Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(33): E7824-E7833, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30061392

RESUMEN

Robust photosynthesis in chloroplasts and cyanobacteria requires the participation of accessory proteins to facilitate the assembly and maintenance of the photosynthetic apparatus located within the thylakoid membranes. The highly conserved Ycf48 protein acts early in the biogenesis of the oxygen-evolving photosystem II (PSII) complex by binding to newly synthesized precursor D1 subunit and by promoting efficient association with the D2 protein to form a PSII reaction center (PSII RC) assembly intermediate. Ycf48 is also required for efficient replacement of damaged D1 during the repair of PSII. However, the structural features underpinning Ycf48 function remain unclear. Here we show that Ycf48 proteins encoded by the thermophilic cyanobacterium Thermosynechococcus elongatus and the red alga Cyanidioschyzon merolae form seven-bladed beta-propellers with the 19-aa insertion characteristic of eukaryotic Ycf48 located at the junction of blades 3 and 4. Knowledge of these structures has allowed us to identify a conserved "Arg patch" on the surface of Ycf48 that is important for binding of Ycf48 to PSII RCs but also to larger complexes, including trimeric photosystem I (PSI). Reduced accumulation of chlorophyll in the absence of Ycf48 and the association of Ycf48 with PSI provide evidence of a more wide-ranging role for Ycf48 in the biogenesis of the photosynthetic apparatus than previously thought. Copurification of Ycf48 with the cyanobacterial YidC protein insertase supports the involvement of Ycf48 during the cotranslational insertion of chlorophyll-binding apopolypeptides into the membrane.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Complejo de Proteína del Fotosistema II/biosíntesis , Proteínas Bacterianas/genética , Cianobacterias/genética , Complejo de Proteína del Fotosistema I/biosíntesis , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema II/genética
2.
J Proteome Res ; 15(2): 510-24, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26815358

RESUMEN

Francisella tularensis, an intracellular pathogen causing the disease tularemia, utilizes surface glycoconjugates such as lipopolysaccharide, capsule, and capsule-like complex for its protection against inhospitable conditions of the environment. Francisella species also possess a functional glycosylation apparatus by which specific proteins are O-glycosidically modified. We here created a mutant with a nonfunctional FTS_1402 gene encoding for a putative glycan flippase and studied the consequences of its disruption. The mutant strain expressed diminished glycosylation similarly to, but to a lesser extent than, that of the oligosaccharyltransferase-deficient ΔpglA mutant. In contrast to ΔpglA, inactivation of FTS_1402 had a pleiotropic effect, leading to alteration in glycosylation and, importantly, to decrease in lipopolysaccharide, capsule, and/or capsule-like complex production, which were reflected by distinct phenotypes in host-pathogen associated properties and virulence potential of the two mutant strains. Disruption of FTS_1402 resulted in enhanced sensitivity to complement-mediated lysis and reduced virulence in mice that was independent of diminished glycosylation. Importantly, the mutant strain induced a protective immune response against systemic challenge with homologous wild-type FSC200 strain. Targeted disruption of genes shared by multiple metabolic pathways may be considered a novel strategy for constructing effective live, attenuated vaccines.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Francisella tularensis/metabolismo , Glicoconjugados/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Animales , Proteínas Bacterianas/genética , Cromatografía Liquida , Femenino , Francisella tularensis/genética , Francisella tularensis/patogenicidad , Regulación Bacteriana de la Expresión Génica , Silenciador del Gen , Pleiotropía Genética , Glicosilación , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Interacciones Huésped-Patógeno , Lipopolisacáridos/biosíntesis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos BALB C , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem , Tularemia/microbiología , Virulencia/genética
3.
J Proteome Res ; 13(2): 796-804, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24364512

RESUMEN

Francisella tularensis is a highly infectious intracellular pathogen that has evolved an efficient strategy to subvert host defense response to survive inside the host. The molecular mechanisms regulating these host-pathogen interactions and especially those that are initiated at the time of the bacterial entry via its attachment to the host plasma membrane likely predetermine the intracellular fate of pathogen. Here, we provide the evidence that infection of macrophages with F. tularensis leads to changes in protein composition of macrophage-derived lipid rafts, isolated as detergent-resistant membranes (DRMs). Using SILAC-based quantitative proteomic approach, we observed the accumulation of autophagic adaptor protein p62 at the early stages of microbe-host cell interaction. We confirmed the colocalization of the p62 with ubiquitinated and LC3-decorated intracellular F. tularensis microbes with its maximum at 1 h postinfection. Furthermore, the infection of p62-knockdown host cells led to the transient increase in the intracellular number of microbes up to 4 h after in vitro infection. Together, these data suggest that the activation of the autophagy pathway in F. tularensis infected macrophages, which impacts the early phase of microbial proliferation, is subsequently circumvented by ongoing infection.


Asunto(s)
Autofagia , Microdominios de Membrana/metabolismo , Proteómica , Tularemia/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Línea Celular , Microdominios de Membrana/química , Ratones , Datos de Secuencia Molecular
4.
Infect Immun ; 82(12): 5035-48, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25245806

RESUMEN

Francisella tularensis is a highly infectious bacterium that causes the potentially lethal disease tularemia. This extremely virulent bacterium is able to replicate in the cytosolic compartments of infected macrophages. To invade macrophages and to cope with their intracellular environment, Francisella requires multiple virulence factors, which are still being identified. Proteins containing tetratricopeptide repeat (TPR)-like domains seem to be promising targets to investigate, since these proteins have been reported to be directly involved in virulence-associated functions of bacterial pathogens. Here, we studied the role of the FTS_0201, FTS_0778, and FTS_1680 genes, which encode putative TPR-like proteins in Francisella tularensis subsp. holarctica FSC200. Mutants defective in protein expression were prepared by TargeTron insertion mutagenesis. We found that the locus FTS_1680 and its ortholog FTT_0166c in the highly virulent Francisella tularensis type A strain SchuS4 are required for proper intracellular replication, full virulence in mice, and heat stress tolerance. Additionally, the FTS_1680-encoded protein was identified as a membrane-associated protein required for full cytopathogenicity in macrophages. Our study thus identifies FTS_1680/FTT_0166c as a new virulence factor in Francisella tularensis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Francisella tularensis/fisiología , Sitios Genéticos , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Citosol/microbiología , Modelos Animales de Enfermedad , Femenino , Francisella tularensis/genética , Francisella tularensis/crecimiento & desarrollo , Técnicas de Inactivación de Genes , Macrófagos/microbiología , Ratones Endogámicos BALB C , Mutagénesis Insercional , Tularemia/microbiología , Tularemia/patología , Virulencia , Factores de Virulencia/genética
5.
Infect Immun ; 81(3): 629-35, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23264049

RESUMEN

The tetratricopeptide repeat (TPR) structural motif is known to occur in a wide variety of proteins present in prokaryotic and eukaryotic organisms. The TPR motif represents an elegant module for the assembly of various multiprotein complexes, and thus, TPR-containing proteins often play roles in vital cell processes. As the TPR profile is well defined, the complete TPR protein repertoire of a bacterium with a known genomic sequence can be predicted. This provides a tremendous opportunity for investigators to identify new TPR-containing proteins and study them in detail. In the past decade, TPR-containing proteins of bacterial pathogens have been reported to be directly related to virulence-associated functions. In this minireview, we summarize the current knowledge of the TPR-containing proteins involved in virulence mechanisms of bacterial pathogens while highlighting the importance of TPR motifs for the proper functioning of class II chaperones of a type III secretion system in the pathogenesis of Yersinia, Pseudomonas, and Shigella.


Asunto(s)
Secuencias de Aminoácidos/genética , Bacterias/patogenicidad , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Virulencia
6.
Microbiology (Reading) ; 159(Pt 11): 2364-2374, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24014665

RESUMEN

Francisella tularensis is a highly infectious facultative intracellular bacterium and aetiological agent of tularaemia. The conserved hypothetical lipoprotein with homology to thiol/disulphide oxidoreductase proteins (FtDsbA) is an essential virulence factor in F. tularensis. Its protein sequence has two different domains: the DsbA_Com1_like domain (DSBA), with the highly conserved catalytically active site CXXC and cis-proline residue; and the domain amino-terminal to FKBP-type peptidyl-prolyl isomerases (FKBP_N). To establish the role of both domains in tularaemia infection models, site-directed and deletion mutagenesis affecting the active site (AXXA), the cis-proline (P286T) and the FKBP_N domain (ΔFKBP_N) were performed. The generated mutations led to high attenuation with the ability to induce full or partial host protective immunity. Recombinant protein analysis revealed that the active site CXXC as well as the cis-proline residue and the FKBP_N domain are necessary for correct thiol/disulphide oxidoreductase activity. By contrast, only the DSBA domain (and not the FKBP_N domain) seems to be responsible for the in vitro chaperone activity of the FtDsbA protein.


Asunto(s)
Francisella tularensis/enzimología , Francisella tularensis/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Análisis Mutacional de ADN , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Eliminación de Secuencia , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
7.
Appl Microbiol Biotechnol ; 97(23): 10103-15, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24162084

RESUMEN

The intracellular pathogens have the unique capacity to sense the host cell environment and to respond to it by alteration in gene expression and protein synthesis. Proteomic analysis of bacteria exposed directly to the host cell milieu might thus greatly contribute to the elucidation of processes leading to bacterial adaptation and proliferation inside the host cell. Here we have performed a global proteome analysis of a virulent Francisella tularensis subsp. holarctica strain during its intracellular cycle within the macrophage-like murine cell line J774.2 using the metabolic pulse-labeling of bacterial proteins with (35)S-methionine and (35)S-cysteine in various periods of infection. The two-dimensional gel analysis revealed macrophage-induced bacterial proteome changes in which 64 identified proteins were differentially expressed in comparison to controls grown in tissue culture medium. Nevertheless, activation of macrophages with interferon gamma before in vitro infection decreased the number of detected alterations in protein levels. Thus, these proteomic data indicate the F. tularensis ability to adapt to the intracellular hostile environment that is, however, diminished by prior interferon gamma treatment of host cells.


Asunto(s)
Proteínas Bacterianas/química , Francisella tularensis/fisiología , Interacciones Huésped-Patógeno , Tularemia/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Electroforesis en Gel Bidimensional , Francisella tularensis/química , Francisella tularensis/genética , Humanos , Macrófagos/microbiología , Ratones , Datos de Secuencia Molecular , Proteómica
8.
J Proteome Res ; 8(11): 5336-46, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19799467

RESUMEN

Francisella tularensis (F. tularensis) is highly infectious for humans via aerosol route and untreated infections with the highly virulent subsp. tularensis can be fatal. Our knowledge regarding key virulence determinants has increased recently but is still somewhat limited. Surface proteins are potential virulence factors and therapeutic targets, and in this study, we decided to target three genes encoding putative membrane lipoproteins in F. tularensis LVS. One of the genes encoded a protein with high homology to the protein family of disulfide oxidoreductases DsbA. The two other genes encoded proteins with homology to the VacJ, a virulence determinant of Shigella flexneri. The gene encoding the DsbA homologue was verified to be required for survival and replication in macrophages and importantly also for in vivo virulence in the mouse infection model for tularemia. Using a combination of classical and shotgun proteome analyses, we were able to identify several proteins that accumulated in fractions enriched for membrane-associated proteins in the dsbA mutant. These proteins are substrate candidates for the DsbA disulfide oxidoreductase as well as being responsible for the virulence attenuation of the dsbA mutant.


Asunto(s)
Proteínas Bacterianas , Francisella tularensis , Proteínas de la Membrana , Proteína Disulfuro Isomerasas , Proteoma/análisis , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Cromatografía Liquida/métodos , Francisella tularensis/genética , Francisella tularensis/metabolismo , Francisella tularensis/patogenicidad , Humanos , Focalización Isoeléctrica , Macrófagos/citología , Macrófagos/metabolismo , Espectrometría de Masas/métodos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Mutación , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Proteómica/métodos , Tasa de Supervivencia , Tularemia/metabolismo , Tularemia/mortalidad , Factores de Virulencia/química , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
9.
Pathog Dis ; 73(8): ftv058, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26253078

RESUMEN

Francisella tularensis subspecies tularensis is a highly virulent intracellular bacterial pathogen, causing the disease tularemia. However, a safe and effective vaccine for routine application against F. tularensis has not yet been developed. We have recently constructed the deletion mutants for the DsbA homolog protein (ΔdsbA/FSC200) and a hypothetical protein IglH (ΔiglH/FSC200) in the type B F. tularensis subsp. holarctica FSC200 strain, which exerted different protection capacity against parental virulent strain. In this study, we further investigated the immunological correlates for these different levels of protection provided by ΔdsbA/FSC200 and ΔiglH/FSC200 mutants. Our results show that ΔdsbA/FSC200 mutant, but not ΔiglH/FSC200 mutant, induces an early innate inflammatory response leading to strong Th1-like antibody response. Furthermore, vaccination with ΔdsbA/FSC200 mutant, but not with ΔiglH/FSC200, elicited protection against the subsequent challenge with type A SCHU S4 strain in mice. An immunoproteomic approach was used to map a spectrum of antigens targeted by Th1-like specific antibodies, and more than 80 bacterial antigens, including novel ones, were identified. Comparison of tularemic antigens recognized by the ΔdsbA/FSC200 post-vaccination and the SCHU S4 post-challenge sera then revealed the existence of 22 novel SCHU S4 specific antibody clones.


Asunto(s)
Formación de Anticuerpos , Vacunas Bacterianas/inmunología , Protección Cruzada , Citocinas/metabolismo , Francisella tularensis/inmunología , Proteína Disulfuro Isomerasas/deficiencia , Células TH1/inmunología , Animales , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/genética , Modelos Animales de Enfermedad , Femenino , Francisella tularensis/clasificación , Francisella tularensis/enzimología , Ratones Endogámicos BALB C , Tularemia/inmunología , Tularemia/prevención & control , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Factores de Virulencia/deficiencia
10.
Microbes Infect ; 14(2): 177-87, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21930232

RESUMEN

Francisella tularensis, the causative agent of tularemia, is a highly infectious intracellular pathogen with no licensed vaccine available today. The recent search for genome sequences involved in F. tularensis virulence mechanisms led to the identification of the 30-kb region defined as a Francisella pathogenicity island (FPI). In our previous iTRAQ study we described the concerted upregulation of some FPI proteins in different F. tularensis strains cultivated under stress conditions. Among them we identified the IglH protein whose role in Francisella virulence has not been characterized yet. In this work we deleted the iglH gene in a European clinical isolate of F. tularensis subsp. holarctica FSC200. We showed that the iglH gene is necessary for intracellular growth and escape of F. tularensis from phagosomes. We also showed that the iglH mutant is avirulent in a mouse model of infection and persists in the organs for about three weeks after infection. Importantly, mice vaccinated by infection with the iglH mutant were protected against subcutaneous challenge with the fully virulent parental FSC200 strain. This is the first report of a defined subsp. holarctica FPI deletion strain that provides protective immunity against subsequent subcutaneous challenge with a virulent isolate of F. tularensis subsp. holarctica.


Asunto(s)
Proteínas Bacterianas/genética , Vacunas Bacterianas/inmunología , Francisella tularensis/genética , Tularemia/inmunología , Animales , Proteínas Bacterianas/inmunología , Vacunas Bacterianas/genética , Relación Dosis-Respuesta a Droga , Femenino , Francisella tularensis/inmunología , Francisella tularensis/patogenicidad , Prueba de Complementación Genética , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Fagosomas/microbiología , Eliminación de Secuencia , Tularemia/microbiología , Tularemia/prevención & control , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA