Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 29(7): 2095-2104, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38383768

RESUMEN

White matter (WM) fiber tract differences are present in autism spectrum disorder (ASD) and could be important markers of behavior. One of the earliest phenotypic differences in ASD are language atypicalities. Although language has been linked to WM in typical development, no work has evaluated this association in early ASD. Participants came from the Infant Brain Imaging Study and included 321 infant siblings of children with ASD at high likelihood (HL) for developing ASD; 70 HL infants were later diagnosed with ASD (HL-ASD), and 251 HL infants were not diagnosed with ASD (HL-Neg). A control sample of 140 low likelihood infants not diagnosed with ASD (LL-Neg) were also included. Infants contributed expressive language, receptive language, and diffusion tensor imaging data at 6-, 12-, and 24 months. Mixed effects regression models were conducted to evaluate associations between WM and language trajectories. Trajectories of microstructural changes in the right arcuate fasciculus were associated with expressive language development. HL-ASD infants demonstrated a different developmental pattern compared to the HL-Neg and LL-Neg groups, wherein the HL-ASD group exhibited a positive association between WM fractional anisotropy and language whereas HL-Neg and LL-Neg groups showed weak or no association. No other fiber tracts demonstrated significant associations with language. In conclusion, results indicated arcuate fasciculus WM is linked to language in early toddlerhood for autistic toddlers, with the strongest associations emerging around 24 months. To our knowledge, this is the first study to evaluate associations between language and WM development during the pre-symptomatic period in ASD.


Asunto(s)
Trastorno del Espectro Autista , Encéfalo , Imagen de Difusión Tensora , Desarrollo del Lenguaje , Sustancia Blanca , Humanos , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/patología , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Masculino , Femenino , Lactante , Imagen de Difusión Tensora/métodos , Preescolar , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Hermanos , Lenguaje
2.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38142289

RESUMEN

Concerns about the potential neurotoxic effects of anesthetics on developing brain exist. When making clinical decisions, the timing and dosage of anesthetic exposure are critical factors to consider due to their associated risks. In our study, we investigated the impact of repeated anesthetic exposures on the brain development trajectory of a cohort of rhesus monkeys (n = 26) over their first 2 yr of life, utilizing longitudinal magnetic resonance imaging data. We hypothesized that early or high-dose anesthesia exposure could negatively influence structural brain development. By employing the generalized additive mixed model, we traced the longitudinal trajectories of brain volume, cortical thickness, and white matter integrity. The interaction analysis revealed that age and cumulative anesthetic dose were variably linked to white matter integrity but not to morphometric measures. Early high-dose exposure was associated with increased mean, axial, and radial diffusivities across all white matter regions, compared to late-low-dose exposure. Our findings indicate that early or high-dose anesthesia exposure during infancy disrupts structural brain development in rhesus monkeys. Consequently, the timing of elective surgeries and procedures that require anesthesia for children and pregnant women should be strategically planned to account for the cumulative dose of volatile anesthetics, aiming to minimize the potential risks to brain development.


Asunto(s)
Anestésicos , Sustancia Blanca , Humanos , Animales , Niño , Femenino , Embarazo , Macaca mulatta , Imagen de Difusión Tensora/métodos , Encéfalo , Imagen por Resonancia Magnética , Sustancia Blanca/patología , Anestésicos/toxicidad
3.
Cereb Cortex ; 34(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39256896

RESUMEN

Turner syndrome, caused by complete or partial loss of an X-chromosome, is often accompanied by specific cognitive challenges. Magnetic resonance imaging studies of adults and children with Turner syndrome suggest these deficits reflect differences in anatomical and functional connectivity. However, no imaging studies have explored connectivity in infants with Turner syndrome. Consequently, it is unclear when in development connectivity differences emerge. To address this gap, we compared functional connectivity and white matter microstructure of 1-year-old infants with Turner syndrome to typically developing 1-year-old boys and girls. We examined functional connectivity between the right precentral gyrus and five regions that show reduced volume in 1-year old infants with Turner syndrome compared to controls and found no differences. However, exploratory analyses suggested infants with Turner syndrome have altered connectivity between right supramarginal gyrus and left insula and right putamen. To assess anatomical connectivity, we examined diffusivity indices along the superior longitudinal fasciculus and found no differences. However, an exploratory analysis of 46 additional white matter tracts revealed significant group differences in nine tracts. Results suggest that the first year of life is a window in which interventions might prevent connectivity differences observed at later ages, and by extension, some of the cognitive challenges associated with Turner syndrome.


Asunto(s)
Encéfalo , Vías Nerviosas , Síndrome de Turner , Sustancia Blanca , Humanos , Síndrome de Turner/patología , Síndrome de Turner/diagnóstico por imagen , Síndrome de Turner/fisiopatología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Femenino , Lactante , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Vías Nerviosas/patología , Imagen por Resonancia Magnética , Imagen de Difusión Tensora
4.
Cereb Cortex ; 34(13): 30-39, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696599

RESUMEN

The amygdala undergoes a period of overgrowth in the first year of life, resulting in enlarged volume by 12 months in infants later diagnosed with ASD. The overgrowth of the amygdala may have functional consequences during infancy. We investigated whether amygdala connectivity differs in 12-month-olds at high likelihood (HL) for ASD (defined by having an older sibling with autism), compared to those at low likelihood (LL). We examined seed-based connectivity of left and right amygdalae, hypothesizing that the HL and LL groups would differ in amygdala connectivity, especially with the visual cortex, based on our prior reports demonstrating that components of visual circuitry develop atypically and are linked to genetic liability for autism. We found that HL infants exhibited weaker connectivity between the right amygdala and the left visual cortex, as well as between the left amygdala and the right anterior cingulate, with evidence that these patterns occur in distinct subgroups of the HL sample. Amygdala connectivity strength with the visual cortex was related to motor and communication abilities among HL infants. Findings indicate that aberrant functional connectivity between the amygdala and visual regions is apparent in infants with genetic liability for ASD and may have implications for early differences in adaptive behaviors.


Asunto(s)
Amígdala del Cerebelo , Imagen por Resonancia Magnética , Corteza Visual , Humanos , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiopatología , Masculino , Femenino , Lactante , Corteza Visual/diagnóstico por imagen , Corteza Visual/fisiopatología , Corteza Visual/crecimiento & desarrollo , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Trastorno Autístico/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/diagnóstico por imagen , Predisposición Genética a la Enfermedad/genética
5.
J Cogn Neurosci ; : 1-19, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38739568

RESUMEN

Socially guided visual attention, such as gaze following and joint attention, represents the building block of higher-level social cognition in primates, although their neurodevelopmental processes are still poorly understood. Atypical development of these social skills has served as early marker of autism spectrum disorder and Williams syndrome. In this study, we trace the developmental trajectories of four neural networks underlying visual and attentional social engagement in the translational rhesus monkey model. Resting-state fMRI (rs-fMRI) data and gaze following skills were collected in infant rhesus macaques from birth through 6 months of age. Developmental trajectories from subjects with both resting-state fMRI and eye-tracking data were used to explore brain-behavior relationships. Our findings indicate robust increases in functional connectivity (FC) between primary visual areas (primary visual cortex [V1] - extrastriate area 3 [V3] and V3 - middle temporal area, ventral motion areas middle temporal area - AST, as well as between TE and amygdala (AMY) as infants mature. Significant FC decreases were found in more rostral areas of the pathways, such as areas temporal area occipital part - TE in the ventral object pathway, V3 - lateral intraparietal (LIP) of the dorsal visual attention pathway and V3 - temporo-parietal area of the ventral attention pathway. No changes in FC were found between cortical areas LIP-FEF and temporo-parietal area - Area 12 of the dorsal and ventral attention pathways or between AST-AMY and AMY-insula. Developmental trajectory of gaze following revealed a period of dynamic changes with gradual increases from 1 to 2 months, followed by slight decreases from 3 to 6 months. Exploratory association findings across the 6-month period showed that infants with higher gaze following had lower FC between primary visual areas V1-V3, but higher FC in the dorsal attention areas V3-LIP, both in the right hemisphere. Together, the first 6 months of life in rhesus macaques represent a critical period for the emergence of gaze following skills associated with maturational changes in FC of socially guided attention pathways.

6.
Brain Behav Immun ; 121: 280-290, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39032543

RESUMEN

Converging data show that exposure to maternal immune activation (MIA) in utero alters brain development in animals and increases the risk of neurodevelopmental disorders in humans. A recently developed non-human primate MIA model affords opportunities for studies with uniquely strong translational relevance to human neurodevelopment. The current longitudinal study used 1H-MRS to investigate the developmental trajectory of prefrontal cortex metabolites in male rhesus monkey offspring of dams (n = 14) exposed to a modified form of the inflammatory viral mimic, polyinosinic:polycytidylic acid (Poly IC), in the late first trimester. Brain metabolites in these animals were compared to offspring of dams that received saline (n = 10) or no injection (n = 4). N-acetylaspartate (NAA), glutamate, creatine, choline, myo-inositol, taurine, and glutathione were estimated from PRESS and MEGA-PRESS acquisitions obtained at 6, 12, 24, 36, and 45 months of age. Prior investigations of this cohort reported reduced frontal cortical gray and white matter and subtle cognitive impairments in MIA offspring. We hypothesized that the MIA-induced neurodevelopmental changes would extend to abnormal brain metabolite levels, which would be associated with the observed cognitive impairments. Prefrontal NAA was significantly higher in the MIA offspring across all ages (p < 0.001) and was associated with better performance on the two cognitive measures most sensitive to impairment in the MIA animals (both p < 0.05). Myo-inositol was significantly lower across all ages in MIA offspring but was not associated with cognitive performance. Taurine was elevated in MIA offspring at 36 and 45 months. Glutathione did not differ between groups. MIA exposure in male non-human primates is associated with altered prefrontal cortex metabolites during childhood and adolescence. A positive association between elevated NAA and cognitive performance suggests the hypothesis that elevated NAA throughout these developmental stages reflects a protective or resilience-related process in MIA-exposed offspring. The potential relevance of these findings to human neurodevelopmental disorders is discussed.


Asunto(s)
Encéfalo , Macaca mulatta , Poli I-C , Corteza Prefrontal , Efectos Tardíos de la Exposición Prenatal , Animales , Masculino , Femenino , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/inmunología , Embarazo , Encéfalo/metabolismo , Poli I-C/farmacología , Corteza Prefrontal/metabolismo , Inositol/metabolismo , Ácido Aspártico/metabolismo , Ácido Aspártico/análogos & derivados , Creatina/metabolismo , Taurina/metabolismo , Colina/metabolismo , Modelos Animales de Enfermedad , Ácido Glutámico/metabolismo , Glutatión/metabolismo , Estudios Longitudinales
7.
Mol Psychiatry ; 28(10): 4185-4194, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37582858

RESUMEN

Maternal infection has emerged as an important environmental risk factor for neurodevelopmental disorders, including schizophrenia and autism spectrum disorders. Animal model systems of maternal immune activation (MIA) suggest that the maternal immune response plays a significant role in the offspring's neurodevelopment and behavioral outcomes. Extracellular free water is a measure of freely diffusing water in the brain that may be associated with neuroinflammation and impacted by MIA. The present study evaluates the brain diffusion characteristics of male rhesus monkeys (Macaca mulatta) born to MIA-exposed dams (n = 14) treated with a modified form of the viral mimic polyinosinic:polycytidylic acid at the end of the first trimester. Control dams received saline injections at the end of the first trimester (n = 10) or were untreated (n = 4). Offspring underwent diffusion MRI scans at 6, 12, 24, 36, and 45 months. Offspring born to MIA-exposed dams showed significantly increased extracellular free water in cingulate cortex gray matter starting as early as 6 months of age and persisting through 45 months. In addition, offspring gray matter free water in this region was significantly correlated with the magnitude of the maternal IL-6 response in the MIA-exposed dams. Significant correlations between brain volume and extracellular free water in the MIA-exposed offspring also indicate converging, multimodal evidence of the impact of MIA on brain development. These findings provide strong evidence for the construct validity of the nonhuman primate MIA model as a system of relevance for investigating the pathophysiology of human neurodevelopmental psychiatric disorders. Elevated free water in individuals exposed to immune activation in utero could represent an early marker of a perturbed or vulnerable neurodevelopmental trajectory.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Esquizofrenia , Femenino , Animales , Humanos , Masculino , Citocinas , Encéfalo , Modelos Animales de Enfermedad , Primates , Conducta Animal/fisiología
8.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33558239

RESUMEN

Tracing the early paths leading to developmental disorders is critical for prevention. In previous work, we detected an interaction between genomic risk scores for schizophrenia (GRSs) and early-life complications (ELCs), so that the liability of the disorder explained by genomic risk was higher in the presence of a history of ELCs, compared with its absence. This interaction was specifically driven by loci harboring genes highly expressed in placentae from normal and complicated pregnancies [G. Ursini et al., Nat. Med. 24, 792-801 (2018)]. Here, we analyze whether fractionated genomic risk scores for schizophrenia and other developmental disorders and traits, based on placental gene-expression loci (PlacGRSs), are linked with early neurodevelopmental outcomes in individuals with a history of ELCs. We found that schizophrenia's PlacGRSs are negatively associated with neonatal brain volume in singletons and offspring of multiple pregnancies and, in singletons, with cognitive development at 1 y and, less strongly, at 2 y, when cognitive scores become more sensitive to other factors. These negative associations are stronger in males, found only with GRSs fractionated by placental gene expression, and not found in PlacGRSs for other developmental disorders and traits. The relationship of PlacGRSs with brain volume persists as an anlage of placenta biology in adults with schizophrenia, again selectively in males. Higher placental genomic risk for schizophrenia, in the presence of ELCs and particularly in males, alters early brain growth and function, defining a potentially reversible neurodevelopmental path of risk that may be unique to schizophrenia.


Asunto(s)
Encéfalo/anatomía & histología , Discapacidades del Desarrollo/genética , Predisposición Genética a la Enfermedad , Placenta/metabolismo , Esquizofrenia/genética , Transcriptoma , Encéfalo/fisiología , Cognición , Femenino , Sitios Genéticos , Humanos , Lactante , Recién Nacido , Masculino , Tamaño de los Órganos/genética , Embarazo
9.
Eur Radiol ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37971681

RESUMEN

OBJECTIVE: To develop a postmenstrual age (PMA) prediction model based on segmentation volume and to evaluate the brain maturation index using the proposed model. METHODS: Neonatal brain MRIs without clinical illness or structural abnormalities were collected from four datasets from the Developing Human Connectome Project, the Catholic University of Korea, Hammersmith Hospital (HS), and Dankook University Hospital (DU). T1- and T2-weighted images were used to train a brain segmentation model. Another model to predict the PMA of neonates based on segmentation data was developed. Accuracy was assessed using mean absolute error (MAE), root mean square error (RMSE), and mean error (ME). The brain maturation index was calculated as the difference between the PMA predicted by the model and the true PMA, and its correlation with postnatal age was analyzed. RESULTS: A total of 247 neonates (mean gestation age 37 ± 4 weeks; range 24-42 weeks) were included. Thirty-one features were extracted from each neonate and the three most contributing features for PMA prediction were the right lateral ventricle, left caudate, and corpus callosum. The predicted and true PMA were positively correlated (coefficient = 0.88, p < .001). MAE, RMSE, and ME of the external dataset of HS and DU were 1.57 and 1.33, 1.79 and 1.37, and 0.37 and 0.06 weeks, respectively. The brain maturation index negatively correlated with postnatal age (coefficient = - 0.24, p < .001). CONCLUSION: A model that calculates the regional brain volume can predict the PMA of neonates, which can then be utilized to show the brain maturation degree. CLINICAL RELEVANCE STATEMENT: A brain maturity index based on regional volume of neonate's brain can be used to measure brain maturation degree, which can help identify the status of early brain development. KEY POINTS: • Neonatal brain MRI segmentation model could be used to assess neonatal brain maturation status. • A postmenstrual age (PMA) prediction model was developed based on a neonatal brain MRI segmentation model. • The brain maturation index, derived from the PMA prediction model, enabled the estimation of the neonatal brain maturation status.

10.
Nature ; 542(7641): 348-351, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28202961

RESUMEN

Brain enlargement has been observed in children with autism spectrum disorder (ASD), but the timing of this phenomenon, and the relationship between ASD and the appearance of behavioural symptoms, are unknown. Retrospective head circumference and longitudinal brain volume studies of two-year olds followed up at four years of age have provided evidence that increased brain volume may emerge early in development. Studies of infants at high familial risk of autism can provide insight into the early development of autism and have shown that characteristic social deficits in ASD emerge during the latter part of the first and in the second year of life. These observations suggest that prospective brain-imaging studies of infants at high familial risk of ASD might identify early postnatal changes in brain volume that occur before an ASD diagnosis. In this prospective neuroimaging study of 106 infants at high familial risk of ASD and 42 low-risk infants, we show that hyperexpansion of the cortical surface area between 6 and 12 months of age precedes brain volume overgrowth observed between 12 and 24 months in 15 high-risk infants who were diagnosed with autism at 24 months. Brain volume overgrowth was linked to the emergence and severity of autistic social deficits. A deep-learning algorithm that primarily uses surface area information from magnetic resonance imaging of the brain of 6-12-month-old individuals predicted the diagnosis of autism in individual high-risk children at 24 months (with a positive predictive value of 81% and a sensitivity of 88%). These findings demonstrate that early brain changes occur during the period in which autistic behaviours are first emerging.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/patología , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/psicología , Preescolar , Salud de la Familia , Femenino , Humanos , Lactante , Estudios Longitudinales , Masculino , Neuroimagen , Pronóstico , Riesgo , Conducta Social
11.
Cereb Cortex ; 32(3): 467-478, 2022 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-34322704

RESUMEN

Mild cognitive impairment (MCI) is often considered the precursor of Alzheimer's disease. However, MCI is associated with substantially variable progression rates, which are not well understood. Attempts to identify the mechanisms that underlie MCI progression have often focused on the hippocampus but have mostly overlooked its intricate structure and subdivisions. Here, we utilized deep learning to delineate the contribution of hippocampal subfields to MCI progression. We propose a dense convolutional neural network architecture that differentiates stable and progressive MCI based on hippocampal morphometry with an accuracy of 75.85%. A novel implementation of occlusion analysis revealed marked differences in the contribution of hippocampal subfields to the performance of the model, with presubiculum, CA1, subiculum, and molecular layer showing the most central role. Moreover, the analysis reveals that 10.5% of the volume of the hippocampus was redundant in the differentiation between stable and progressive MCI.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Aprendizaje Profundo , Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Progresión de la Enfermedad , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
12.
Cereb Cortex ; 32(2): 367-379, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34231837

RESUMEN

Genetic influences on cortical thickness (CT) and surface area (SA) are known to vary across the life span. Little is known about the extent to which genetic factors influence CT and SA in infancy and toddlerhood. We performed the first longitudinal assessment of genetic influences on variation in CT and SA in 501 twins who were aged 0-2 years. We observed substantial additive genetic influences on both average CT (0.48 in neonates, 0.37 in 1-year-olds, and 0.44 in 2-year-olds) and total SA (0.59 in neonates, 0.74 in 1-year-olds, and 0.73 in 2-year-olds). In addition, we found strong heritability of the change in average CT (0.49) from neonates to 1-year-olds, but not from 1- to 2-year-olds. Moreover, we found strong genetic correlations for average CT (rG = 0.92) between 1- and 2-year-olds and strong genetic correlations for total SA across all timepoints (rG = 0.96 between neonates and 1-year-olds, rG = 1 between 1- and 2-year-olds). In addition, we found CT and SA are strongly genetic correlated at birth, but weaken over time. Overall, results suggest a dynamic genetic relationship between CT and SA during first 2 years of life and provide novel insights into how genetic influences shape the cortical structure during early brain development.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Corteza Cerebral/diagnóstico por imagen , Preescolar , Humanos , Lactante , Recién Nacido , Longevidad , Gemelos/genética
13.
Cereb Cortex ; 32(15): 3206-3223, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34952542

RESUMEN

Sex differences in the human brain emerge as early as mid-gestation and have been linked to sex hormones, particularly testosterone. Here, we analyzed the influence of markers of early sex hormone exposure (polygenic risk score (PRS) for testosterone, salivary testosterone, number of CAG repeats, digit ratios, and PRS for estradiol) on the growth pattern of cortical surface area in a longitudinal cohort of 722 infants. We found PRS for testosterone and right-hand digit ratio to be significantly associated with surface area, but only in females. PRS for testosterone at the most stringent P value threshold was positively associated with surface area development over time. Higher right-hand digit ratio, which is indicative of low prenatal testosterone levels, was negatively related to surface area in females. The current work suggests that variation in testosterone levels during both the prenatal and postnatal period may contribute to cortical surface area development in female infants.


Asunto(s)
Dedos , Hormonas Esteroides Gonadales , Estradiol/farmacología , Femenino , Humanos , Lactante , Masculino , Embarazo , Caracteres Sexuales , Testosterona
14.
Dev Psychobiol ; 65(5): e22396, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37338252

RESUMEN

There is increasing concern about the potential effects of anesthesia exposure on the developing brain. The effects of relatively brief anesthesia exposures used repeatedly to acquire serial magnetic resonance imaging scans could be examined prospectively in rhesus macaques. We analyzed magnetic resonance diffusion tensor imaging (DTI) of 32 rhesus macaques (14 females, 18 males) aged 2 weeks to 36 months to assess postnatal white matter (WM) maturation. We investigated the longitudinal relationships between each DTI property and anesthesia exposure, taking age, sex, and weight of the monkeys into consideration. Quantification of anesthesia exposure was normalized to account for variation in exposures. Segmented linear regression with two knots provided the best model for quantifying WM DTI properties across brain development as well as the summative effect of anesthesia exposure. The resulting model revealed statistically significant age and anesthesia effects in most WM tracts. Our analysis indicated there were major effects on WM associated with low levels of anesthesia even when repeated as few as three times. Fractional anisotropy values were reduced across several WM tracts in the brain, indicating that anesthesia exposure may delay WM maturation, and highlight the potential clinical concerns with even a few exposures in young children.


Asunto(s)
Anestesia , Sustancia Blanca , Masculino , Animales , Femenino , Sustancia Blanca/diagnóstico por imagen , Macaca mulatta , Imagen de Difusión Tensora/métodos , Encéfalo
15.
J Neurosci ; 41(48): 9971-9987, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34607967

RESUMEN

Human epidemiological studies implicate exposure to infection during gestation in the etiology of neurodevelopmental disorders. Animal models of maternal immune activation (MIA) have identified the maternal immune response as the critical link between maternal infection and aberrant offspring brain and behavior development. Here we evaluate neurodevelopment of male rhesus monkeys (Macaca mulatta) born to MIA-treated dams (n = 14) injected with a modified form of the viral mimic polyinosinic:polycytidylic acid at the end of the first trimester. Control dams received saline injections at the same gestational time points (n = 10) or were untreated (n = 4). MIA-treated dams exhibited a strong immune response as indexed by transient increases in sickness behavior, temperature, and inflammatory cytokines. Although offspring born to control or MIA-treated dams did not differ on measures of physical growth and early developmental milestones, the MIA-treated animals exhibited subtle changes in cognitive development and deviated from species-typical brain growth trajectories. Longitudinal MRI revealed significant gray matter volume reductions in the prefrontal and frontal cortices of MIA-treated offspring at 6 months that persisted through the final time point at 45 months along with smaller frontal white matter volumes in MIA-treated animals at 36 and 45 months. These findings provide the first evidence of early postnatal changes in brain development in MIA-exposed nonhuman primates and establish a translationally relevant model system to explore the neurodevelopmental trajectory of risk associated with prenatal immune challenge from birth through late adolescence.SIGNIFICANCE STATEMENT Women exposed to infection during pregnancy have an increased risk of giving birth to a child who will later be diagnosed with a neurodevelopmental disorder. Preclinical maternal immune activation (MIA) models have demonstrated that the effects of maternal infection on fetal brain development are mediated by maternal immune response. Since the majority of MIA models are conducted in rodents, the nonhuman primate provides a unique system to evaluate the MIA hypothesis in a species closely related to humans. Here we report the first longitudinal study conducted in a nonhuman primate MIA model. MIA-exposed offspring demonstrate subtle changes in cognitive development paired with marked reductions in frontal gray and white matter, further supporting the association between prenatal immune challenge and alterations in offspring neurodevelopment.


Asunto(s)
Encéfalo/patología , Modelos Animales de Enfermedad , Trastornos del Neurodesarrollo/etiología , Complicaciones Infecciosas del Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Animales , Femenino , Inductores de Interferón/toxicidad , Macaca mulatta , Masculino , Trastornos del Neurodesarrollo/patología , Neurogénesis/fisiología , Poli I-C/toxicidad , Embarazo , Complicaciones Infecciosas del Embarazo/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
16.
FASEB J ; 35(6): e21682, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34042210

RESUMEN

Over the last decade, multiple studies have highlighted the essential role of gut microbiota in normal infant development. However, the sensitive periods during which gut bacteria are established and become associated with physical growth and maturation of the brain are still poorly defined. This study tracked the assembly of the intestinal microbiota during the initial nursing period, and changes in community structure after transitioning to solid food in infant rhesus monkeys (Macaca mulatta). Anthropometric measures and rectal swabs were obtained at 2-month intervals across the first year of life and bacterial taxa identified by 16S rRNA gene sequencing. At 12 months of age, total brain and cortical regions volumes were quantified through structural magnetic resonance imaging. The bacterial community structure was dynamic and characterized by discrete maturational phases, reflecting an early influence of breast milk and the later transition to solid foods. Commensal microbial taxa varied with diet similar to findings in other animals and human infants; however, monkeys differ in the relative abundances of Lactobacilli and Bifidobacteria, two taxa predominant in breastfed human infants. Higher abundances of taxa in the phylum Proteobacteria during nursing were predictive of slower growth trajectories and smaller brain volumes at one year of age. Our findings define discrete phases of microbial succession in infant monkeys and suggest there may be a critical period during nursing when endogenous differences in certain taxa can shift the community structure and influence the pace of physical growth and the maturational trajectory of the brain.


Asunto(s)
Animales Recién Nacidos/crecimiento & desarrollo , Encéfalo/fisiología , Microbioma Gastrointestinal , Leche/microbiología , Proteobacteria/fisiología , Animales , Encéfalo/microbiología , Dieta , Heces/microbiología , Femenino , Macaca mulatta , Masculino
17.
Br J Anaesth ; 126(4): 845-853, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33549320

RESUMEN

BACKGROUND: Non-human primates are commonly used in neuroimaging research for which general anaesthesia or sedation is typically required for data acquisition. In this analysis, the cumulative effects of exposure to ketamine, Telazol® (tiletamine and zolazepam), and the inhaled anaesthetic isoflurane on early brain development were evaluated in two independent cohorts of typically developing rhesus macaques. METHODS: Diffusion MRI scans were analysed from 43 rhesus macaques (20 females and 23 males) at either 12 or 18 months of age from two separate primate colonies. RESULTS: Significant, widespread reductions in fractional anisotropy with corresponding increased axial, mean, and radial diffusivity were observed across the brain as a result of repeated anaesthesia exposures. These effects were dose dependent and remained after accounting for age and sex at time of exposure in a generalised linear model. Decreases of up to 40% in fractional anisotropy were detected in some brain regions. CONCLUSIONS: Multiple exposures to commonly used anaesthetics were associated with marked changes in white matter microstructure. This study is amongst the first to examine clinically relevant anaesthesia exposures on the developing primate brain. It will be important to examine if, or to what degree, the maturing brain can recover from these white matter changes.


Asunto(s)
Anestesia General/efectos adversos , Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/diagnóstico por imagen , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Imagen de Difusión Tensora/tendencias , Femenino , Macaca mulatta , Masculino
18.
Cereb Cortex ; 30(12): 6152-6168, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32591808

RESUMEN

Human white matter development in the first years of life is rapid, setting the foundation for later development. Microstructural properties of white matter are linked to many behavioral and psychiatric outcomes; however, little is known about when in development individual differences in white matter microstructure are established. The aim of the current study is to characterize longitudinal development of white matter microstructure from birth through 6 years to determine when in development individual differences are established. Two hundred and twenty-four children underwent diffusion-weighted imaging after birth and at 1, 2, 4, and 6 years. Diffusion tensor imaging data were computed for 20 white matter tracts (9 left-right corresponding tracts and 2 commissural tracts), with tract-based measures of fractional anisotropy and axial and radial diffusivity. Microstructural maturation between birth and 1 year are much greater than subsequent changes. Further, by 1 year, individual differences in tract average values are consistently predictive of the respective 6-year values, explaining, on average, 40% of the variance in 6-year microstructure. Results provide further evidence of the importance of the first year of life with regard to white matter development, with potential implications for informing early intervention efforts that target specific sensitive periods.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Desarrollo Infantil/fisiología , Sustancia Blanca/crecimiento & desarrollo , Niño , Preescolar , Imagen de Difusión Tensora , Femenino , Edad Gestacional , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Masculino , Vías Nerviosas/crecimiento & desarrollo
19.
Cereb Cortex ; 30(2): 786-800, 2020 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-31365070

RESUMEN

Cortical structure has been consistently related to cognitive abilities in children and adults, yet we know little about how the cortex develops to support emergent cognition in infancy and toddlerhood when cortical thickness (CT) and surface area (SA) are maturing rapidly. In this report, we assessed how regional and global measures of CT and SA in a sample (N = 487) of healthy neonates, 1-year-olds, and 2-year-olds related to motor, language, visual reception, and general cognitive ability. We report novel findings that thicker cortices at ages 1 and 2 and larger SA at birth, age 1, and age 2 confer a cognitive advantage in infancy and toddlerhood. While several expected brain-cognition relationships were observed, overlapping cortical regions were also implicated across cognitive domains, suggesting that infancy marks a period of plasticity and refinement in cortical structure to support burgeoning motor, language, and cognitive abilities. CT may be a particularly important morphological indicator of ability, but its impact on cognition is relatively weak when compared with gestational age and maternal education. Findings suggest that prenatal and early postnatal cortical developments are important for cognition in infants and toddlers but should be considered in relation to other child and demographic factors.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/crecimiento & desarrollo , Desarrollo Infantil , Cognición/fisiología , Corteza Cerebral/diagnóstico por imagen , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas
20.
Dev Psychopathol ; 33(5): 1526-1538, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-35586027

RESUMEN

The prenatal period represents a critical time for brain growth and development. These rapid neurological advances render the fetus susceptible to various influences with life-long implications for mental health. Maternal distress signals are a dominant early life influence, contributing to birth outcomes and risk for offspring psychopathology. This prospective longitudinal study evaluated the association between prenatal maternal distress and infant white matter microstructure. Participants included a racially and socioeconomically diverse sample of 85 mother-infant dyads. Prenatal distress was assessed at 17 and 29 weeks' gestational age (GA). Infant structural data were collected via diffusion tensor imaging at 42-45 weeks' postconceptional age. Findings demonstrated that higher prenatal maternal distress at 29 weeks' GA was associated with increased fractional anisotropy (b = .283, t(64) = 2.319, p = .024) and with increased axial diffusivity (b = .254, t(64) = 2.067, p = .043) within the right anterior cingulate white matter tract. No other significant associations were found with prenatal distress exposure and tract fractional anisotropy or axial diffusivity at 29 weeks' GA, nor earlier in gestation.


Asunto(s)
Sustancia Blanca , Encéfalo/patología , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Lactante , Estudios Longitudinales , Embarazo , Estudios Prospectivos , Sustancia Blanca/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA