Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 110(41): 16580-5, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24065821

RESUMEN

Circulating tumor cells (CTCs) are promising biomarkers for diagnosis and therapy in systemic cancer. However, their infrequent and unreliable detection, especially in nonmetastatic cancer, currently impedes the clinical use of CTCs. Because leukapheresis (LA) targets peripheral blood mononuclear cells, which have a similar density to CTCs, and usually involves processing the whole circulating blood, we tested whether LA could substantially increase CTC detection in operable cancer patients. Therefore, we screened LA products generated from up to 25 L of blood per patient in two independent studies, and found that CTCs can be detected in more than 90% of nonmetastatic breast cancer patients. Interestingly, complete white blood cell sampling enabled determining an upper level for total CTC numbers of about 100,000 cells (median, 7,500 CTCs) per patient and identified a correlation of CTC numbers with anatomic disease spread. We further show that diagnostic leukapheresis can be easily combined with the US Food and Drug Administration-approved CellSearch system for standardized enumeration of CTCs. Direct comparison with 7.5 mL of blood revealed a significantly higher CTC frequency in matched LA samples. Finally, genomic single-cell profiling disclosed highly aberrant CTCs as therapy-escaping variants in breast cancer. In conclusion, LA is a clinically safe method that enabled a reliable detection of CTCs at high frequency even in nonmetastatic cancer patients, and might facilitate the routine clinical use of CTCs as in the sense of a liquid biopsy. Combined with technologies for single-cell molecular genetics or cell biology, it may significantly improve prediction of therapy response and monitoring of early systemic cancer.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias de la Mama/diagnóstico , Técnicas y Procedimientos Diagnósticos , Leucaféresis/métodos , Células Neoplásicas Circulantes/patología , Neoplasias de la Mama/sangre , Estudios de Cohortes , Hibridación Genómica Comparativa , Femenino , Alemania , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Estadísticas no Paramétricas
2.
Oncotarget ; 8(49): 86143-86156, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29156783

RESUMEN

It is now widely recognized that the isolation of circulating tumor cells based on cell surface markers might be hindered by variability in their protein expression. Especially in pancreatic cancer, isolation based only on EpCAM expression has produced very diverse results. Methods that are independent of surface markers and therefore independent of phenotypical changes in the circulating cells might increase CTC recovery also in pancreatic cancer. We compared an EpCAM-dependent (IsoFlux) and a size-dependent (automated Siemens Healthineers filtration device) isolation method for the enrichment of pancreatic cancer CTCs. The recovery rate of the filtration based approach is dramatically superior to the EpCAM-dependent approach especially for cells with low EpCAM-expression (filtration: 52%, EpCAM-dependent: 1%). As storage and shipment of clinical samples is important for centralized analyses, we also evaluated the use of frozen diagnostic leukapheresis (DLA) as source for isolating CTCs and subsequent genetic analysis such as KRAS mutation detection analysis. Using frozen DLA samples of pancreatic cancer patients we detected CTCs in 42% of the samples by automated filtration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA