Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Br J Cancer ; 113(6): 979-88, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26305864

RESUMEN

BACKGROUND: APC mutations (APC-mt) occur in ∼70% of colorectal cancers (CRCs), but their relationship to prognosis is unclear. METHODS: APC prognostic value was evaluated in 746 stage I-IV CRC patients, stratifying for tumour location and microsatellite instability (MSI). Microarrays were used to identify a gene signature that could classify APC mutation status, and classifier ability to predict prognosis was examined in an independent cohort. RESULTS: Wild-type APC microsatellite stable (APC-wt/MSS) tumours from the proximal colon showed poorer overall and recurrence-free survival (OS, RFS) than APC-mt/MSS proximal, APC-wt/MSS distal and APC-mt/MSS distal tumours (OS HR⩾1.79, P⩽0.015; RFS HR⩾1.88, P⩽0.026). APC was a stronger prognostic indicator than BRAF, KRAS, PIK3CA, TP53, CpG island methylator phenotype or chromosomal instability status (P⩽0.036). Microarray analysis similarly revealed poorer survival in MSS proximal cancers with an APC-wt-like signature (P=0.019). APC status did not affect outcomes in MSI tumours. In a validation on 206 patients with proximal colon cancer, APC-wt-like signature MSS cases showed poorer survival than APC-mt-like signature MSS or MSI cases (OS HR⩾2.50, P⩽0.010; RFS HR⩾2.14, P⩽0.025). Poor prognosis APC-wt/MSS proximal tumours exhibited features of the sessile serrated neoplasia pathway (P⩽0.016). CONCLUSIONS: APC-wt status is a marker of poor prognosis in MSS proximal colon cancer.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Neoplasias del Colon/genética , Neoplasias del Colon/mortalidad , Repeticiones de Microsatélite/genética , Adulto , Anciano , Fosfatidilinositol 3-Quinasa Clase I , Neoplasias del Colon/patología , Islas de CpG , Supervivencia sin Enfermedad , Femenino , Genes p53 , Genes ras , Humanos , Masculino , Inestabilidad de Microsatélites , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/mortalidad , Fosfatidilinositol 3-Quinasas/genética , Pronóstico , Análisis por Matrices de Proteínas , Proteínas Proto-Oncogénicas B-raf/genética
2.
Genome Res ; 22(2): 246-58, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22156296

RESUMEN

While genetic mutation is a hallmark of cancer, many cancers also acquire epigenetic alterations during tumorigenesis including aberrant DNA hypermethylation of tumor suppressors, as well as changes in chromatin modifications as caused by genetic mutations of the chromatin-modifying machinery. However, the extent of epigenetic alterations in cancer cells has not been fully characterized. Here, we describe complete methylome maps at single nucleotide resolution of a low-passage breast cancer cell line and primary human mammary epithelial cells. We find widespread DNA hypomethylation in the cancer cell, primarily at partially methylated domains (PMDs) in normal breast cells. Unexpectedly, genes within these regions are largely silenced in cancer cells. The loss of DNA methylation in these regions is accompanied by formation of repressive chromatin, with a significant fraction displaying allelic DNA methylation where one allele is DNA methylated while the other allele is occupied by histone modifications H3K9me3 or H3K27me3. Our results show a mutually exclusive relationship between DNA methylation and H3K9me3 or H3K27me3. These results suggest that global DNA hypomethylation in breast cancer is tightly linked to the formation of repressive chromatin domains and gene silencing, thus identifying a potential epigenetic pathway for gene regulation in cancer cells.


Asunto(s)
Neoplasias de la Mama/genética , Ensamble y Desensamble de Cromatina , Metilación de ADN , Silenciador del Gen , Alelos , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Análisis por Conglomerados , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Modelos Genéticos , Secuencias Repetitivas de Ácidos Nucleicos , Transcripción Genética
3.
Nucleic Acids Res ; 39(14): 6056-68, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21493686

RESUMEN

Although patterns of somatic alterations have been reported for tumor genomes, little is known on how they compare with alterations present in non-tumor genomes. A comparison of the two would be crucial to better characterize the genetic alterations driving tumorigenesis. We sequenced the genomes of a lymphoblastoid (HCC1954BL) and a breast tumor (HCC1954) cell line derived from the same patient and compared the somatic alterations present in both. The lymphoblastoid genome presents a comparable number and similar spectrum of nucleotide substitutions to that found in the tumor genome. However, a significant difference in the ratio of non-synonymous to synonymous substitutions was observed between both genomes (P = 0.031). Protein-protein interaction analysis revealed that mutations in the tumor genome preferentially affect hub-genes (P = 0.0017) and are co-selected to present synergistic functions (P < 0.0001). KEGG analysis showed that in the tumor genome most mutated genes were organized into signaling pathways related to tumorigenesis. No such organization or synergy was observed in the lymphoblastoid genome. Our results indicate that endogenous mutagens and replication errors can generate the overall number of mutations required to drive tumorigenesis and that it is the combination rather than the frequency of mutations that is crucial to complete tumorigenic transformation.


Asunto(s)
Neoplasias de la Mama/genética , Variación Genética , Genoma Humano , Línea Celular Transformada , Línea Celular Tumoral , Aberraciones Cromosómicas , Femenino , Humanos , Linfocitos , Persona de Mediana Edad , Mutación , Mutación Puntual , Mapeo de Interacción de Proteínas , Análisis de Secuencia de ADN
4.
Cancer Cell ; 1(4): 315-8, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12086845

RESUMEN

The Cancer Molecular Analysis Project (CMAP) of the NCI is integrating diverse cancer research data to elucidate fundamental etiologic processes, enable development of novel therapeutic approaches, and facilitate the bridging of basic and clinical science.


Asunto(s)
Neoplasias/etiología , Investigación , Ciclo Celular/fisiología , Ciclinas/metabolismo , Humanos , National Institutes of Health (U.S.) , Neoplasias/metabolismo , Transducción de Señal , Estados Unidos
5.
Proc Natl Acad Sci U S A ; 106(6): 1886-91, 2009 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-19181860

RESUMEN

We have identified new genomic alterations in the breast cancer cell line HCC1954, using high-throughput transcriptome sequencing. With 120 Mb of cDNA sequences, we were able to identify genomic rearrangement events leading to fusions or truncations of genes including MRE11 and NSD1, genes already implicated in oncogenesis, and 7 rearrangements involving other additional genes. This approach demonstrates that high-throughput transcriptome sequencing is an effective strategy for the characterization of genomic rearrangements in cancers.


Asunto(s)
Neoplasias de la Mama/genética , Perfilación de la Expresión Génica/métodos , Reordenamiento Génico , Genoma Humano/genética , Secuencia de Bases , Proteínas Portadoras/genética , Línea Celular Tumoral , ADN Complementario , Proteínas de Unión al ADN/genética , Femenino , N-Metiltransferasa de Histona-Lisina , Humanos , Proteína Homóloga de MRE11 , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética
6.
Nucleic Acids Res ; 37(Database issue): D1018-24, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19036787

RESUMEN

The HuRef Genome Browser is a web application for the navigation and analysis of the previously published genome of a human individual, termed HuRef. The browser provides a comparative view between the NCBI human reference sequence and the HuRef assembly, and it enables the navigation of the HuRef genome in the context of HuRef, NCBI and Ensembl annotations. Single nucleotide polymorphisms, indels, inversions, structural and copy-number variations are shown in the context of existing functional annotations on either genome in the comparative view. Demonstrated here are some potential uses of the browser to enable a better understanding of individual human genetic variation. The browser provides full access to the underlying reads with sequence and quality information, the genome assembly and the evidence supporting the identification of DNA polymorphisms. The HuRef Browser is a unique and versatile tool for browsing genome assemblies and studying individual human sequence variation in a diploid context. The browser is available online at http://huref.jcvi.org.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Variación Genética , Genoma Humano , Genómica , Humanos , Internet , Programas Informáticos
7.
PLoS Genet ; 4(8): e1000160, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18704161

RESUMEN

There is much interest in characterizing the variation in a human individual, because this may elucidate what contributes significantly to a person's phenotype, thereby enabling personalized genomics. We focus here on the variants in a person's 'exome,' which is the set of exons in a genome, because the exome is believed to harbor much of the functional variation. We provide an analysis of the approximately 12,500 variants that affect the protein coding portion of an individual's genome. We identified approximately 10,400 nonsynonymous single nucleotide polymorphisms (nsSNPs) in this individual, of which approximately 15-20% are rare in the human population. We predict approximately 1,500 nsSNPs affect protein function and these tend be heterozygous, rare, or novel. Of the approximately 700 coding indels, approximately half tend to have lengths that are a multiple of three, which causes insertions/deletions of amino acids in the corresponding protein, rather than introducing frameshifts. Coding indels also occur frequently at the termini of genes, so even if an indel causes a frameshift, an alternative start or stop site in the gene can still be used to make a functional protein. In summary, we reduced the set of approximately 12,500 nonsilent coding variants by approximately 8-fold to a set of variants that are most likely to have major effects on their proteins' functions. This is our first glimpse of an individual's exome and a snapshot of the current state of personalized genomics. The majority of coding variants in this individual are common and appear to be functionally neutral. Our results also indicate that some variants can be used to improve the current NCBI human reference genome. As more genomes are sequenced, many rare variants and non-SNP variants will be discovered. We present an approach to analyze the coding variation in humans by proposing multiple bioinformatic methods to hone in on possible functional variation.


Asunto(s)
Exones , Variación Genética , Genoma Humano , Polimorfismo de Nucleótido Simple , Frecuencia de los Genes , Enfermedades Genéticas Congénitas/genética , Humanos , Masculino , Mutación , Fenotipo , Proteínas/genética , Proteínas/metabolismo
8.
PLoS Biol ; 5(4): e101, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17407382

RESUMEN

Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras) provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors describe survey sequencing (1.4x coverage) and comparative analysis of the elephant shark genome, one of the first cartilaginous fish genomes to be sequenced to this depth. Repetitive sequences, represented mainly by a novel family of short interspersed element-like and long interspersed element-like sequences, account for about 28% of the elephant shark genome. Fragments of approximately 15,000 elephant shark genes reveal specific examples of genes that have been lost differentially during the evolution of tetrapod and teleost fish lineages. Interestingly, the degree of conserved synteny and conserved sequences between the human and elephant shark genomes are higher than that between human and teleost fish genomes. Elephant shark contains putative four Hox clusters indicating that, unlike teleost fish genomes, the elephant shark genome has not experienced an additional whole-genome duplication. These findings underscore the importance of the elephant shark as a critical reference vertebrate genome for comparative analysis of the human and other vertebrate genomes. This study also demonstrates that a survey-sequencing approach can be applied productively for comparative analysis of distantly related vertebrate genomes.


Asunto(s)
Genoma , Tiburones/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN , Humanos , Datos de Secuencia Molecular , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos
9.
PLoS Biol ; 5(3): e16, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17355171

RESUMEN

Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million Global Ocean Sampling (GOS) sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans) from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins, the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their evolution. These observations are illustrated using several protein families, including phosphatases, proteases, ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS data has implications for choosing targets for experimental structure characterization as part of structural genomics efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the addition of new sequences, implying that we are still far from discovering all protein families in nature.


Asunto(s)
Proteínas/química , Etiquetas de Secuencia Expresada , Océanos y Mares , Proteínas/genética , Microbiología del Agua
10.
PLoS Biol ; 5(10): e254, 2007 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-17803354

RESUMEN

Presented here is a genome sequence of an individual human. It was produced from approximately 32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb) of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel) included 3,213,401 single nucleotide polymorphisms (SNPs), 53,823 block substitutions (2-206 bp), 292,102 heterozygous insertion/deletion events (indels)(1-571 bp), 559,473 homozygous indels (1-82,711 bp), 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.


Asunto(s)
Mapeo Cromosómico , Diploidia , Genoma Humano , Análisis de Secuencia de ADN , Secuencia de Bases , Mapeo Cromosómico/instrumentación , Mapeo Cromosómico/métodos , Cromosomas Humanos , Cromosomas Humanos Y/genética , Dosificación de Gen , Genotipo , Haplotipos , Proyecto Genoma Humano , Humanos , Mutación INDEL , Hibridación Fluorescente in Situ , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , Datos de Secuencia Molecular , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/instrumentación , Análisis de Secuencia de ADN/métodos
11.
PLoS Biol ; 5(3): e77, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17355176

RESUMEN

The world's oceans contain a complex mixture of micro-organisms that are for the most part, uncharacterized both genetically and biochemically. We report here a metagenomic study of the marine planktonic microbiota in which surface (mostly marine) water samples were analyzed as part of the Sorcerer II Global Ocean Sampling expedition. These samples, collected across a several-thousand km transect from the North Atlantic through the Panama Canal and ending in the South Pacific yielded an extensive dataset consisting of 7.7 million sequencing reads (6.3 billion bp). Though a few major microbial clades dominate the planktonic marine niche, the dataset contains great diversity with 85% of the assembled sequence and 57% of the unassembled data being unique at a 98% sequence identity cutoff. Using the metadata associated with each sample and sequencing library, we developed new comparative genomic and assembly methods. One comparative genomic method, termed "fragment recruitment," addressed questions of genome structure, evolution, and taxonomic or phylogenetic diversity, as well as the biochemical diversity of genes and gene families. A second method, termed "extreme assembly," made possible the assembly and reconstruction of large segments of abundant but clearly nonclonal organisms. Within all abundant populations analyzed, we found extensive intra-ribotype diversity in several forms: (1) extensive sequence variation within orthologous regions throughout a given genome; despite coverage of individual ribotypes approaching 500-fold, most individual sequencing reads are unique; (2) numerous changes in gene content some with direct adaptive implications; and (3) hypervariable genomic islands that are too variable to assemble. The intra-ribotype diversity is organized into genetically isolated populations that have overlapping but independent distributions, implying distinct environmental preference. We present novel methods for measuring the genomic similarity between metagenomic samples and show how they may be grouped into several community types. Specific functional adaptations can be identified both within individual ribotypes and across the entire community, including proteorhodopsin spectral tuning and the presence or absence of the phosphate-binding gene PstS.


Asunto(s)
Microbiología del Agua , Biología Computacional , Cadena Alimentaria , Océanos y Mares , Plancton , Especificidad de la Especie
12.
Nature ; 429(6990): 469-74, 2004 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-15164073

RESUMEN

Scientists have sequenced the human genome and identified most of its genes. Now it is time to use these genomic data, and the high-throughput technology developed to generate them, to tackle major health problems such as cancer. To accelerate our understanding of this disease and to produce targeted therapies, further basic mutational and functional genomic information is required. A systematic and coordinated approach, with the results freely available, should speed up progress. This will best be accomplished through an international academic and pharmaceutical oncogenomics initiative.


Asunto(s)
Genómica/tendencias , Neoplasias/genética , Neoplasias/terapia , Oncogenes/genética , Investigación Biomédica/tendencias , Biología Computacional , Humanos
14.
Drug Discov Today ; 13(13-14): 569-77, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18598911

RESUMEN

The completion of draft sequences of the human genome represented a remarkable achievement for automated DNA sequencing based on Sanger technology. However, the future requires substantial leaps in sequencing technology such that whole genome sequencing will become a standard component of biomedical research and patient care. In this review we describe current advances that are in early stages of development, but that point toward technology that will enable the onset of genomic medicine encompasses strategies for preventative medicine and intervention based on complete knowledge of an individual's genome.


Asunto(s)
Tecnología Biomédica/métodos , Genoma Humano/genética , Análisis de Secuencia de ADN/métodos , Animales , Tecnología Biomédica/tendencias , Humanos , Análisis de Secuencia de ADN/tendencias
15.
Breast Cancer Res ; 9(1): R5, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17224074

RESUMEN

INTRODUCTION: Genomic alterations have been observed in breast carcinomas that affect the capacity of cells to regulate proliferation, signaling, and metastasis. Re-sequence studies have investigated candidate genes based on prior genetic observations (changes in copy number or regions of genetic instability) or other laboratory observations and have defined critical somatic mutations in genes such as TP53 and PIK3CA. METHODS: We have extended the paradigm and analyzed 21 genes primarily identified by expression profiling studies, which are useful for breast cancer subtyping and prognosis. This study conducted a bidirectional re-sequence analysis of all exons and 5', 3', and evolutionarily conserved regions (spanning more than 16 megabases) in 91 breast tumor samples. RESULTS: Eighty-seven unique somatic alterations were identified in 16 genes. Seventy-eight were single base pair alterations, of which 23 were missense mutations; 55 were distributed across conserved intronic regions or the 5' and 3' regions. There were nine insertion/deletions. Because there is no a priori way to predict whether any one of the identified synonymous and noncoding somatic alterations disrupt function, analysis unique to each gene will be required to establish whether it is a tumor suppressor gene or whether there is no effect. In five genes, no somatic alterations were observed. CONCLUSION: The study confirms the value of re-sequence analysis in cancer gene discovery and underscores the importance of characterizing somatic alterations across genes that are related not only by function, or functional pathways, but also based upon expression patterns.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma/genética , Perfilación de la Expresión Génica , Secuencia Conservada , Análisis Mutacional de ADN , Exones , Femenino , Humanos
16.
Breast Cancer Res ; 8(5): R56, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17014703

RESUMEN

INTRODUCTION: Diverse microarray and sequencing technologies have been widely used to characterise the molecular changes in malignant epithelial cells in breast cancers. Such gene expression studies to identify markers and targets in tumour cells are, however, compromised by the cellular heterogeneity of solid breast tumours and by the lack of appropriate counterparts representing normal breast epithelial cells. METHODS: Malignant neoplastic epithelial cells from primary breast cancers and luminal and myoepithelial cells isolated from normal human breast tissue were isolated by immunomagnetic separation methods. Pools of RNA from highly enriched preparations of these cell types were subjected to expression profiling using massively parallel signature sequencing (MPSS) and four different genome wide microarray platforms. Functional related transcripts of the differential tumour epithelial transcriptome were used for gene set enrichment analysis to identify enrichment of luminal and myoepithelial type genes. Clinical pathological validation of a small number of genes was performed on tissue microarrays. RESULTS: MPSS identified 6,553 differentially expressed genes between the pool of normal luminal cells and that of primary tumours substantially enriched for epithelial cells, of which 98% were represented and 60% were confirmed by microarray profiling. Significant expression level changes between these two samples detected only by microarray technology were shown by 4,149 transcripts, resulting in a combined differential tumour epithelial transcriptome of 8,051 genes. Microarray gene signatures identified a comprehensive list of 907 and 955 transcripts whose expression differed between luminal epithelial cells and myoepithelial cells, respectively. Functional annotation and gene set enrichment analysis highlighted a group of genes related to skeletal development that were associated with the myoepithelial/basal cells and upregulated in the tumour sample. One of the most highly overexpressed genes in this category, that encoding periostin, was analysed immunohistochemically on breast cancer tissue microarrays and its expression in neoplastic cells correlated with poor outcome in a cohort of poor prognosis estrogen receptor-positive tumours. CONCLUSION: Using highly enriched cell populations in combination with multiplatform gene expression profiling studies, a comprehensive analysis of molecular changes between the normal and malignant breast tissue was established. This study provides a basis for the identification of novel and potentially important targets for diagnosis, prognosis and therapy in breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Moléculas de Adhesión Celular/genética , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Biomarcadores de Tumor/análisis , Mama , Células Cultivadas , Células Epiteliales , Femenino , Humanos , Pronóstico , Transcripción Genética , Células Tumorales Cultivadas
17.
Cancer Res ; 62(12): 3340-6, 2002 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12067970

RESUMEN

We constructed a genome-wide transcriptome map of non-small cell lung carcinomas based on gene-expression profiles generated by serial analysis of gene expression (SAGE) using primary tumors and bronchial epithelial cells of the lung. Using the human genome working draft and the public databases, 25,135 nonredundant UniGene clusters were mapped onto unambiguous chromosomal positions. Of the 23,056 SAGE tags that appeared more than once among the nine SAGE libraries, 11,156 tags representing 7,097 UniGene clusters were positioned onto chromosomes. A total of 43 and 55 clusters of differentially expressed genes were observed in squamous cell carcinoma and adenocarcinoma, respectively. The number of genes in each cluster ranged from 18 to 78 in squamous cell carcinomas and from 20 to 165 in adenocarcinomas. The size of these clusters varied from 1.8 Mb to 65.5 Mb in squamous cell carcinomas and from 1.6 Mb to 98.1 Mb in adenocarcinomas. Overall, the clusters with genes over-represented in tumors had an average of 3-4-fold increase in gene expression compared with the normal control. In contrast, clusters of genes with reduced expression had about 50-65% of the gene expression level compared with the normal. Examination of clusters identified in squamous cell lung cancer suggested that 9 of 15 clusters with overexpressed genes and 13 of 28 clusters with underexpressed genes were concordant with previously reported cytogenetic, comparative genomic hybridization or loss of heterozygosity studies. Therefore, at least a portion of the gene clusters identified via the transcriptome map most likely represented the transcriptional or genetic alterations occurred in the tumors. Integrating chromosomal mapping information with gene expression profiles may help reveal novel molecular changes associated with human lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Genoma Humano , Neoplasias Pulmonares/genética , Transcripción Genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/metabolismo , Familia de Multigenes
18.
Cancer Immunol Res ; 4(6): 552-61, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27045022

RESUMEN

Melanoma is one of the major cancer types for which new immune-based cancer treatments have achieved promising results. However, anti-PD-1 and anti-CTLA-4 therapies are effective only in some patients. Hence, predictive molecular markers for the development of clinical strategies targeting immune checkpoints are needed. Using The Cancer Genome Atlas (TCGA) RNAseq data, we found that expression of ESRP1, encoding a master splicing regulator in the epithelial-mesenchymal transition (EMT), was inversely correlated with tumor-associated immune cytolytic activity. That association holds up across multiple TCGA tumor types, suggesting a link between tumor EMT status and infiltrating lymphocyte activity. In melanoma, ESRP1 mainly exists in a melanocyte-specific truncated form transcribed from exon 13. This was validated by analyzing CCLE cell line data, public CAGE data, and RT-PCR in primary cultured melanoma cell lines. Based on ESRP1 expression, we divided TCGA melanoma cases into ESRP1-low, -truncated, and -full-length groups. ESRP1-truncated tumors comprise approximately two thirds of melanoma samples and reside in an apparent transitional state between epithelial and mesenchymal phenotypes. ESRP1 full-length tumors express epithelial markers and constitute about 5% of melanoma samples. In contrast, ESRP1-low tumors express mesenchymal markers and are high in immune cytolytic activity as well as PD-L2 and CTLA-4 expression. Those tumors are associated with better patient survival. Results from our study suggest a path toward the use of ESRP1 and other EMT markers as informative biomarkers for immunotherapy. Cancer Immunol Res; 4(6); 552-61. ©2016 AACR.


Asunto(s)
Empalme Alternativo , Biomarcadores de Tumor/metabolismo , Transición Epitelial-Mesenquimal/genética , Melanoma/metabolismo , Proteínas de Unión al ARN/metabolismo , Biomarcadores de Tumor/genética , Citotoxicidad Inmunológica/genética , Citotoxicidad Inmunológica/inmunología , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Humanos , Melanocitos/metabolismo , Melanoma/genética , Melanoma/inmunología , Melanoma/secundario , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Pronóstico , Proteínas de Unión al ARN/genética , Transcriptoma
19.
Cancer Res ; 76(21): 6193-6204, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27651314

RESUMEN

Tryptophan degradation is an immune escape strategy shared by many tumors. However, cancer cells' compensatory mechanisms remain unclear. We demonstrate here that a shortage of tryptophan caused by expression of indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) resulted in ATF4-dependent upregulation of several amino acid transporters, including SLC1A5 and its truncated isoforms, which in turn enhanced tryptophan and glutamine uptake. Importantly, SLC1A5 failed to be upregulated in resting human T cells kept under low tryptophan conditions but was enhanced upon cognate antigen T-cell receptor engagement. Our results highlight key differences in the ability of tumor and T cells to adapt to tryptophan starvation and provide important insights into the poor prognosis of tumors coexpressing IDO and SLC1A5. Cancer Res; 76(21); 6193-204. ©2016 AACR.


Asunto(s)
Factor de Transcripción Activador 4/fisiología , Sistema de Transporte de Aminoácidos ASC/fisiología , Sistemas de Transporte de Aminoácidos/genética , Reprogramación Celular , Indolamina-Pirrol 2,3,-Dioxigenasa/fisiología , Antígenos de Histocompatibilidad Menor/fisiología , Neoplasias/metabolismo , Triptófano/metabolismo , Línea Celular Tumoral , Humanos
20.
Sci Transl Med ; 8(346): 346ra92, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27384348

RESUMEN

Detection of circulating tumor DNA (ctDNA) after resection of stage II colon cancer may identify patients at the highest risk of recurrence and help inform adjuvant treatment decisions. We used massively parallel sequencing-based assays to evaluate the ability of ctDNA to detect minimal residual disease in 1046 plasma samples from a prospective cohort of 230 patients with resected stage II colon cancer. In patients not treated with adjuvant chemotherapy, ctDNA was detected postoperatively in 14 of 178 (7.9%) patients, 11 (79%) of whom had recurred at a median follow-up of 27 months; recurrence occurred in only 16 (9.8 %) of 164 patients with negative ctDNA [hazard ratio (HR), 18; 95% confidence interval (CI), 7.9 to 40; P < 0.001]. In patients treated with chemotherapy, the presence of ctDNA after completion of chemotherapy was also associated with an inferior recurrence-free survival (HR, 11; 95% CI, 1.8 to 68; P = 0.001). ctDNA detection after stage II colon cancer resection provides direct evidence of residual disease and identifies patients at very high risk of recurrence.


Asunto(s)
ADN Tumoral Circulante/genética , Neoplasias del Colon/genética , Neoplasia Residual/genética , ADN Tumoral Circulante/análisis , Neoplasias del Colon/sangre , Neoplasias del Colon/cirugía , Supervivencia sin Enfermedad , Humanos , Recurrencia Local de Neoplasia/sangre , Recurrencia Local de Neoplasia/genética , Estadificación de Neoplasias , Neoplasia Residual/sangre , Neoplasia Residual/cirugía , Modelos de Riesgos Proporcionales , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA