Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chemistry ; 29(57): e202302146, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37449402

RESUMEN

This work elucidates the potential impact of intramolecular H-bonds within the pore walls of covalent organic frameworks (COFs) on proton conductivity. Employing DaTta and TaTta as representative hosts, it was observed that their innate proton conductivities (σ) are both unsatisfactory and σ(DaTta)<σ(TaTta). Intriguingly, the performance of both imidazole-loaded products, Im@DaTta and Im@TaTta is greatly improved, and the σ of Im@DaTta (0.91×10-2  S cm-1 ) even surpasses that of Im@TaTta (3.73×10-3  S cm-1 ) under 100 °C and 98 % relative humidity. The structural analysis, gas adsorption tests, and activation energy calculations forecast the influence of imidazole on the H-bonded system within the framework, leading to observed changes in proton conductivity. It is hypothesized that intramolecular H-bonds within the COF framework impede efficient proton transmission. Nevertheless, the inclusion of an imidazole group disrupts these intramolecular bonds, leading to the formation of an abundance of intermolecular H-bonds within the pore channels, thus contributing to a dramatic increase in proton conductivity. The related calculation of Density Functional Theory (DFT) provides further evidence for this inference.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA