RESUMEN
Inherited retinal diseases (IRDs) constitute a prevalent group of inherited ocular disorders characterized by marked genetic diversity alongside moderate clinical variability. Among these, ABCA4-related eye pathology stands as a prominent form affecting the retina. In this study, we conducted an in-depth analysis of 96 patients harboring ABCA4 variants in the European part of Russia. Notably, the complex allele c.[1622T>C;3113C>T] (p.Leu541Pro;Ala1038Val, or L541P;A1038V) and the variant c.5882G>A (p.Gly1961Glu or G1961E) emerged as primary contributors to this ocular pathology within this population. Additionally, we elucidated distinct disease progression characteristics associated with the G1961E variant. Furthermore, our investigation revealed that patients with loss-of-function variants in ABCA4 were more inclined to develop phenotypes distinct from Stargardt disease. These findings provide crucial insights into the genetic and clinical landscape of ABCA4-related retinal dystrophies in this specific population.
Asunto(s)
Transportadoras de Casetes de Unión a ATP , Distrofias Retinianas , Humanos , Mutación , Alelos , Transportadoras de Casetes de Unión a ATP/genética , Distrofias Retinianas/genética , Distrofias Retinianas/patología , FenotipoRESUMEN
Triple-negative breast cancer (TNBC) is the most aggressive molecular subtype, with a poor survival rate compared to others subtypes. For a long time, chemotherapy was the only systemic treatment for TNBC, and the identification of actionable molecular targets might ultimately improve the prognosis for TNBC patients. We performed a genome-wide analysis of DNA methylation at CpG islands on a collection of one hundred ten breast carcinoma samples and six normal breast tissue samples using reduced representation bisulfite sequencing with the XmaI restriction enzyme (XmaI-RRBS) and identified a subset of TNBC samples with significant hypomethylation at the LTB4R/LTB4R2 genes' CpG islands, including CpG dinucleotides covered with cg12853742 and cg21886367 HumanMethylation 450K microarray probes. Abnormal DNA hypomethylation of this region in TNBC compared to normal samples was confirmed by bisulfite Sanger sequencing. Gene expression generally anticorrelates with promoter methylation, and thus, the promoter hypomethylation detected and confirmed in our study might be revealed as an indirect marker of high LTB4R/LTB4R2 expression using a simple methylation-sensitive PCR test. Analysis of RNA-seq expression and DNA methylation data from the TCGA dataset demonstrates that the expression of the LTB4R and LTB4R2 genes significantly negatively correlates with DNA methylation at both CpG sites cg12853742 (R = -0.4, p = 2.6 × 10-6; R = -0.21, p = 0.015) and cg21886367 (R = -0.45, p = 7.3 × 10-8; R = -0.24, p = 0.005), suggesting the upregulation of these genes in tumors with abnormal hypomethylation of their CpG island. Kaplan-Meier analysis using the TCGA-BRCA gene expression and clinical data revealed poorer overall survival for TNBC patients with an upregulated LTB4R. To this day, only the leukotriene inhibitor LY255283 has been tested on an MCF-7/DOX cell line, which is a luminal A breast cancer molecular subtype. Other studies compare the effects of Montelukast and Zafirlukast (inhibitors of the cysteinyl leukotriene receptor, which is different from LTB4R/LTB4R2) on the MDA-MB-231 (TNBC) cell line, with high methylation and low expression levels of LTB4R. In our study, we assess the therapeutic effects of various drugs (including leukotriene receptor inhibitors) with the DepMap gene effect and drug sensitivity data for TNBC cell lines with hypomethylated and upregulated LTB4R/LTB4R2 genes. LY255283, Minocycline, Silibinin, Piceatannol, Mitiglinide, 1-Azakenpaullone, Carbetocin, and Pim-1-inhibitor-2 can be considered as candidates for the additional treatment of TNBC patients with tumors demonstrating LTB4R/LTB4R2 hypomethylation/upregulation. Finally, our results suggest that the epigenetic status of leukotriene B4 receptors is a novel, potential, predictive, and prognostic biomarker for TNBC. These findings might improve individualized therapy for TNBC patients by introducing new therapeutic adjuncts as anticancer agents.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Epigenómica , Receptores de LeucotrienosRESUMEN
Glioblastoma is the most frequent and aggressive brain tumor in the adult population. Loss of heterozygosity (LOH) at markers of the long arm of chromosome 10 is the most common genetic alteration in glioblastoma, being detectable in up to 80% of cases. We have tested 124 glioblastoma samples for LOH by microsatellite analysis of the 10q23.3-26.3 region which contains the cancer related genes PTEN, FGFR2, MKI67, and MGMT. Then, a real-time quantitative microsatellite analysis (QuMA) was used to qualitatively estimate the change in copy number of this region in the samples with LOH. LOH was detected in 62.1% of the glioblastoma samples. A total of 64 samples with LOH in this region were examined by QuMA. LOH was attributed to a deletion in 37.5% of cases, and uniparental disomy (UPD) in 25% of cases. In 37.5% of cases, deletion and UPD segments alternated within the region: deletions being more frequent than UPD in its proximal part (encompassing PTEN and FGFR2) and both deletions and UPD occurring at the same frequency in its distal part (MGMT). Thus, we have investigated mechanisms of structural alterations of the chromosome region 10q23.3-26.3 in glioblastoma. In addition to a structural deletion of this region, UPD was identified as a frequent cause of LOH. We resume that more detailed studies of glioblastoma at the molecular genetic level are essential in search for potential markers suitable for predicting the disease outcome and the response to treatment.
Asunto(s)
Neoplasias Encefálicas/genética , Cromosomas Humanos Par 10/genética , Glioblastoma/genética , Disomía Uniparental , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioblastoma/patología , Heterocigoto , Humanos , Antígeno Ki-67/genética , Fosfohidrolasa PTEN/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
Prostate cancer (PC) is the most common uro-oncological disease in the global population and still requires a more efficient laboratory diagnosis. Point mutations of oncogenes and tumor sup-pressor genes are the most frequent molecular genetic events in carcinogenesis. The mutations are re-sponsible, to a great extent, for the clonal evolution of cancer and can be considered as primary candi-date molecular markers of PC. Using next-generation sequencing to analyze the mutations in PC, the main molecular PC subtypes were identified, which depended on the presence of fusion genes and FOXA1, CHD1, and SPOP point mutations; other driver mutations responsible for the progression of PC subclones were also characterized. This review summarizes the data on early PC genetic markers (an mtDNA deletion, and TMPRSS2:ERG expression), as well as these somatic mutations at later stages of PC. Emphasis is placed on a switch in AR synthesis to a constitutively active variant and the point muta-tions that facilitate PC transition to a castration-refractory state that is resistant to new AR inhibitors. Based on the current whole-exome sequencing data, the frequencies and localizations of the somatic mu-tations that may provide new genetic diagnostic markers and drug targets are described.
RESUMEN
INTRODUCTION: We have investigated aberrant methylation of genes CDH1, RASSF1A, MLH1, N33, DAPK, expression of genes hTERT, MMP7, MMP9, BIRC5 (survivin), PTGS2, and activity of telomerase of 106 gastric tumor samples obtained intra-operatively and 53 gastric tumor samples from the same group of patients obtained endoscopically before surgery. Biopsy specimens obtained from 50 patients with chronic calculous cholecystitis were used as a control group. Together with tissue samples obtained from different sites remote to tumors, a total of 727 samples have been studied. The selected parameters comprise a system of molecular markers that can be used in both diagnostics of gastric cancer and in dynamic monitoring of patients after surgery. Special attention was paid to the use of molecular markers for the diagnostics of malignant process in the material obtained endoscopically since the efficacy of morphological diagnostics in biopsies is compromised by intratumoral heterogeneity, which may prevent reliable identification of tumor cells in the sampling. Our data indicated that certain molecular genetic events provided more sensitive yet specific markers of the tumor. CONCLUSION: We demonstrated that molecular profiles detected in preoperative biopsies were confirmed by the material obtained intra-operatively. The use of endoscopic material facilitates gastric tumors pre-operative diagnostics, improving early detection of gastric cancer and potential effective treatment strategies.
RESUMEN
The renal cell carcinoma is the ninth most common cancer with an increasing occurrence and mortality. Recoverin is the first retina-specific photoreceptor protein that was shown to undergo aberrant expression, due to its promoter demethylation, as a cancer-retina antigen in a number of malignant tumors. In this work, we demonstrated that recoverin is indeed expressed in 68.4 % of patients with different subtypes of renal cell carcinoma, and this expression has tendency to correlate with tumor size. Interestingly, 91.7 % of patients with the benign renal tumor, oncocytoma, express recoverin as well in their tumor. Epigenetic analysis of the recoverin gene promoter revealed a stable mosaic methylation pattern with the predominance of the methylated state, with the exception of -80 and 56 CpG dinucleotides (CpGs). While the recoverin expression does not correlate withoverall survival of the tumor patients, the methylation of the recoverin gene promoter at -80 position is associated with better overall survival of the patients. This work is the first report pointing towards the association of overall survival of renal cell carcinoma (RCC) patients with promoter methylation of a cancer-retina antigen. Taken together, these data allow to consider recoverin as a potential therapeutic target and/or marker for renal tumors.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Papilar/patología , Carcinoma de Células Renales/patología , Metilación de ADN , Neoplasias Renales/patología , Recoverina/metabolismo , Anciano , Biomarcadores de Tumor/genética , Western Blotting , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Técnicas para Inmunoenzimas , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Recoverina/genética , Tasa de SupervivenciaRESUMEN
Despite advances in the diagnosis and treatment of breast cancer (BC), the main cause of deaths is resistance to existing therapies. An approach to improve the effectiveness of therapy in patients with aggressive BC subtypes is neoadjuvant chemotherapy (NACT). Yet, the response to NACT for aggressive subtypes is less than 65% according to large clinical trials. An obvious fact is the lack of biomarkers predicting the therapeutic effect of NACT. In a search for epigenetic markers, we performed genome-wide differential methylation screening by XmaI-RRBS in cohorts of NACT responders and nonresponders, for triple-negative (TN) and luminal B tumors. The predictive potential of the most discriminative loci was further assessed in independent cohorts by methylation-sensitive restriction enzyme quantitative PCR (MSRE-qPCR), a promising method for the implementation of DNA methylation markers in diagnostic laboratories. The selected most informative individual markers were combined into panels demonstrating cvAUC = 0.83 (TMEM132D and MYO15B markers panel) for TN tumors and cvAUC = 0.76 (TTC34, LTBR and CLEC14A) for luminal B tumors. The combination of methylation markers with clinical features that correlate with NACT effect (clinical stage for TN and lymph node status for luminal B tumors) produces better classifiers, with cvAUC = 0.87 for TN tumors and cvAUC = 0.83 for luminal B tumors. Thus, clinical characteristics predictive of NACT response are independently additive to the epigenetic classifier and in combination improve prediction.
RESUMEN
The main types of thyroid neoplasms, follicular adenoma (FA), follicular thyroid carcinoma (FTC), classical and follicular variants of papillary carcinoma (clPTC and fvPTC), and anaplastic thyroid carcinoma (ATC), differ in prognosis, progression rate and metastatic behaviour. Specific patterns of lncRNAs involved in the development of clinical and morphological features can be presumed. LncRNA landscapes within distinct benign and malignant histological variants of thyroid neoplasms were not investigated. The aim of the study was to discover long noncoding RNA landscapes common and specific to major benign and malignant histological subtypes of thyroid neoplasms. LncRNA expression in FA, FTC, fvPTC, clPTC and ATC was analysed with comprehensive microarray and RNA-Seq datasets. Putative biological functions were evaluated via enrichment analysis of coexpressed coding genes. In the results, lncRNAs common and specific to FTC, clPTC, fvPTC, and ATC were identified. The discovered lncRNAs are putatively involved in L1CAM interactions, namely, pre-mRNA processing (lncRNAs specific to FTC); PCP/CE and WNT pathways (lncRNAs specific to fvPTC); extracellular matrix organization (lncRNAs specific to clPTC); and the cell cycle (lncRNAs specific to ATC). Known oncogenic and suppressor lncRNAs (RMST, CRNDE, SLC26A4-AS1, NR2F1-AS1, and LINC00511) were aberrantly expressed in thyroid carcinomas. These findings enhance the understanding of lncRNAs in the development of subtype-specific features in thyroid cancer.
Asunto(s)
Adenocarcinoma Folicular , Adenoma , ARN Largo no Codificante , ARN Neoplásico , Cáncer Papilar Tiroideo , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Adenocarcinoma Folicular/genética , Adenocarcinoma Folicular/metabolismo , Adenoma/genética , Adenoma/metabolismo , Humanos , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/metabolismo , Carcinoma Anaplásico de Tiroides/genética , Carcinoma Anaplásico de Tiroides/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismoRESUMEN
We have performed mutational profiling of 25 genes involved in epigenetic processes on 135 gastric cancer (GC) samples. In total, we identified 79 somatic mutations in 49/135 (36%) samples. The minority (n = 8) of mutations was identified in DNA methylation/demethylation genes, while the majority (n = 41), in histone modifier genes, among which mutations were most commonly found in KMT2D and KMT2C. Somatic mutations in KMT2D, KMT2C, ARID1A and CHD7 were mutually exclusive (p = 0.038). Mutations in ARID1A were associated with distant metastases (p = 0.03). The overall survival of patients in the group with metastases and in the group with tumors with signet ring cells was significantly reduced in the presence of mutations in epigenetic regulation genes (p = 0.036 and p = 0.041, respectively). Separately, somatic mutations in chromatin remodeling genes correlate with low survival rate of patients without distant metastasis (p = 0.045) and in the presence of signet ring cells (p = 0.0014). Our results suggest that mutations in epigenetic regulation genes may be valuable clinical markers and deserve further exploration in independent cohorts.
RESUMEN
Our aim was to identify RB1 alterations causing hereditary low penetrance retinoblastoma and to evaluate how the parental origin of an RB1 mutation affects its phenotypic expression. By NGS and MLPA, RB1 mutations were found in 191 from 332 unrelated retinoblastoma patients. Among patients with identified RB1 mutations but without clinical family history of retinoblastoma, 7% (12/175) were found to have hereditary disease with one of the parents being an asymptomatic carrier of an RB1 mutation. Additionally, in two families with retinoblastoma history, mutations were inherited by probands from unaffected parents. Overall, nine probands inherited RB1 mutations from clinically unaffected fathers and five, from mothers. Yet, we gained explanations of maternal "unaffectedness" in most cases, either as somatic mosaicism or as clinical presentation of retinomas in involution, rendering the proportion of paternal to maternal truly asymptomatic mutation carriers as 9:1 (p = 0.005). This observation supports an assumption that parental origin of an RB1 mutation influences the likelihood of developing retinoblastoma. Additionally, our study revealed a relatively high frequency of asymptomatic carriage of the RB1 mutations among the parents of retinoblastoma patients, highlighting the utmost necessity of molecular analysis among the probands' relatives irrespective of their clinical status and family history of retinoblastoma.
RESUMEN
Cell transmembrane receptors and extracellular matrix components play a pivotal role in regulating cell activity and providing for the concerted integration of cells in the tissue structures. We have assessed DNA methylation in the promoter regions of eight integrin genes, two nidogen genes, and the dystroglycan gene in normal breast tissues and breast carcinomas (BC). The protein products of these genes interact with the basement membrane proteins LAMA1, LAMA2, and LAMB1; abnormal hypermethylation of the LAMA1, LAMA2, and LAMB1 promoters in BC has been described in our previous publications. In the present study, the frequencies of abnormal promoter hypermethylation in BC were 13% for ITGA1, 31% for ITGA4, 4% for ITGA7, 39% for ITGA9, 38% for NID1, and 41% for NID2. ITGA2, ITGA3, ITGA6, ITGB1, and DAG1 promoters were nonmethylated in normal and BC samples. ITGA4, ITGA9, and NID1 promoter hypermethylation was associated with the HER2 positive tumors, and promoter hypermethylation of ITGA1, ITGA9, NID1 and NID2 was associated with a genome-wide CpG island hypermethylated BC subtype. Given that ITGA4 is not expressed in normal breast, one might suggest that its abnormal promoter hypermethylation in cancer is non-functional and is thus merely a passenger epimutation. Yet, this assumption is not supported by our finding that it is not associated with a hypermethylated BC subtype. ITGA4 acquires expression in a subset of breast carcinomas, and methylation of its promoter may be preventive against expression in some tumors. Strong association of abnormal ITGA4 hypermethylation with the HER2 positive tumors (p = 0.0025) suggests that simultaneous presence of both HER2 and integrin α4 receptors is not beneficial for tumor cells. This may imply HER2 and integrin α4 signaling pathways interactions that are yet to be discovered.
Asunto(s)
Neoplasias de la Mama/genética , Metilación de ADN/genética , Distroglicanos/genética , Regulación Neoplásica de la Expresión Génica , Integrinas/genética , Glicoproteínas de Membrana/genética , Regiones Promotoras Genéticas , Alelos , Línea Celular Tumoral , Islas de CpG/genética , Distroglicanos/metabolismo , Femenino , Humanos , Integrinas/metabolismo , Intrones/genética , Glicoproteínas de Membrana/metabolismo , Receptor ErbB-2/metabolismoRESUMEN
Somatic mutation profiling in gastric cancer (GC) enables main driver mutations to be identified and their clinical and prognostic value to be evaluated. We investigated 77 tumour samples of GC by next-generation sequencing (NGS) with the Ion AmpliSeq Hotspot Panel v2 and a custom panel covering six hereditary gastric cancer predisposition genes (BMPR1A, SMAD4, CDH1, TP53, STK11 and PTEN). Overall, 47 somatic mutations in 14 genes were detected; 22 of these mutations were novel. Mutations were detected most frequently in the CDH1 (13/47) and TP53 (12/47) genes. As expected, somatic CDH1 mutations were positively correlated with distant metastases (p = 0.019) and tumours with signet ring cells (p = 0.043). These findings confirm the association of the CDH1 mutations with diffuse GC type. TP53 mutations were found to be significantly associated with a decrease in overall survival in patients with Lauren diffuse-type tumours (p = 0.0085), T3-T4 tumours (p = 0.037), and stage III-IV tumours (p = 0.013). Our results confirm that the detection of mutations in the main driver genes may have a significant prognostic value for GC patients and provide an independent GC-related set of clinical and molecular genetic data.
Asunto(s)
Antígenos CD/genética , Cadherinas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Neoplasias Gástricas/patología , Proteína p53 Supresora de Tumor/genética , Adulto , Anciano , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Análisis de Secuencia de ADN , Neoplasias Gástricas/genética , Análisis de SupervivenciaRESUMEN
Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) substantially contribute to the regulation of intercellular interactions and thereby play a role in maintaining the tissue structure and function. We examined methylation of a subset of 5'-cytosine-phosphate-guanine-3' (CpG) dinucleotides in promoter regions of the MMP2, MMP11, MMP14, MMP15, MMP16, MMP17, MMP21, MMP23B, MMP24, MMP25, MMP28, TIMP1, TIMP2, TIMP3, and TIMP4 genes by methylation-sensitive restriction enzyme digestion PCR. In our collection of 183 breast cancer samples, abnormal hypermethylation was observed for CpGs in MMP2, MMP23B, MMP24, MMP25, and MMP28 promoter regions. The non-methylated status of the examined CpGs in promoter regions of MMP2, MMP23B, MMP24, MMP25, and MMP28 in tumors was associated with low HER2 expression, while the group of samples with abnormal hypermethylation of at least two of these MMP genes was significantly enriched with HER2-positive tumors. Abnormal methylation of MMP24 and MMP25 was significantly associated with a CpG island hypermethylated breast cancer subtype discovered by genome-wide DNA bisulfite sequencing. Our results indicate that abnormal hypermethylation of at least several MMP genes promoters is a secondary event not directly functional in breast cancer (BC) pathogenesis. We suggest that it is elevated and/or ectopic expression, rather than methylation-driven silencing, that might link MMPs to tumorigenesis.
RESUMEN
Despite the advantages of neoadjuvant chemotherapy (NACT), associated toxicity is a serious complication that renders monitoring of the patients' response to NACT highly important. Thus, prediction of tumor response to treatment is imperative to avoid exposure of potential non-responders to deleterious complications. We have performed genome-wide analysis of DNA methylation by XmaI-RRBS and selected CpG dinucleotides differential methylation of which discriminates luminal B breast cancer samples with different sensitivity to NACT. With this data, we have developed multiplex methylation sensitive restriction enzyme PCR (MSRE-PCR) protocol for determining the methylation status of 10 genes (SLC9A3, C1QL2, DPYS, IRF4, ADCY8, KCNQ2, TERT, SYNDIG1, SKOR2 and GRIK1) that distinguish BC samples with different NACT response. Analysis of these 10 markers by MSRE-PCR in biopsy samples allowed us to reveal three top informative combinations of markers, (1) IRF4 and C1QL2; (2) IRF4, C1QL2, and ADCY8; (3) IRF4, C1QL2, and DPYS, with the areas under ROC curves (AUCs) of 0.75, 0.78 and 0.74, respectively. A classifier based on IRF4 and C1QL2 better meets the diagnostic panel simplicity requirements, as it consists of only two markers. Diagnostic accuracy of the panel of these two markers is 0.75, with the sensitivity of 75% and specificity of 75%.
Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Metilación de ADN , Terapia Neoadyuvante , Área Bajo la Curva , Neoplasias de la Mama/patología , Islas de CpG , Femenino , Humanos , Factores Reguladores del Interferón/genética , Canal de Potasio KCNQ2/genética , Modelos Logísticos , Persona de Mediana Edad , Curva ROC , Intercambiador 3 de Sodio-Hidrógeno/genéticaRESUMEN
Hereditary papillary renal carcinoma (HPRC) is a rare autosomal dominant disease characterized by the development of multiple papillary type I renal cell carcinomas. This hereditary kidney cancer form is caused by activating mutations in MET. Descriptions of patients with HPRC are scarce in the world literature, and no cases have been described in open sources in Russia. Here, we describe a 28-year-old female Russian patient with 7 and 10 primary papillary renal cell carcinomas in the left and right kidneys, respectively. The patient did not have a family history of any of the known hereditary cancer syndromes. A comprehensive medical examination was performed in 2016 including computed tomography and pathomorphological analysis. The observed tumors were resected in a two-step surgical treatment. In February 2019, no sign of disease progression was detected in follow-up medical examination. Molecular genetic analysis revealed the germline heterozygous missense variant in MET: c.3328G>A (p.V1110I; CM990852). We have discussed the biological effects of the detected mutation and the utility of DNA diagnostics for treating patients with HPRC.
RESUMEN
Aim: To provide a breast cancer (BC) methylotype classification by genome-wide CpG islands bisulfite DNA sequencing. Materials & methods: XmaI-reduced representation bisulfite sequencing DNA methylation sequencing method was used to profile DNA methylation of 110 BC samples and 6 normal breast samples. Intrinsic DNA methylation BC subtypes were elicited by unsupervised hierarchical cluster analysis, and cluster-specific differentially methylated genes were identified. Results & conclusion: Overall, six distinct BC methylotypes were identified. BC cell lines constitute a separate group extremely highly methylated at the CpG islands. In turn, primary BC samples segregate into two major subtypes, highly and moderately methylated. Highly and moderately methylated superclusters, each incorporate three distinct epigenomic BC clusters with specific features, suggesting novel perspectives for personalized therapy.
Asunto(s)
Neoplasias de la Mama/genética , Metilación de ADN , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Análisis por Conglomerados , Epigénesis Genética , Femenino , HumanosRESUMEN
BACKGROUND: Usher syndrome (USH) is heterogeneous in nature and requires genetic test for diagnosis and management. Mutations in USH associated genes are reported in some populations except Russians. Here, we first time represented the mutation spectrum of a Russian USH cohort. METHODS: Twenty-eight patients with USH were selected from 3214 patients from Deaf-Blind Support Foundation "Con-nection" during 2014-2016 following the observational study NCT03319524. Complete ophthalmologic, ENT, and vestibular medical tests were done for clinical characterization. NGS, MLPA, and Sanger sequencing were considered for genetic analysis. RESULTS: Around 53.57% and 39.28% patients had USH1 and USH2, respectively; 17.85% cases (n = 5/28) had no known mutation. Eleven (73.33%) subjects showed variations in USH1 associated genes MYO7A (72.72%), CDH23 (9.09%), PCDH15 (9.09%), and USH1C (9.09%). Eleven mutations are detected in MYO7A where 54.54% are novel. MYO7A: p.Q18* was most frequent (27.27%) mutation and is associated with early manifestation and most severe clinical picture. Two novel mutations (p.E1301* and c.158-?_318+?del) are detected in PCDH15 gene. Around 90.90% patients suspected to be USH2 are confirmed by genetic testing. Eleven mutations detected in the USH2A gene, where 27.27% were novel. Most common USH2A mutation is p.W3955* (50%) followed by p.E767fs, p.R1653*, and c.8682-9A> G (20% each). CONCLUSION: The Russian USH cohort shows both novel and known USH mutations. Clinically the prevalence of USH2 is low (39.28%) and the frequency of MYO7A mutations responsible for USH1B is very high (63.63%, N = 7/11) compared to other cohorts. These seven patients carrying MYO7A mutations are preliminarily eligible for the UshStat® gene therapy.
Asunto(s)
Pruebas Genéticas , Terapia Genética , Miosinas/genética , Selección de Paciente , Síndromes de Usher/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Audiometría , Proteínas Relacionadas con las Cadherinas , Cadherinas/genética , Proteínas de Ciclo Celular , Proteínas del Citoesqueleto , Electrorretinografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Miosina VIIa , Oftalmoscopía , Federación de Rusia/epidemiología , Tomografía de Coherencia Óptica , Síndromes de Usher/epidemiología , Síndromes de Usher/terapia , Pruebas de Función VestibularRESUMEN
The genetic load and diversity of monogenic hereditary diseases (HD) in the Russian population of Karachay-Cherkess Republic (KCHR), living in 10 administrative and municipal divisions, were studied. The total size of the population surveyed was 410,367 people, including 134,756 Russians. In total, 385 patients from 281 families were registered among Russians of KCHR. Genetic load of AD, AR, and X-linked diseases (3.01 ± 0.32, 1.98 ± 0.26, and 1.23 ± 0.29, respectively) are more than twice higher in cities and municipal centers than in corresponding rural regions (1.00 ± 0.10, 0.89 ± 0.09, and 0.42 ± 0.09, respectively). The diversity of HD was 96 nosological forms: 56 diseases with AD type of inheritance (193 patients from 126 families), 28 clinical forms with AR (152 patients out of 124 families) and 12 diseases with the X-linked type of inheritance (40 affected from 31 families). A comparative analysis of the diversity of AD and AR HD with the previously studied populations and ethnic groups of the European part of Russia (Russians of 7 regions, 5 peoples of the Volga-Ural region, and 5 populations of the North Caucasus) was conducted, showing that Russians in the KCHR preserved genetic load with other Russian populations and its difference from the same mutation pool of Karachays and Circassians.
RESUMEN
BACKGROUND: Loss of BIN1 tumor suppressor expression is abundant in human cancer and its frequency exceeds that of genetic alterations, suggesting the role of epigenetic regulators (DNA methylation). BIN1 re-expression in the DU145 prostate cancer cell line after 5-aza-2'-deoxycytidine treatment was recently reported but no methylation of the BIN1 promoter CpG island was found in DU145. METHODS: Methylation-sensitive arbitrarily-primed PCR was used to detect genomic loci abnormally methylated in breast cancer. BIN1 CpG island fragment was identified among the differentially methylated loci as a result of direct sequencing of the methylation-sensitive arbitrarily-primed PCR product and subsequent BLAST alliance. BIN1 CpG island cancer related methylation in breast and prostate cancers was confirmed by bisulphite sequencing and its methylation frequency was evaluated by methylation sensitive PCR. Loss of heterozygosity analysis of the BIN1 region was performed with two introgenic and one closely adjacent extragenic microsatellite markers.BIN1 expression was evaluated by real-time RT-PCR. RESULTS: We have identified a 3'-part of BIN1 promoter CpG island among the genomic loci abnormally methylated in breast cancer. The fragment proved to be methylated in 18/99 (18%) and 4/46 (9%) breast and prostate tumors, correspondingly, as well as in MCF7 and T47D breast cancer cell lines, but was never methylated in normal tissues and lymphocytes as well as in DU145 and LNCaP prostate cancer cell lines. The 5'-part of the CpG island revealed no methylation in all samples tested. BIN1 expression losses were detected in MCF7 and T47D cells and were characteristic of primary breast tumors (10/13; 77%), while loss of heterozygosity was a rare event in tissue samples (2/22 informative cases; 9%) and was ruled out for MCF7. CONCLUSION: BIN1 promoter CpG island is composed of two parts differing drastically in the methylation patterns in cancer. This appears to be a common feature of cancer related genes and demands further functional significance exploration. Although we have found no evidence of the functional role of such a non-core methylation in BIN1 expression regulation, our data do not altogether rule this possibility out.
RESUMEN
ABCA4-associated mutation screening is extensively performed in European, African, American and several other populations for various retinopathies. However, it has not been well studied in a Russian cohort. Using next-generation (325 genes inherited disease panel) and Sanger sequencing technologies for the first time we documented the spectrum of genetic variations in a Russian retinopathy cohort of 51 patients from 10 ethnic groups. We found ABCA4 variations in 70.5% cases and one case with BEST1 variation. Multiple ABCA4 variations, ABCA4 + RDH12, and ABCA4 + BEST1 variations are also observed and the disease severity is found proportionate to the variation burden. Ten novel ABCA4 variations are detected of which 8 belongs to non-Slavonian population. Most of the detected known variations are found in European and American Stargardt disease populations. No retinopathy causing variation is detected in 14 (27%) cases suggesting that in this Russian retinopathies cohort the causal variants could be in genes that are not covered by our 325 gene panel. Therefore, whole genome/exome analysis is required to identify novel retinopathy associated genes and provide better disease management for this heterogeneous cohort.