Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 88(22): 13436-46, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25210184

RESUMEN

UNLABELLED: Influenza pandemics occur when influenza A viruses (IAV) adapted to other host species enter humans and spread through the population. Pandemics are relatively rare due to host restriction of IAV: strains adapted to nonhuman species do not readily infect, replicate in, or transmit among humans. IAV can overcome host restriction through reassortment or adaptive evolution, and these are mechanisms by which pandemic strains arise in nature. To identify mutations that facilitate growth of avian IAV in humans, we have adapted influenza A/duck/Alberta/35/1976 (H1N1) (dk/AB/76) virus to a high-growth phenotype in differentiated human tracheo-bronchial epithelial (HTBE) cells. Following 10 serial passages of three independent lineages, the bulk populations showed similar growth in HTBE cells to that of a human seasonal virus. The coding changes present in six clonal isolates were determined. The majority of changes were located in the polymerase complex and nucleoprotein (NP), and all isolates carried mutations in the PB2 627 domain and regions of NP thought to interact with PB2. Using reverse genetics, the impact on growth and polymerase activity of individual and paired mutations in PB2 and NP was evaluated. The results indicate that coupling of the mammalian-adaptive mutation PB2 E627K or Q591K to selected mutations in NP further augments the growth of the corresponding viruses. In addition, minimal combinations of three (PB2 Q236H, E627K, and NP N309K) or two (PB2 Q591K and NP S50G) mutations were sufficient to recapitulate the efficient growth in HTBE cells of dk/AB/76 viruses isolated after 10 passages in this substrate. IMPORTANCE: Influenza A viruses adapted to birds do not typically grow well in humans. However, as has been seen recently with H5N1 and H7N9 subtype viruses, productive and virulent infection of humans with avian influenza viruses can occur. The ability of avian influenza viruses to adapt to new host species is a consequence of their high mutation rate that supports their zoonotic potential. Understanding of the adaptation of avian viruses to mammals strengthens public health efforts aimed at controlling influenza. In particular, it is critical to know how readily and through mutation to which functional components avian influenza viruses gain the ability to grow efficiently in humans. Our data show that as few as three mutations, in the PB2 and NP proteins, support robust growth of a low-pathogenic, H1N1 duck isolate in primary human respiratory cells.


Asunto(s)
Células Epiteliales/virología , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/genética , Mutación , Proteínas de Unión al ARN/genética , ARN Polimerasa Dependiente del ARN/genética , Proteínas del Núcleo Viral/genética , Proteínas Virales/genética , Adaptación Biológica , Animales , Línea Celular , Análisis Mutacional de ADN , Patos , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Aviar/virología , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas de la Nucleocápside , Proteínas de Unión al ARN/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Recombinación Genética , Genética Inversa , Pase Seriado , Proteínas del Núcleo Viral/metabolismo , Proteínas Virales/metabolismo
2.
Virology ; 531: 260-268, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30959264

RESUMEN

SAMHD1 is a human restriction factor known to prevent infection of macrophages, resting CD4+ T cells, and dendritic cells by HIV-1. To test the contribution of MxB to the ability of SAMHD1 to block HIV-1 infection, we created human THP-1 cell lines that were knocked out for expression of MxB, SAMHD1, or both. Interestingly, MxB depletion renders SAMHD1 ineffective against HIV-1 but not SIVmac. We observed similar results in human primary macrophages that were knockdown for the expression of MxB. To understand how MxB assists SAMHD1 restriction of HIV-1, we examined direct interaction between SAMHD1 and MxB in pull-down experiments. In addition, we investigated several properties of SAMHD1 in the absence of MxB expression, including subcellular localization, phosphorylation of the SAMHD1 residue T592, and dNTPs levels. These experiments showed that SAMHD1 restriction of HIV-1 requires expression of MxB.


Asunto(s)
Infecciones por VIH/metabolismo , VIH-1/fisiología , Proteínas de Resistencia a Mixovirus/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Virus de la Inmunodeficiencia de los Simios/fisiología , Secuencias de Aminoácidos , Infecciones por VIH/genética , Infecciones por VIH/virología , Humanos , Macrófagos/metabolismo , Macrófagos/virología , Proteínas de Resistencia a Mixovirus/genética , Fosforilación , Unión Proteica , Proteína 1 que Contiene Dominios SAM y HD/química , Proteína 1 que Contiene Dominios SAM y HD/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA