affinity, low-toxicity HaloTag-blocking agent that permits protein turnover measurements at both the cell population (by blotting) and single-cell (by imaging) levels. We show that the HaloTag pulse-chase approach is a nontoxic alternative to inhibition of protein synthesis with cycloheximide and extend protein turnover assays to long-lived proteins.


Asunto(s)
Bioensayo/métodos , Análisis de la Célula Individual/métodos , Coloración y Etiquetado/métodos , Colorantes Fluorescentes/metabolismo , Semivida , Heptanol/análogos & derivados , Heptanol/química , Ligandos , Estabilidad Proteica , Proteínas , Proteolisis , Rodaminas/química , Rodaminas/metabolismo
10.
J Neurosci ; 38(38): 8233-8242, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30093535

RESUMEN

Mitochondrial fission and fusion impact numerous cellular functions and neurons are particularly sensitive to perturbations in mitochondrial dynamics. Here we describe that male mice lacking the mitochondrial A-kinase anchoring protein 1 (AKAP1) exhibit increased sensitivity in the transient middle cerebral artery occlusion model of focal ischemia. At the ultrastructural level, AKAP1-/- mice have smaller mitochondria and increased contacts between mitochondria and the endoplasmic reticulum in the brain. Mechanistically, deletion of AKAP1 dysregulates complex II of the electron transport chain, increases superoxide production, and impairs Ca2+ homeostasis in neurons subjected to excitotoxic glutamate. Ca2+ deregulation in neurons lacking AKAP1 can be attributed to loss of inhibitory phosphorylation of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1) at the protein kinase A (PKA) site Ser637. Our results indicate that inhibition of Drp1-dependent mitochondrial fission by the outer mitochondrial AKAP1/PKA complex protects neurons from ischemic stroke by maintaining respiratory chain activity, inhibiting superoxide production, and delaying Ca2+ deregulation. They also provide the first genetic evidence that Drp1 inhibition may be of therapeutic relevance for the treatment of stroke and neurodegeneration.SIGNIFICANCE STATEMENT Previous work suggests that activation of dynamin-related protein 1 (Drp1) and mitochondrial fission contribute to ischemic injury in the brain. However, the specificity and efficacy of the pharmacological Drp1 inhibitor mdivi-1 that was used has now been discredited by several high-profile studies. Our report is timely and highly impactful because it provides the first evidence that genetic disinhibition of Drp1 via knock-out of the mitochondrial protein kinase A (PKA) scaffold AKAP1 exacerbates stroke injury in mice. Mechanistically, we show that electron transport deficiency, increased superoxide production, and Ca2+ overload result from genetic disinhibition of Drp1. In summary, our work settles current controversies regarding the role of mitochondrial fission in neuronal injury, provides mechanisms, and suggests that fission inhibitors hold promise as future therapeutic agents.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Isquemia Encefálica/metabolismo , Dinaminas/metabolismo , Dinámicas Mitocondriales/fisiología , Accidente Cerebrovascular/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Isquemia Encefálica/genética , Calcio/metabolismo , Dinaminas/genética , Complejo II de Transporte de Electrones/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Fosforilación , Accidente Cerebrovascular/genética , Superóxidos/metabolismo
11.
J Cell Sci ; 130(4): 671-681, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28154157

RESUMEN

Mitochondria fulfill numerous cellular functions including ATP production, Ca2+ buffering, neurotransmitter synthesis and degradation, ROS production and sequestration, apoptosis and intermediate metabolism. Mitochondrial dynamics, a collective term for the processes of mitochondrial fission, fusion and transport, governs mitochondrial function and localization within the cell. Correct balance of mitochondrial dynamics is especially important in neurons as mutations in fission and fusion enzymes cause peripheral neuropathies and impaired development of the nervous system in humans. Regulation of mitochondrial dynamics is partly accomplished through post-translational modification of mitochondrial fission and fusion enzymes, in turn influencing mitochondrial bioenergetics and transport. The importance of post-translational regulation is highlighted by numerous neurodegenerative disorders associated with post-translational modification of the mitochondrial fission enzyme Drp1. Not surprisingly, mitochondrial dynamics also play an important physiological role in the development of the nervous system and synaptic plasticity. Here, we highlight recent findings underlying the mechanisms and regulation of mitochondrial dynamics in relation to neurological disease, as well as the development and plasticity of the nervous system.


Asunto(s)
Dinámicas Mitocondriales , Plasticidad Neuronal , Neuronas/metabolismo , Neuronas/patología , Animales , Metabolismo Energético , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Procesamiento Proteico-Postraduccional
12.
Am J Physiol Heart Circ Physiol ; 317(6): H1231-H1242, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31674811

RESUMEN

Type I PKA regulatory α-subunit (RIα; encoded by the Prkar1a gene) serves as the predominant inhibitor protein of the catalytic subunit of cAMP-dependent protein kinase (PKAc). However, recent evidence suggests that PKA signaling can be initiated by cAMP-independent events, especially within the context of cellular oxidative stress such as ischemia-reperfusion (I/R) injury. We determined whether RIα is actively involved in the regulation of PKA activity via reactive oxygen species (ROS)-dependent mechanisms during I/R stress in the heart. Induction of ex vivo global I/R injury in mouse hearts selectively downregulated RIα protein expression, whereas RII subunit expression appears to remain unaltered. Cardiac myocyte cell culture models were used to determine that oxidant stimulus (i.e., H2O2) alone is sufficient to induce RIα protein downregulation. Transient increase of RIα expression (via adenoviral overexpression) negatively affects cell survival and function upon oxidative stress as measured by increased induction of apoptosis and decreased mitochondrial respiration. Furthermore, analysis of mitochondrial subcellular fractions in heart tissue showed that PKA-associated proteins are enriched in subsarcolemmal mitochondria (SSM) fractions and that loss of RIα is most pronounced at SSM upon I/R injury. These data were supported via electron microscopy in A-kinase anchoring protein 1 (AKAP1)-knockout mice, where loss of AKAP1 expression leads to aberrant mitochondrial morphology manifested in SSM but not interfibrillar mitochondria. Thus, we conclude that modification of RIα via ROS-dependent mechanisms induced by I/R injury has the potential to sensitize PKA signaling in the cell without the direct use of the canonical cAMP-dependent activation pathway.NEW & NOTEWORTHY We uncovered a previously undescribed phenomenon involving oxidation-induced activation of PKA signaling in the progression of cardiac ischemia-reperfusion injury. Type I PKA regulatory subunit RIα, but not type II PKA regulatory subunits, is dynamically regulated by oxidative stress to trigger the activation of the catalytic subunit of PKA in cardiac myocytes. This effect may play a critical role in the regulation of subsarcolemmal mitochondria function upon the induction of ischemic injury in the heart.


Asunto(s)
Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Línea Celular , Células Cultivadas , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Transducción de Señal
13.
Arterioscler Thromb Vasc Biol ; 38(6): 1333-1345, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29599132

RESUMEN

OBJECTIVE: The main objective of this study is to define the mechanisms by which mitochondria control vascular smooth muscle cell (VSMC) migration and impact neointimal hyperplasia. APPROACH AND RESULTS: The multifunctional CaMKII (Ca2+/calmodulin-dependent kinase II) in the mitochondrial matrix of VSMC drove a feed-forward circuit with the mitochondrial Ca2+ uniporter (MCU) to promote matrix Ca2+ influx. MCU was necessary for the activation of mitochondrial CaMKII (mtCaMKII), whereas mtCaMKII phosphorylated MCU at the regulatory site S92 that promotes Ca2+ entry. mtCaMKII was necessary and sufficient for platelet-derived growth factor-induced mitochondrial Ca2+ uptake. This effect was dependent on MCU. mtCaMKII and MCU inhibition abrogated VSMC migration and mitochondrial translocation to the leading edge. Overexpression of wild-type MCU, but not MCU S92A, mutant in MCU-/- VSMC rescued migration and mitochondrial mobility. Inhibition of microtubule, but not of actin assembly, blocked mitochondrial mobility. The outer mitochondrial membrane GTPase Miro-1 promotes mitochondrial mobility via microtubule transport but arrests it in subcellular domains of high Ca2+ concentrations. In Miro-1-/- VSMC, mitochondrial mobility and VSMC migration were abolished, and overexpression of mtCaMKII or a CaMKII inhibitory peptide in mitochondria (mtCaMKIIN) had no effect. Consistently, inhibition of mtCaMKII increased and prolonged cytosolic Ca2+ transients. mtCaMKII inhibition diminished phosphorylation of focal adhesion kinase and myosin light chain, leading to reduced focal adhesion turnover and cytoskeletal remodeling. In a transgenic model of selective mitochondrial CaMKII inhibition in VSMC, neointimal hyperplasia was significantly reduced after vascular injury. CONCLUSIONS: These findings identify mitochondrial CaMKII as a key regulator of mitochondrial Ca2+ uptake via MCU, thereby controlling mitochondrial translocation and VSMC migration after vascular injury.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Traumatismos de las Arterias Carótidas/enzimología , Movimiento Celular , Mitocondrias Musculares/enzimología , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Neointima , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Células Cultivadas , Modelos Animales de Enfermedad , Hiperplasia , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Musculares/patología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
14.
Nature ; 491(7423): 269-73, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-23051746

RESUMEN

Myocardial cell death is initiated by excessive mitochondrial Ca(2+) entry causing Ca(2+) overload, mitochondrial permeability transition pore (mPTP) opening and dissipation of the mitochondrial inner membrane potential (ΔΨm). However, the signalling pathways that control mitochondrial Ca(2+) entry through the inner membrane mitochondrial Ca(2+) uniporter (MCU) are not known. The multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is activated in ischaemia reperfusion, myocardial infarction and neurohumoral injury, common causes of myocardial death and heart failure; these findings suggest that CaMKII could couple disease stress to mitochondrial injury. Here we show that CaMKII promotes mPTP opening and myocardial death by increasing MCU current (I(MCU)). Mitochondrial-targeted CaMKII inhibitory protein or cyclosporin A, an mPTP antagonist with clinical efficacy in ischaemia reperfusion injury, equivalently prevent mPTP opening, ΔΨm deterioration and diminish mitochondrial disruption and programmed cell death in response to ischaemia reperfusion injury. Mice with myocardial and mitochondrial-targeted CaMKII inhibition have reduced I(MCU) and are resistant to ischaemia reperfusion injury, myocardial infarction and neurohumoral injury, suggesting that pathological actions of CaMKII are substantially mediated by increasing I(MCU). Our findings identify CaMKII activity as a central mechanism for mitochondrial Ca(2+) entry in myocardial cell death, and indicate that mitochondrial-targeted CaMKII inhibition could prevent or reduce myocardial death and heart failure in response to common experimental forms of pathophysiological stress.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocardio/enzimología , Miocardio/patología , Estrés Fisiológico , Animales , Apoptosis/efectos de los fármacos , Calcio/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Ciclosporina/farmacología , Femenino , Corazón/efectos de los fármacos , Corazón/fisiopatología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/prevención & control , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Cardíacas/enzimología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/prevención & control , Miocardio/metabolismo , Daño por Reperfusión/enzimología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control , Serina/metabolismo , Estrés Fisiológico/efectos de los fármacos
15.
J Biol Chem ; 289(32): 21950-9, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24939844

RESUMEN

Abundant, sustained expression of prosurvival Mcl-1 is an important determinant of viability and drug resistance in cancer cells. The Mcl-1 protein contains PEST sequences (enriched in proline, glutamic acid, serine, and threonine) and is normally subject to rapid turnover via multiple different pathways. One of these pathways involves a phosphodegron in the PEST region, where Thr-163 phosphorylation primes for Ser-159 phosphorylation by glycogen synthase kinase-3. Turnover via this phosphodegron-targeted pathway is reduced in Mcl-1-overexpressing BL41-3 Burkitt lymphoma and other cancer cells; turnover is further slowed in the presence of phorbol ester-induced ERK activation, resulting in Mcl-1 stabilization and an exacerbation of chemoresistance. The present studies focused on Mcl-1 dephosphorylation, which was also found to profoundly influence turnover. Exposure of BL41-3 cells to an inhibitor of protein phosphatase 2A (PP2A), okadaic acid, resulted in a rapid increase in phosphorylation at Thr-163 and Ser-159, along with a precipitous decrease in Mcl-1 expression. The decline in Mcl-1 expression preceded the appearance of cell death markers and was not slowed in the presence of phorbol ester. Upon exposure to calyculin A, which also potently inhibits PP2A, versus tautomycin, which does not, only the former increased Thr-163/Ser-159 phosphorylation and decreased Mcl-1 expression. Mcl-1 co-immunoprecipitated with PP2A upon transfection into CHO cells, and PP2A/Aα knockdown recapitulated the increase in Mcl-1 phosphorylation and decrease in expression. In sum, inhibition of PP2A prevents Mcl-1 dephosphorylation and results in rapid loss of this prosurvival protein in chemoresistant cancer cells.


Asunto(s)
Linfoma de Burkitt/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/química , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína Fosfatasa 2/antagonistas & inhibidores , Sitios de Unión , Linfoma de Burkitt/tratamiento farmacológico , Linfoma de Burkitt/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/farmacología , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Sistema de Señalización de MAP Quinasas , Toxinas Marinas , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Ácido Ocadaico/farmacología , Oxazoles/farmacología , Fosforilación/efectos de los fármacos , Proteína Fosfatasa 2/genética , Proteolisis , Serina/química , Acetato de Tetradecanoilforbol/farmacología , Treonina/química
17.
J Biol Chem ; 288(17): 12353-65, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23486469

RESUMEN

Fission and fusion events dynamically control the shape and function of mitochondria. The activity of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1) is finely tuned by several post-translational modifications. Phosphorylation of Ser-656 by cAMP-dependent protein kinase (PKA) inhibits Drp1, whereas dephosphorylation by a mitochondrial protein phosphatase 2A isoform and the calcium-calmodulin-dependent phosphatase calcineurin (CaN) activates Drp1. Here, we identify a conserved CaN docking site on Drp1, an LXVP motif, which mediates the interaction between the phosphatase and mechanoenzyme. We mutated the LXVP motif in Drp1 to either increase or decrease similarity to the prototypical LXVP motif in the transcription factor NFAT, and assessed stability of the mutant Drp1-CaN complexes by affinity precipitation and isothermal titration calorimetry. Furthermore, we quantified effects of LXVP mutations on Drp1 dephosphorylation kinetics in vitro and in intact cells. With tools for bidirectional control of the CaN-Drp1 signaling axis in hand, we demonstrate that the Drp1 LXVP motif shapes mitochondria in neuronal and non-neuronal cells, and that CaN-mediated Drp1 dephosphorylation promotes neuronal death following oxygen-glucose deprivation. These results point to the CaN-Drp1 complex as a potential target for neuroprotective therapy of ischemic stroke.


Asunto(s)
Isquemia Encefálica/metabolismo , Dinaminas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Accidente Cerebrovascular/metabolismo , Secuencias de Aminoácidos , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Calcineurina/genética , Calcineurina/metabolismo , Muerte Celular , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dinaminas/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/patología , Fosforilación/genética , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología
18.
PLoS Biol ; 9(4): e1000612, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21526220

RESUMEN

Mitochondrial shape is determined by fission and fusion reactions catalyzed by large GTPases of the dynamin family, mutation of which can cause neurological dysfunction. While fission-inducing protein phosphatases have been identified, the identity of opposing kinase signaling complexes has remained elusive. We report here that in both neurons and non-neuronal cells, cAMP elevation and expression of an outer-mitochondrial membrane (OMM) targeted form of the protein kinase A (PKA) catalytic subunit reshapes mitochondria into an interconnected network. Conversely, OMM-targeting of the PKA inhibitor PKI promotes mitochondrial fragmentation upstream of neuronal death. RNAi and overexpression approaches identify mitochondria-localized A kinase anchoring protein 1 (AKAP1) as a neuroprotective and mitochondria-stabilizing factor in vitro and in vivo. According to epistasis studies with phosphorylation site-mutant dynamin-related protein 1 (Drp1), inhibition of the mitochondrial fission enzyme through a conserved PKA site is the principal mechanism by which cAMP and PKA/AKAP1 promote both mitochondrial elongation and neuronal survival. Phenocopied by a mutation that slows GTP hydrolysis, Drp1 phosphorylation inhibits the disassembly step of its catalytic cycle, accumulating large, slowly recycling Drp1 oligomers at the OMM. Unopposed fusion then promotes formation of a mitochondrial reticulum, which protects neurons from diverse insults.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mitocondrias/fisiología , Neuronas/fisiología , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colforsina/farmacología , AMP Cíclico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Dinaminas/metabolismo , Hipocampo/citología , Hipocampo/enzimología , Homeostasis , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Forma de los Orgánulos/efectos de los fármacos , Fosforilación , Multimerización de Proteína , Transporte de Proteínas , Ratas
19.
ACS Chem Neurosci ; 15(15): 2729-2740, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38953493

RESUMEN

Polychlorinated biphenyls (PCBs) are industrial chemicals that are ubiquitously found in the environment. Exposure to these compounds has been associated with neurotoxic outcomes; however, the underlying mechanisms for such outcomes remain to be fully understood. Recent studies have shown that astrocytes, the most abundant glial cell type in the brain, are susceptible to PCB exposure as well as exposure to human-relevant metabolites of PCBs. Astrocytes are critical for maintaining healthy brain function due to their unique functional attributes and positioning within the neuronal networks in the brain. In this study, we assessed the toxicity of PCB52, one of the most abundantly found PCB congeners in outdoor and indoor air, and two of its human-relevant metabolites, on astrocyte mitochondria. We exposed C6 cells, an astrocyte cell line, to PCB52 or its human-relevant metabolites and found that all the compounds showed increased toxicity in galactose-containing media compared to that in the glucose-containing media, indicating the involvement of mitochondria in observed toxicity. Additionally, we also found increased oxidative stress upon exposure to PCB52 metabolites. All three compounds caused a loss of mitochondrial membrane potential, distinct changes in the mitochondrial structure, and impaired mitochondrial function. The hydroxylated metabolite 4-OH-PCB52 likely functions as an uncoupler of mitochondria. This is the first study to report the adverse effects of exposure to PCB52 and its human-relevant metabolites on the mitochondrial structure and function in astrocytes.


Asunto(s)
Astrocitos , Mitocondrias , Bifenilos Policlorados , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Bifenilos Policlorados/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Humanos , Animales , Línea Celular , Ratas , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Potencial de la Membrana Mitocondrial/efectos de los fármacos
20.
Res Sq ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38659734

RESUMEN

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bß2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bß2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA