Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Physiol ; 85: 165-189, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36763969

RESUMEN

Resistance arteries and arterioles evolved as specialized blood vessels serving two important functions: (a) regulating peripheral vascular resistance and blood pressure and (b) matching oxygen and nutrient delivery to metabolic demands of organs. These functions require control of vessel lumen cross-sectional area (vascular tone) via coordinated vascular cell responses governed by precise spatial-temporal communication between intracellular signaling pathways. Herein, we provide a contemporary overview of the significant roles that redox switches play in calcium signaling for orchestrated endothelial, smooth muscle, and red blood cell control of arterial vascular tone. Three interrelated themes are the focus: (a) smooth muscle to endothelial communication for vasoconstriction, (b) endothelial to smooth muscle cell cross talk for vasodilation, and (c) oxygen and red blood cell interregulation of vascular tone and blood flow. We intend for this thematic framework to highlight gaps in our current knowledge and potentially spark interest for cross-disciplinary studies moving forward.


Asunto(s)
Vasoconstricción , Vasodilatación , Humanos , Microcirculación , Vasodilatación/fisiología , Vasoconstricción/fisiología , Oxidación-Reducción , Oxígeno
2.
Am J Respir Cell Mol Biol ; 70(5): 379-391, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38301257

RESUMEN

GDF15 (growth differentiation factor 15) is a stress cytokine with several proposed roles, including support of stress erythropoiesis. Higher circulating GDF15 levels are prognostic of mortality during acute respiratory distress syndrome, but the cellular sources and downstream effects of GDF15 during pathogen-mediated lung injury are unclear. We quantified GDF15 in lower respiratory tract biospecimens and plasma from patients with acute respiratory failure. Publicly available data from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were reanalyzed. We used mouse models of hemorrhagic acute lung injury mediated by Pseudomonas aeruginosa exoproducts in wild-type mice and mice genetically deficient for Gdf15 or its putative receptor, Gfral. In critically ill humans, plasma levels of GDF15 correlated with lower respiratory tract levels and were higher in nonsurvivors. SARS-CoV-2 infection induced GDF15 expression in human lung epithelium, and lower respiratory tract GDF15 levels were higher in coronavirus disease (COVID-19) nonsurvivors. In mice, intratracheal P. aeruginosa type II secretion system exoproducts were sufficient to induce airspace and plasma release of GDF15, which was attenuated with epithelial-specific deletion of Gdf15. Mice with global Gdf15 deficiency had decreased airspace hemorrhage, an attenuated cytokine profile, and an altered lung transcriptional profile during injury induced by P. aeruginosa type II secretion system exoproducts, which was not recapitulated in mice deficient for Gfral. Airspace GDF15 reconstitution did not significantly modulate key lung cytokine levels but increased circulating erythrocyte counts. Lung epithelium releases GDF15 during pathogen injury, which is associated with plasma levels in humans and mice and can increase erythrocyte counts in mice, suggesting a novel lung-blood communication pathway.


Asunto(s)
COVID-19 , Factor 15 de Diferenciación de Crecimiento , Pulmón , Pseudomonas aeruginosa , SARS-CoV-2 , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Animales , COVID-19/metabolismo , COVID-19/virología , Humanos , Ratones , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Infecciones por Pseudomonas/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/metabolismo , Femenino , Ratones Endogámicos C57BL , Ratones Noqueados , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Modelos Animales de Enfermedad
3.
Blood ; 139(11): 1760-1765, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-34958669

RESUMEN

Superoxide dismutase 2 (SOD2) catalyzes the dismutation of superoxide to hydrogen peroxide in mitochondria, limiting mitochondrial damage. The SOD2 amino acid valine-to-alanine substitution at position 16 (V16A) in the mitochondrial leader sequence is a common genetic variant among patients with sickle cell disease (SCD). However, little is known about the cardiovascular consequences of SOD2V16A in SCD patients or its impact on endothelial cell function. Here, we show SOD2V16A associates with increased tricuspid regurgitant velocity (TRV), systolic blood pressure, right ventricle area at systole, and declined 6-minute walk distance in 410 SCD patients. Plasma lactate dehydrogenase, a marker of oxidative stress and hemolysis, significantly associated with higher TRV. To define the impact of SOD2V16A in the endothelium, we introduced the SOD2V16A variant into endothelial cells. SOD2V16A increases hydrogen peroxide and mitochondrial reactive oxygen species (ROS) production compared with controls. Unexpectedly, the increased ROS was not due to SOD2V16A mislocalization but was associated with mitochondrial complex IV and a concomitant decrease in basal respiration and complex IV activity. In sum, SOD2V16A is a novel clinical biomarker of cardiovascular dysfunction in SCD patients through its ability to decrease mitochondrial complex IV activity and amplify ROS production in the endothelium.


Asunto(s)
Anemia de Células Falciformes , Células Endoteliales , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Células Endoteliales/metabolismo , Humanos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34654740

RESUMEN

In an aging population, intense interest has shifted toward prolonging health span. Mounting evidence suggests that cellular reactive species are propagators of cell damage, inflammation, and cellular senescence. Thus, such species have emerged as putative provocateurs and targets for senolysis, and a clearer understanding of their molecular origin and regulation is of paramount importance. In an inquiry into signaling triggered by aging and proxy instigator, hyperglycemia, we show that NADPH Oxidase (NOX) drives cell DNA damage and alters nuclear envelope integrity, inflammation, tissue dysfunction, and cellular senescence in mice and humans with similar causality. Most notably, selective NOX1 inhibition rescues age-impaired blood flow and angiogenesis, vasodilation, and the endothelial cell wound response. Indeed, NOX1i delivery in vivo completely reversed age-impaired hind-limb blood flow and angiogenesis while disrupting a NOX1-IL-6 senescence-associated secretory phenotype (SASP) proinflammatory signaling loop. Relevant to its comorbidity with age, clinical samples from diabetic versus nondiabetic subjects reveal as operant this NOX1-mediated vascular senescence and inflammation in humans. On a mechanistic level, our findings support a previously unidentified role for IL-6 in this feedforward inflammatory loop and peroxisome proliferator-activated receptor gamma (PPARγ) down-regulation as inversely modulating p65-mediated NOX1 transcription. Targeting this previously unidentified NOX1-SASP signaling axis in aging is predicted to be an effective strategy for mitigating senescence in the vasculature and other organ systems.


Asunto(s)
Envejecimiento/fisiología , Interleucina-6/metabolismo , NADPH Oxidasas/metabolismo , Neovascularización Fisiológica/fisiología , Fenotipo Secretor Asociado a la Senescencia , Animales , Daño del ADN , Técnicas de Silenciamiento del Gen , Humanos , Hiperglucemia/metabolismo , Ratones , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/genética
5.
J Biol Chem ; 298(12): 102654, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36441026

RESUMEN

The cytochrome-b5 reductase (CYB5R) family of flavoproteins is known to regulate reduction-oxidation (redox) balance in cells. The five enzyme members are highly compartmentalized at the subcellular level and function as "redox switches" enabling the reduction of several substrates, such as heme and coenzyme Q. Critical insight into the physiological and pathophysiological significance of CYB5R enzymes has been gleaned from several human genetic variants that cause congenital disease and a broad spectrum of chronic human diseases. Among the CYB5R genetic variants, CYB5R3 is well-characterized and deficiency in expression and activity is associated with type II methemoglobinemia, cancer, neurodegenerative disorders, diabetes, and cardiovascular disease. Importantly, pharmacological and genetic-based strategies are underway to target CYB5R3 to circumvent disease onset and mitigate severity. Despite our knowledge of CYB5R3 in human health and disease, the other reductases in the CYB5R family have been understudied, providing an opportunity to unravel critical function(s) for these enzymes in physiology and disease. In this review, we aim to provide the broad scientific community an up-to-date overview of the molecular, cellular, physiological, and pathophysiological roles of CYB5R proteins.


Asunto(s)
Citocromo-B(5) Reductasa , Metahemoglobinemia , Humanos , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo , Citocromos b5/metabolismo , Metahemoglobinemia/congénito , Metahemoglobinemia/genética , Oxidación-Reducción , Homeostasis , Reductasas del Citocromo/metabolismo
6.
J Biol Chem ; 298(8): 102259, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35841929

RESUMEN

The structural changes of airway smooth muscle (ASM) that characterize airway remodeling (AR) are crucial to the pathogenesis of asthma. During AR, ASM cells dedifferentiate from a quiescent to a proliferative, migratory, and secretory phenotype. Calcium (Ca2+) is a ubiquitous second messenger that regulates many cellular processes, including proliferation, migration, contraction, and metabolism. Furthermore, mitochondria have emerged as major Ca2+ signaling organelles that buffer Ca2+ through uptake by the mitochondrial Ca2+ uniporter and extrude it through the Na+/Ca2+ exchanger (NCLX/Slc8b1). Here, we show using mitochondrial Ca2+-sensitive dyes that NCLX only partially contributes to mitochondrial Ca2+ extrusion in ASM cells. Yet, NCLX is necessary for ASM cell proliferation and migration. Through cellular imaging, RNA-Seq, and biochemical assays, we demonstrate that NCLX regulates these processes by preventing mitochondrial Ca2+ overload and supporting store-operated Ca2+ entry, activation of Ca2+/calmodulin-dependent kinase II, and transcriptional and metabolic reprogramming. Using small animal respiratory mechanic measurements and immunohistochemistry, we show that smooth muscle-specific NCLX KO mice are protected against AR, fibrosis, and hyperresponsiveness in an experimental model of asthma. Our findings support NCLX as a potential therapeutic target in the treatment of asthma.


Asunto(s)
Asma , Intercambiador de Sodio-Calcio , Remodelación de las Vías Aéreas (Respiratorias) , Animales , Asma/genética , Calcio/metabolismo , Ratones , Músculo Liso/metabolismo , Sodio/metabolismo , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 325(2): H338-H345, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37389954

RESUMEN

Rodent husbandry requires careful consideration of environmental factors that may impact colony performance and subsequent physiological studies. Of note, recent reports have suggested corncob bedding may affect a broad range of organ systems. As corncob bedding may contain digestible hemicelluloses, trace sugars, and fiber, we hypothesized that corncob bedding impacts overnight fasting blood glucose and murine vascular function. Here, we compared mice housed on corncob bedding, which were then fasted overnight on either corncob or ALPHA-dri bedding, a virgin paper pulp cellulose alternative. Male and female mice were used from two noninduced, endothelial-specific conditional knockout strains [Cadherin 5-cre/ERT2, floxed hemoglobin-α1 (Hba1fl/fl) or Cadherin 5-cre/ERT2, floxed cytochrome-B5 reductase 3 (CyB5R3fl/fl)] on a C57BL/6J genetic background. After fasting overnight, initial fasting blood glucose was measured, and mice were anesthetized with isoflurane for measurement of blood perfusion via laser speckle contrast analysis using a PeriMed PeriCam PSI NR system. After a 15-min equilibration, the mice were injected intraperitoneally with the α1-adrenergic receptor agonist, phenylephrine (5 mg/kg), or saline, and monitored for changes in blood perfusion. After a 15-min response period, blood glucose was remeasured postprocedure. In both strains, mice fasted on corncob bedding had higher blood glucose than the pulp cellulose group. In the CyB5R3fl/fl strain, mice housed on corncob bedding displayed a significant reduction in phenylephrine-mediated change in perfusion. In the Hba1fl/fl strain, phenylephrine-induced change in perfusion was not different in the corncob group. This work suggests that corncob bedding, in part due to its ingestion by mice, could impact vascular measurements and fasting blood glucose. To promote scientific rigor and improve reproducibility, bedding type should be routinely included in published methods.NEW & NOTEWORTHY This study demonstrates real-time measurement of changes in perfusion to pharmacological treatment using laser speckle contrast analysis. Furthermore, this investigation revealed that fasting mice overnight on corncob bedding has differential effects on vascular function and that there was increased fasting blood glucose in mice fasted on corncob bedding compared with paper pulp cellulose bedding. This highlights the impact that bedding type can have on outcomes in vascular and metabolic research and reinforces the need for thorough and robust reporting of animal husbandry practices.


Asunto(s)
Glucemia , Vivienda para Animales , Animales , Ratones , Masculino , Femenino , Hemoglobina Glucada , Reproducibilidad de los Resultados , Ratones Endogámicos C57BL , Celulosa , Ropa de Cama y Ropa Blanca , Ayuno
8.
J Pathol ; 256(4): 442-454, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34936088

RESUMEN

Benign prostatic hyperplasia (BPH) is a feature of ageing males. Up to half demonstrate bladder outlet obstruction (BOO) with associated lower urinary tract symptoms (LUTS) including bladder overactivity. Current therapies to reduce obstruction, such as α1-adrenoceptor antagonists and 5α-reductase inhibitors, are not effective in all patients. The phosphodiesterase-5 inhibitor (PDE5I) tadalafil is also approved to treat BPH and LUTS, suggesting a role for nitric oxide (NO• ), soluble guanylate cyclase (sGC), and cGMP signalling pathways. However, PDE5I refractoriness can develop for reasons including nitrergic nerve damage and decreased NO• production, or inflammation-related oxidation of the sGC haem group, normally maintained in a reduced state by the cofactor cytochrome-b5-reductase 3 (CYB5R3). sGC activators, such as cinaciguat (BAY 58-2667), have been developed to enhance sGC activity in the absence of NO• or when sGC is oxidised. Accordingly, their effects on the prostate and LUT function of aged mice were evaluated. Aged mice (≥24 months) demonstrated a functional BPH/BOO phenotype, compared with adult animals (2-12 months), with low, delayed voiding responses and elevated intravesical pressures as measured by telemetric cystometry. This was consistent with outflow tract histological and molecular data that showed urethral constriction, increased prostate weight, greater collagen deposition, and cellular hyperplasia. All changes in aged animals were attenuated by daily oral treatment with cinaciguat for 2 weeks, without effect on serum testosterone levels. Cinaciguat had only transient (1 h) cardiovascular effects with oral gavage, suggesting a positive safety profile. The benefit of cinaciguat was suggested by its reversal of an overactive cystometric profile in CYB5R3 smooth muscle knockout mice that mirrors a profile of oxidative dysfunction where PDE5I may not be effective. Thus, the aged male mouse is a suitable model for BPH-induced BOO and cinaciguat has a demonstrated ability to reduce prostate-induced obstruction and consequent effects on bladder function. © 2021 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Hiperplasia Prostática , Animales , Humanos , Masculino , Ratones , Óxido Nítrico/metabolismo , Oxidorreductasas , Próstata/metabolismo , Hiperplasia Prostática/tratamiento farmacológico , Guanilil Ciclasa Soluble
9.
J Mol Cell Cardiol ; 162: 72-80, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34536439

RESUMEN

Chronic hypoxia is a major driver of cardiovascular complications, including heart failure. The nitric oxide (NO) - soluble guanylyl cyclase (sGC) - cyclic guanosine monophosphate (cGMP) pathway is integral to vascular tone maintenance. Specifically, NO binds its receptor sGC within vascular smooth muscle cells (SMC) in its reduced heme (Fe2+) form to increase intracellular cGMP production, activate protein kinase G (PKG) signaling, and induce vessel relaxation. Under chronic hypoxia, oxidative stress drives oxidation of sGC heme (Fe2+→Fe3+), rendering it NO-insensitive. We previously showed that cytochrome b5 reductase 3 (CYB5R3) in SMC is a sGC reductase important for maintaining NO-dependent vasodilation and conferring resilience to systemic hypertension and sickle cell disease-associated pulmonary hypertension. To test whether CYB5R3 may be protective in the context of chronic hypoxia, we subjected SMC-specific CYB5R3 knockout mice (SMC CYB5R3 KO) to 3 weeks hypoxia and assessed vascular and cardiac function using echocardiography, pressure volume loops and wire myography. Hypoxic stress caused 1) biventricular hypertrophy in both WT and SMC CYB5R3 KO, but to a larger degree in KO mice, 2) blunted vasodilation to NO-dependent activation of sGC in coronary and pulmonary arteries of KO mice, and 3) decreased, albeit still normal, cardiac function in KO mice. Overall, these data indicate that SMC CYB5R3 deficiency potentiates bilateral ventricular hypertrophy and blunts NO-dependent vasodilation under chronic hypoxia conditions. This implicates that SMC CYB5R3 KO mice post 3-week hypoxia have early stages of cardiac remodeling and functional changes that could foretell significantly impaired cardiac function with longer exposure to hypoxia.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico , GMP Cíclico , Animales , GMP Cíclico/metabolismo , Guanilato Ciclasa/metabolismo , Hipoxia , Ratones , Miocitos del Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Guanilil Ciclasa Soluble/genética , Guanilil Ciclasa Soluble/metabolismo
10.
Am J Physiol Cell Physiol ; 322(3): C338-C353, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35044858

RESUMEN

The small conductance calcium-activated potassium channel (KCa2.3) has long been recognized for its role in mediating vasorelaxation through the endothelium-derived hyperpolarization (EDH) response. Histone deacetylases (HDACs) have been implicated as potential modulators of blood pressure and histone deacetylase inhibitors (HDACi) are being explored as therapeutics for hypertension. Herein, we show that HDACi increase KCa2.3 expression when heterologously expressed in HEK cells and endogenously expressed in primary cultures of human umbilical vein endothelial cells (HUVECs) and human intestinal microvascular endothelial cells (HIMECs). When primary endothelial cells were exposed to HDACi, KCa2.3 transcripts, subunits, and functional current are increased. Quantitative RT-PCR (qPCR) demonstrated increased KCa2.3 mRNA following HDACi, confirming transcriptional regulation of KCa2.3 by HDACs. By using pharmacological agents selective for different classes of HDACs, we discriminated between cytoplasmic and epigenetic modulation of KCa2.3. Biochemical analysis revealed an association between the cytoplasmic HDAC6 and KCa2.3 in immunoprecipitation studies. Specifically inhibiting HDAC6 increases expression of KCa2.3. In addition to increasing the expression of KCa2.3, we show that nonspecific inhibition of HDACs causes an increase in the expression of the molecular chaperone Hsp70 in endothelial cells. When Hsp70 is inhibited in the presence of HDACi, the magnitude of the increase in KCa2.3 expression is diminished. Finally, we show a slower rate of endocytosis of KCa2.3 as a result of exposure of primary endothelial cells to HDACi. These data provide the first demonstrated approach to increase KCa2.3 channel number in endothelial cells and may partially account for the mechanism by which HDACi induce vasorelaxation.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Intestinos/irrigación sanguínea , Microvasos/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Endocitosis , Células Endoteliales/enzimología , Células HEK293 , Proteínas HSP70 de Choque Térmico/metabolismo , Histona Desacetilasa 6/metabolismo , Humanos , Potenciales de la Membrana , Microvasos/enzimología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Regulación hacia Arriba , Vasodilatación
11.
Circulation ; 144(8): 615-637, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34157861

RESUMEN

BACKGROUND: Many patients with heart failure with preserved ejection fraction have metabolic syndrome and develop exercise-induced pulmonary hypertension (EIPH). Increases in pulmonary vascular resistance in patients with heart failure with preserved ejection fraction portend a poor prognosis; this phenotype is referred to as combined precapillary and postcapillary pulmonary hypertension (CpcPH). Therapeutic trials for EIPH and CpcPH have been disappointing, suggesting the need for strategies that target upstream mechanisms of disease. This work reports novel rat EIPH models and mechanisms of pulmonary vascular dysfunction centered around the transcriptional repression of the soluble guanylate cyclase (sGC) enzyme in pulmonary artery (PA) smooth muscle cells. METHODS: We used obese ZSF-1 leptin-receptor knockout rats (heart failure with preserved ejection fraction model), obese ZSF-1 rats treated with SU5416 to stimulate resting pulmonary hypertension (obese+sugen, CpcPH model), and lean ZSF-1 rats (controls). Right and left ventricular hemodynamics were evaluated using implanted catheters during treadmill exercise. PA function was evaluated with magnetic resonance imaging and myography. Overexpression of nuclear factor Y α subunit (NFYA), a transcriptional enhancer of sGC ß1 subunit (sGCß1), was performed by PA delivery of adeno-associated virus 6. Treatment groups received the SGLT2 inhibitor empagliflozin in drinking water. PA smooth muscle cells from rats and humans were cultured with palmitic acid, glucose, and insulin to induce metabolic stress. RESULTS: Obese rats showed normal resting right ventricular systolic pressures, which significantly increased during exercise, modeling EIPH. Obese+sugen rats showed anatomic PA remodeling and developed elevated right ventricular systolic pressure at rest, which was exacerbated with exercise, modeling CpcPH. Myography and magnetic resonance imaging during dobutamine challenge revealed PA functional impairment of both obese groups. PAs of obese rats produced reactive oxygen species and decreased sGCß1 expression. Mechanistically, cultured PA smooth muscle cells from obese rats and humans with diabetes or treated with palmitic acid, glucose, and insulin showed increased mitochondrial reactive oxygen species, which enhanced miR-193b-dependent RNA degradation of nuclear factor Y α subunit (NFYA), resulting in decreased sGCß1-cGMP signaling. Forced NYFA expression by adeno-associated virus 6 delivery increased sGCß1 levels and improved exercise pulmonary hypertension in obese+sugen rats. Treatment of obese+sugen rats with empagliflozin improved metabolic syndrome, reduced mitochondrial reactive oxygen species and miR-193b levels, restored NFYA/sGC activity, and prevented EIPH. CONCLUSIONS: In heart failure with preserved ejection fraction and CpcPH models, metabolic syndrome contributes to pulmonary vascular dysfunction and EIPH through enhanced reactive oxygen species and miR-193b expression, which downregulates NFYA-dependent sGCß1 expression. Adeno-associated virus-mediated NFYA overexpression and SGLT2 inhibition restore NFYA-sGCß1-cGMP signaling and ameliorate EIPH.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Insuficiencia Cardíaca/etiología , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/etiología , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , MicroARNs/genética , Especies Reactivas de Oxígeno/metabolismo , Guanilil Ciclasa Soluble/genética , Animales , Animales Modificados Genéticamente , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Ejercicio Físico , Regulación de la Expresión Génica , Insuficiencia Cardíaca/diagnóstico , Humanos , Síndrome Metabólico/complicaciones , Mitocondrias Cardíacas , Miocitos del Músculo Liso/metabolismo , Fenotipo , Ratas , Transducción de Señal , Estrés Fisiológico , Volumen Sistólico , Disfunción Ventricular Derecha
12.
Stroke ; 53(5): 1720-1734, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35272484

RESUMEN

BACKGROUND: Worsened stroke outcomes with hypertension comorbidity are insensitive to blood pressure-lowering therapies. In an experimental stroke model with comorbid hypertension, we investigated causal roles of ang II (angiotensin II)-mediated stimulation of the brain WNK (with no lysine [K] kinases)-SPAK (STE20/SPS1-related proline/alanine-rich kinase)-NKCC1 (Na-K-Cl cotransporter) complex in worsened outcomes. METHODS: Saline- or ang II-infused C57BL/6J male mice underwent stroke induced by permanent occlusion of the distal branches of the middle cerebral artery. Mice were randomly assigned to receive either vehicle dimethyl sulfoxide/PBS (2 mL/kg body weight/day, IP), a novel SPAK inhibitor, 5-chloro-N-(5-chloro-4-((4-chlorophenyl)(cyano)methyl)-2-methylphenyl)-2-hydroxybenzamide (ZT-1a' 5 mg/kg per day, IP) or a NF-κB (nuclear factor-κB) inhibitor TAT-NBD (transactivator of transcription-NEMO-binding domain' 20 mg/kg per day, IP). Activation of brain NF-κB and WNK-SPAK-NKCC1 cascade as well as ischemic stroke outcomes were examined. RESULTS: Stroke triggered a 2- to 5-fold increase of WNK (isoforms 1, 2, 4), SPAK/OSR1 (oxidative stress-responsive kinase 1), and NKCC1 protein in the ang II-infused hypertensive mouse brains at 24 hours after stroke, which was associated with increased nuclear translocation of phospho-NF-κB protein in the cortical neurons (a Pearson correlation r of 0.77, P<0.005). The upregulation of WNK-SPAK-NKCC1 cascade proteins resulted from increased NF-κB recruitment on Wnk1, Wnk2, Wnk4, Spak, and Nkcc1 gene promoters and was attenuated by NF-κB inhibitor TAT-NBD. Poststroke administration of SPAK inhibitor ZT-1a significantly reduced WNK-SPAK-NKCC1 complex activation, brain lesion size, and neurological function deficits in the ang II-hypertensive mice without affecting blood pressure and cerebral blood flow. CONCLUSIONS: The ang II-induced stimulation of NF-κB transcriptional activity upregulates brain WNK-SPAK-NKCC1 cascade and contributes to worsened ischemic stroke outcomes, illustrating the brain WNK-SPAK-NKCC1 complex as a therapeutic target for stroke with comorbid hypertension.


Asunto(s)
Hipertensión , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B , Proteínas Serina-Treonina Quinasas , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Accidente Cerebrovascular/patología
13.
Am J Physiol Heart Circ Physiol ; 322(3): H417-H426, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35089807

RESUMEN

Nitric oxide (NO) binds soluble guanylyl cyclase ß (sGCß) to produce cGMP and relax vascular smooth muscle cells (SMCs) needed for vasodilation. Although the regulation of NO-stimulated sGC activity has been well characterized at the posttranslational level, the mechanisms that govern sGC transcription remain incompletely understood. Recently, we identified Forkhead box subclass O (FoxO) transcription factors as essential for expression of sGC; however, the specific FoxO family member responsible for the expression of sGCß in SMC remains unknown. Using FoxO shRNA knockdown adenovirus treatment in rat aortic SMCs, we show that FoxO1 or FoxO3 knockdown causes greater than twofold increases in Gucy1a3 and Gucy1b3 mRNA expression, without changes in NO-dependent cGMP production or cGMP-dependent phosphorylation. FoxO4 knockdown produced a 50% decrease in Gucy1a3 and Gucy1b3 mRNA with 70% loss of sGCα and 50% loss of sGCß protein expression. Knockdown of FoxO4 expression decreased cGMP production and downstream protein kinase G-dependent phosphorylation more than 50%. Triple FoxO knockdown exacerbated loss of sGC-dependent function, phenocopying previous FoxO inhibition studies. Using promoter luciferase and chromatin immunoprecipitation assays, we find that FoxO4 acts as a transcriptional activator by directly binding several FoxO DNA motifs in the promoter regions of GUCY1B3 in human aortic SMCs. Collectively, our data show FoxO4 is a critical transcriptional regulator of sGCß expression in SMC.NEW & NOTEWORTHY One of the key mechanisms of vascular smooth muscle cell (SMC) dilation occurs through nitric oxide (NO)-dependent induction of soluble guanylyl cyclase (sGC) by means of its ß-subunit. Herein, we are the first to identify Forkhead box subclass O protein 4 (FoxO4) as a key transcriptional regulator of GUCY1B3 expression, which codes for sGCß protein in human and animal SMCs. This discovery will likely have important implications for the future usage of antihypertensive and vasodilatory therapies which target NO production, sGC, or FoxO transcription factors.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Músculo Liso Vascular/metabolismo , Guanilil Ciclasa Soluble/genética , Animales , Aorta/citología , Células Cultivadas , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Ratas , Guanilil Ciclasa Soluble/metabolismo
14.
Arterioscler Thromb Vasc Biol ; 41(2): 769-782, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33267657

RESUMEN

OBJECTIVE: Chronic hemolysis is a hallmark of sickle cell disease (SCD) and a driver of vasculopathy; however, the mechanisms contributing to hemolysis remain incompletely understood. Although XO (xanthine oxidase) activity has been shown to be elevated in SCD, its role remains unknown. XO binds endothelium and generates oxidants as a byproduct of hypoxanthine and xanthine catabolism. We hypothesized that XO inhibition decreases oxidant production leading to less hemolysis. Approach and Results: Wild-type mice were bone marrow transplanted with control (AA) or sickle (SS) Townes bone marrow. After 12 weeks, mice were treated with 10 mg/kg per day of febuxostat (Uloric), Food and Drug Administration-approved XO inhibitor, for 10 weeks. Hematologic analysis demonstrated increased hematocrit, cellular hemoglobin, and red blood cells, with no change in reticulocyte percentage. Significant decreases in cell-free hemoglobin and increases in haptoglobin suggest XO inhibition decreased hemolysis. Myographic studies demonstrated improved pulmonary vascular dilation and blunted constriction, indicating improved pulmonary vasoreactivity, whereas pulmonary pressure and cardiac function were unaffected. The role of hepatic XO in SCD was evaluated by bone marrow transplanting hepatocyte-specific XO knockout mice with SS Townes bone marrow. However, hepatocyte-specific XO knockout, which results in >50% diminution in circulating XO, did not affect hemolysis levels or vascular function, suggesting hepatocyte-derived elevation of circulating XO is not the driver of hemolysis in SCD. CONCLUSIONS: Ten weeks of febuxostat treatment significantly decreased hemolysis and improved pulmonary vasoreactivity in a mouse model of SCD. Although hepatic XO accounts for >50% of circulating XO, it is not the source of XO driving hemolysis in SCD.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Eritrocitos/efectos de los fármacos , Febuxostat/farmacología , Hemodinámica/efectos de los fármacos , Hemólisis/efectos de los fármacos , Arteria Pulmonar/efectos de los fármacos , Xantina Oxidasa/antagonistas & inhibidores , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/enzimología , Anemia de Células Falciformes/fisiopatología , Animales , Modelos Animales de Enfermedad , Eritrocitos/enzimología , Hígado/enzimología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Arteria Pulmonar/enzimología , Arteria Pulmonar/fisiopatología , Función Ventricular/efectos de los fármacos , Xantina Oxidasa/genética , Xantina Oxidasa/metabolismo
15.
Am J Physiol Heart Circ Physiol ; 321(3): H542-H557, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34296965

RESUMEN

Pulmonary arterial hypertension (PAH) is a fatal cardiopulmonary disease characterized by increased vascular cell proliferation with apoptosis resistance and occlusive remodeling of the small pulmonary arteries. The Notch family of proteins subserves proximal signaling of an evolutionarily conserved pathway that effects cell proliferation, fate determination, and development. In endothelial cells (ECs), Notch receptor 2 (Notch2) was shown to promote endothelial apoptosis. However, a pro- or antiproliferative role for Notch2 in pulmonary endothelial proliferation and ensuing PAH is unknown. We postulated that suppressed Notch2 signaling drives pulmonary endothelial proliferation in the context of PAH. We observed that levels of Notch2 are ablated in lungs from PAH subjects compared with non-PAH controls. Notch2 expression was attenuated in human pulmonary artery endothelial cells (hPAECs) exposed to vasoactive stimuli including hypoxia, TGF-ß, ET-1, and IGF-1. Notch2-deficient hPAECs activated Akt, Erk1/2, and antiapoptotic protein Bcl-2 and reduced levels of p21cip and Bax associated with increased EC proliferation and reduced apoptosis. In addition, Notch2 suppression elicited a paradoxical activation of Notch1 and canonical Notch target gene Hes1, Hey1, and Hey2 transcription. Furthermore, reduction in Rb and increased E2F1 binding to the Notch1 promoter appear to explain the Notch1 upregulation. Yet, when Notch1 was decreased in Notch2-suppressed cells, the wound injury response was augmented. In aggregate, our results demonstrate that loss of Notch2 in hPAECs derepresses Notch1 and elicits EC hallmarks of PAH. Augmented EC proliferation upon Notch1 knockdown points to a context-dependent role for Notch1 and 2 in endothelial cell homeostasis.NEW & NOTEWORTHY This study demonstrates a previously unidentified role for Notch2 in the maintenance of lung vascular endothelial cell quiescence and pulmonary artery hypertension (PAH). A key novel finding is that Notch2 suppression activates Notch1 via Rb-E2F1-mediated signaling and induces proliferation and apoptosis resistance in human pulmonary artery endothelial cells. Notably, PAH patients show reduced levels of endothelial Notch2 in their pulmonary arteries, supporting Notch2 as a fundamental driver of PAH pathogenesis.


Asunto(s)
Proliferación Celular , Células Endoteliales/metabolismo , Hipertensión Pulmonar/metabolismo , Receptor Notch2/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Células Endoteliales/fisiología , Endotelio Vascular/citología , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Arteria Pulmonar/citología , Arteria Pulmonar/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/genética , Proteínas Represoras/metabolismo , Factor de Transcripción HES-1/metabolismo
16.
Nitric Oxide ; 117: 40-45, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34601102

RESUMEN

Soluble guanylyl cyclase (sGC, also called GC1) is the main receptor for nitric oxide (NO) that catalyzes the production of the second messenger molecule, 3'5' cyclic guanosine monophosphate (cGMP) leading to vasorelaxation, and inhibition of leukocyte recruitment and platelet aggregation. Enhancing cGMP levels, through sGC agonism or inhibition of cGMP breakdown via phosphodiesterase inhibition, has yielded FDA approval for several cGMP modifier therapies for treatment of cardiovascular and pulmonary diseases. While basic research continues to improve our understanding of cGMP signaling and as new therapies evolve to elevate cGMP levels, we provide a short methodological primer for measuring cGMP and cGMP-mediated vascular relaxation for investigators.


Asunto(s)
GMP Cíclico/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Vasodilatación/fisiología , Animales , Arterias Mesentéricas/fisiología , Ratones , Miografía , Óxido Nítrico/metabolismo , Transducción de Señal/fisiología
17.
Am J Physiol Heart Circ Physiol ; 318(5): H1346-H1355, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32302491

RESUMEN

Renovascular hypertension is characterized by activation of the renin-angiotensin-aldosterone system, blunted natriuretic responses, and elevated sympathetic nerve activity. Excess dietary salt intake exaggerates arterial blood pressure (ABP) in multiple models of experimental hypertension. The present study tested whether a high-salt diet exaggerated ABP and vascular dysfunction in a 2-kidney, 1-clip (2K1C) murine model. Male C57BL/6J mice (8-12 wk) were randomly assigned, and fed a 0.1% or 4.0% NaCl diet, and instrumented with telemetry units to measure ABP. Then, the 2K1C model was produced by placing a cuff around the right renal artery. Systolic, diastolic, and mean ABP were significantly higher in mice fed 4.0% vs. 0.1% NaCl at 1 wk but not after 3 wk. Interestingly, 2K1C hypertension progressively increased arterial pulse pressure in both groups; however, the magnitude was significantly greater in mice fed 4.0% vs. 0.1% NaCl at 3 wk. Moreover, pulse wave velocity was significantly greater in 2K1C mice fed 4.0% vs. 0.1% NaCl diet or sham-operated mice fed either diet. Histological assessment of aortas indicated no structural differences among groups. Finally, endothelium-dependent vasodilation was significantly and selectively attenuated in the aorta but not mesenteric arteries of 2K1C mice fed 4.0% NaCl vs. 0.1% NaCl or sham-operated control mice. The findings suggest that dietary salt loading transiently exaggerates 2K1C renovascular hypertension but promotes chronic aortic stiffness and selective aortic vascular dysfunction.NEW & NOTEWORTHY High dietary salt exaggerates hypertension in multiple experimental models. Here we demonstrate that a high-salt diet produces a greater increase in arterial blood pressure at 1 wk after induction of 2-kidney, 1-clip (2K1C) hypertension but not at 3 wk. Interestingly, 2K1C mice fed a high-salt diet displayed an exaggerated pulse pressure, elevated pulse wave velocity, and reduced endothelium-dependent vasodilation of the aorta but not mesenteric arteries. These findings suggest that dietary salt may interact with underlying cardiovascular disease to promote selective vascular dysfunction and aortic stiffness.


Asunto(s)
Hipertensión Renovascular/etiología , Cloruro de Sodio Dietético/efectos adversos , Rigidez Vascular , Animales , Aorta/efectos de los fármacos , Aorta/patología , Aorta/fisiopatología , Presión Sanguínea , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Cloruro de Sodio Dietético/toxicidad , Vasoconstricción
18.
Mol Pharmacol ; 95(6): 629-637, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30988014

RESUMEN

Nitric oxide (NO) stimulates soluble guanylyl cyclase (sGC) activity, leading to elevated intracellular cyclic guanosine 3',5'-monophosphate (cGMP) and subsequent vascular smooth muscle relaxation. It is known that downregulation of sGC expression attenuates vascular dilation and contributes to the pathogenesis of cardiovascular disease. However, it is not well understood how sGC transcription is regulated. Here, we demonstrate that pharmacological inhibition of Forkhead box subclass O (FoxO) transcription factors using the small-molecule inhibitor AS1842856 significantly blunts sGC α and ß mRNA expression by more than 90%. These effects are concentration-dependent and concomitant with greater than 90% reduced expression of the known FoxO transcriptional targets, glucose-6-phosphatase and growth arrest and DNA damage protein 45 α (Gadd45α). Similarly, sGC α and sGC ß protein expression showed a concentration-dependent downregulation. Consistent with the loss of sGC α and ß mRNA and protein expression, pretreatment of vascular smooth muscle cells with the FoxO inhibitor decreased sGC activity measured by cGMP production following stimulation with an NO donor. To determine if FoxO inhibition resulted in a functional impairment in vascular relaxation, we cultured mouse thoracic aortas with the FoxO inhibitor and conducted ex vivo two-pin myography studies. Results showed that aortas have significantly blunted sodium nitroprusside-induced (NO-dependent) vasorelaxation and a 42% decrease in sGC expression after 48-hour FoxO inhibitor treatment. Taken together, these data are the first to identify that FoxO transcription factor activity is necessary for sGC expression and NO-dependent relaxation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Músculo Liso Vascular/citología , Quinolonas/farmacología , Guanilil Ciclasa Soluble/genética , Animales , Aorta Torácica/citología , Aorta Torácica/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Factores de Transcripción Forkhead/antagonistas & inhibidores , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Relajación Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Ratas , Guanilil Ciclasa Soluble/deficiencia , Guanilil Ciclasa Soluble/metabolismo
19.
Crit Care Med ; 47(4): e292-e300, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30855329

RESUMEN

OBJECTIVES: Brain mitochondrial dysfunction limits neurologic recovery after cardiac arrest. Brain polyunsaturated cardiolipins, mitochondria-unique and functionally essential phospholipids, have unprecedented diversification. Since brain cardiolipins are not present in plasma normally, we hypothesized their appearance would correlate with brain injury severity early after cardiac arrest and return of spontaneous circulation. DESIGN: Observational case-control study. SETTING: Two medical centers within one city. PARTICIPANTS (SUBJECTS): We enrolled 41 adult cardiac arrest patients in whom blood could be obtained within 6 hours of resuscitation. Two subjects were excluded following outlier analysis. Ten healthy subjects were controls. Sprague-Dawley rats were used in asphyxial cardiac arrest studies. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We developed a high-resolution liquid chromatography/mass spectrometry method and determined cardiolipins speciation in human brain, heart, and plasma within 6 hours of (return of spontaneous circulation) from 39 patients with cardiac arrest, 5 with myocardial infarction, and 10 healthy controls. Cerebral score was derived from brain-specific cardiolipins identified in plasma of patients with varying neurologic injury and outcome. Using a rat model of cardiac arrest, cardiolipins were quantified in plasma, brain, and heart. Human brain exhibited a highly diverse cardiolipinome compared with heart that allowed the identification of brain-specific cardiolipins. Nine of 26 brain-specific cardiolipins were detected in plasma and correlated with brain injury. The cerebral score correlated with early neurologic injury and predicted discharge neurologic/functional outcome. Cardiolipin (70:5) emerged as a potential point-of-care marker predicting injury severity and outcome. In rat cardiac arrest, a significant reduction in hippocampal cardiolipins corresponded to their release from the brain into systemic circulation. Cerebral score was significantly increased in 10 minutes versus 5 minutes no-flow cardiac arrest and naïve controls. CONCLUSIONS: Brain-specific cardiolipins accumulate in plasma early after return of spontaneous circulation and proportional to neurologic injury representing a promising novel biomarker.


Asunto(s)
Lesiones Encefálicas/metabolismo , Cardiolipinas/sangre , Cardiomiopatías/metabolismo , Mitocondrias Cardíacas/metabolismo , Animales , Reanimación Cardiopulmonar/métodos , Estudios de Casos y Controles , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Paro Cardíaco/metabolismo , Humanos , Masculino , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley
20.
Circ Res ; 121(2): 137-148, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28584062

RESUMEN

RATIONALE: Soluble guanylate cyclase (sGC) heme iron, in its oxidized state (Fe3+), is desensitized to NO and limits cGMP production needed for downstream activation of protein kinase G-dependent signaling and blood vessel dilation. OBJECTIVE: Although reactive oxygen species are known to oxidize the sGC heme iron, the basic mechanism(s) governing sGC heme iron recycling to its NO-sensitive, reduced state remain poorly understood. METHODS AND RESULTS: Oxidant challenge studies show that vascular smooth muscle cells have an intrinsic ability to reduce oxidized sGC heme iron and form protein-protein complexes between cytochrome b5 reductase 3, also known as methemoglobin reductase, and oxidized sGC. Genetic knockdown and pharmacological inhibition in vascular smooth muscle cells reveal that cytochrome b5 reductase 3 expression and activity is critical for NO-stimulated cGMP production and vasodilation. Mechanistically, we show that cytochrome b5 reductase 3 directly reduces oxidized sGC required for NO sensitization as assessed by biochemical, cellular, and ex vivo assays. CONCLUSIONS: Together, these findings identify new insights into NO-sGC-cGMP signaling and reveal cytochrome b5 reductase 3 as the first identified physiological sGC heme iron reductase in vascular smooth muscle cells, serving as a critical regulator of cGMP production and protein kinase G-dependent signaling.


Asunto(s)
GMP Cíclico/metabolismo , Citocromo-B(5) Reductasa/fisiología , Transducción de Señal/fisiología , Guanilil Ciclasa Soluble/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Benzoatos/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Oxidación-Reducción/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA