Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892173

RESUMEN

A-to-I RNA editing, catalyzed by the ADAR protein family, significantly contributes to the diversity and adaptability of mammalian RNA signatures, aligning with developmental and physiological needs. Yet, the functions of many editing sites are still to be defined. The Unc80 gene stands out in this context due to its brain-specific expression and the evolutionary conservation of its codon-altering editing event. The precise biological functions of Unc80 and its editing, however, are still largely undefined. In this study, we first demonstrated that Unc80 editing occurs in an ADAR2-dependent manner and is exclusive to the brain. By employing the CRISPR/Cas9 system to generate Unc80 knock-in mouse models that replicate the natural editing variations, our findings revealed that mice with the "gain-of-editing" variant (Unc80G/G) exhibit heightened basal neuronal activity in critical olfactory regions, compared to the "loss-of-editing" (Unc80S/S) counterparts. Moreover, an increase in glutamate levels was observed in the olfactory bulbs of Unc80G/G mice, indicating altered neurotransmitter dynamics. Behavioral analysis of odor detection revealed distinctive responses to novel odors-both Unc80 deficient (Unc80+/-) and Unc80S/S mice demonstrated prolonged exploration times and heightened dishabituation responses. Further elucidating the olfactory connection of Unc80 editing, transcriptomic analysis of the olfactory bulb identified significant alterations in gene expression that corroborate the behavioral and physiological findings. Collectively, our research advances the understanding of Unc80's neurophysiological functions and the impact of its editing on the olfactory sensory system, shedding light on the intricate molecular underpinnings of olfactory perception and neuronal activity.


Asunto(s)
Adenosina Desaminasa , Percepción Olfatoria , Edición de ARN , Animales , Ratones , Percepción Olfatoria/fisiología , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/genética , Bulbo Olfatorio/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Neuronas/metabolismo , Sistemas CRISPR-Cas , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
2.
Diabetologia ; 66(5): 913-930, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36692509

RESUMEN

AIMS/HYPOTHESIS: The mitochondrial chaperonin heat shock protein (HSP) 60 is indispensable in protein folding and the mitochondrial stress response; however, its role in nutrient metabolism remains uncertain. This study investigated the role of HSP60 in diet-induced non-alcoholic fatty liver disease (NAFLD). METHODS: We studied human biopsies from individuals with NAFLD, murine high-fat-diet (HFD; a diet with 60% energy from fat)-induced obesity (DIO), transgenic (Tg) mice overexpressing Hsp60 (Hsp60-Tg), and human HepG2 cells transfected with HSP60 cDNA or with HSP60 siRNA. Histomorphometry was used to assess hepatic steatosis, biochemistry kits were used to measure insulin resistance and glucose tolerance, and an automated home cage phenotyping system was used to assess energy expenditure. Body fat was assessed using MRI. Macrophage infiltration, the lipid oxidation marker 4-hydroxy-2-nonenal (4-HNE) and the oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) were detected using immunohistochemistry. Intracellular lipid droplets were evaluated by Nile red staining. Expression of HSP60, and markers of lipogenesis and fatty acid oxidation were quantified using RT-PCR and immunoblotting. Investigations were analysed using the two-way ANOVA test. RESULTS: Decreased HSP60 expression correlated with severe steatosis in human NAFLD biopsies and murine DIO. Hsp60-Tg mice developed less body fat, had reduced serum triglyceride levels, lower levels of insulin resistance and higher serum adiponectin levels than wild-type mice upon HFD feeding. Respiratory quotient profile indicated that fat in Hsp60-Tg mice may be metabolised to meet energy demands. Hsp60-Tg mice showed amelioration of HFD-mediated hepatic steatosis, M1/M2 macrophage dysregulation, and 4-HNE and 8-OHdG overproduction. Forced HSP60 expression reduced the mitochondrial unfolded protein response, while preserving mitochondrial respiratory complex activity and enhancing fatty acid oxidation. Furthermore, HSP60 knockdown enhanced intracellular lipid formation and loss of sirtuin 3 (SIRT3) signalling in HepG2 cells upon incubation with palmitic acid (PA). Forced HSP60 expression improved SIRT3 signalling and repressed PA-mediated intracellular lipid formation. SIRT3 inhibition compromised HSP60-induced promotion of AMP-activated protein kinase (AMPK) phosphorylation and peroxisome proliferator-activated receptor α (PPARα levels), while also decreasing levels of fatty acid oxidation markers. CONCLUSION/INTERPRETATION: Mitochondrial HSP60 promotes fatty acid oxidation while repressing mitochondrial stress and inflammation to ameliorate the development of NAFLD by preserving SIRT3 signalling. This study reveals the hepatoprotective effects of HSP60 and indicates that HSP60 could play a fundamental role in the development of therapeutics for NAFLD or type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Sirtuina 3 , Animales , Humanos , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Resistencia a la Insulina/genética , Metabolismo de los Lípidos , Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo
3.
J Nanobiotechnology ; 20(1): 157, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35337331

RESUMEN

BACKGROUND: Late diagnosis of lung cancer is one of the leading causes of higher mortality in lung cancer patients worldwide. Significant research attention has focused on the use of magnetic resonance imaging (MRI) based nano contrast agents to efficiently locate cancer tumors for surgical removal or disease diagnostics. Although contrast agents offer significant advantages, further clinical applications require improvements in biocompatibility, biosafety and efficacy. RESULTS: To address these challenges, we fabricated ultra-fine Iron Carbonate Nanoparticles (FeCO3 NPs) for the first time via modified literature method. Synthesized NPs exhibit ultra-fine size (~ 17 nm), good dispersibility and excellent stability in both aqueous and biological media. We evaluated the MR contrast abilities of FeCO3 NPs and observed remarkable T2 weighted MRI contrast in a concentration dependent manner, with a transverse relaxivity (r2) value of 730.9 ± 4.8 mM-1 S-1at 9.4 T. Moreover, the r2 values of present FeCO3 NPs are respectively 1.95 and 2.3 times higher than the clinically approved contrast agents Resovist® and Friedx at same 9.4 T MR scanner. FeCO3 NPs demonstrate an enhanced T2 weighted contrast for in vivo lung tumors within 5 h of post intravenous administration with no apparent systemic toxicity or induction of inflammation observed in in vivo mice models. CONCLUSION: The excellent biocompatibility and T2 weighted contrast abilities of FeCO3 NPs suggest potential for future clinical use in early diagnosis of lung tumors.


Asunto(s)
Neoplasias Pulmonares , Imagen por Resonancia Magnética , Animales , Medios de Contraste , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Magnetismo , Ratones , Fenómenos Físicos
4.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35563108

RESUMEN

Neurogenic inflammation and central sensitization play a role in chronic prostatitis/chronic pelvic pain syndrome. We explore the molecular effects of low-intensity shock wave therapy (Li-ESWT) on central sensitization in a capsaicin-induced prostatitis rat model. Male Sprague-Dawley rats underwent intraprostatic capsaicin (10 mM, 0.1 cm3) injections. After injection, the prostate received Li-ESWT twice, one day apart. The L6 dorsal root ganglion (DRG)/spinal cord was harvested for histology and Western blotting on days 3 and 7. The brain blood oxygenation level-dependent (BOLD) functional images were evaluated using 9.4 T fMRI before the Li-ESWT and one day after. Intraprostatic capsaicin injection induced increased NGF-, BDNF-, and COX-2-positive neurons in the L6 DRG and increased COX-2, NGF, BDNF, receptor Trk-A, and TRPV1 protein expression in the L6 DRG and the dorsal horn of the L6 spinal cord, whose effects were significantly downregulated after Li-ESWT on the prostate. Intraprostatic capsaicin injection increased activity of BOLD fMRI responses in brain regions associated with pain-related responses, such as the caudate putamen, periaqueductal gray, and thalamus, whose BOLD signals were reduced after Li-ESWT. These findings suggest a potential mechanism of Li-ESWT on modulation of peripheral and central sensitization for treating CP/CPPS.


Asunto(s)
Tratamiento con Ondas de Choque Extracorpóreas , Prostatitis , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Capsaicina , Ciclooxigenasa 2/metabolismo , Ganglios Espinales/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Factor de Crecimiento Nervioso/metabolismo , Prostatitis/inducido químicamente , Prostatitis/diagnóstico por imagen , Prostatitis/terapia , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismo
5.
FASEB J ; 34(2): 3267-3288, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908036

RESUMEN

TIAM2S, the short form of human T-cell lymphoma invasion and metastasis 2, can have oncogenic effects when aberrantly expressed in the liver or lungs. However, it is also abundant in healthy, non-neoplastic brain tissue, in which its primary function is still unknown. Here, we examined the neurobiological and behavioral significance of human TIAM2S using the human brain protein panels, a human NT2/D1-derived neuronal cell line model (NT2/N), and transgenic mice that overexpress human TIAM2S (TIAM2S-TG). Our data reveal that TIAM2S exists primarily in neurons of the restricted brain areas around the limbic system and in well-differentiated NT2/N cells. Functional studies revealed that TIAM2S has no guanine nucleotide exchange factor (GEF) activity and is mainly located in the nucleus. Furthermore, whole-transcriptome and enrichment analysis with total RNA sequencing revealed that TIAM2S-knockdown (TIAM2S-KD) was strongly associated with the cellular processes of the brain structural development and differentiation, serotonin-related signaling, and the diseases markers representing neurobehavioral developmental disorders. Moreover, TIAM2S-KD cells display decreased neurite outgrowth and reduced serotonin levels. Moreover, TIAM2S overexpressing TG mice show increased number and length of serotonergic fibers at early postnatal stage, results in higher serotonin levels at both the serum and brain regions, and higher neuroplasticity and hyperlocomotion in latter adulthood. Taken together, our results illustrate the non-oncogenic functions of human TIAM2S and demonstrate that TIAM2S is a novel regulator of serotonin level, brain neuroplasticity, and locomotion behavior.


Asunto(s)
Encéfalo/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Locomoción , Serotonina/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Línea Celular Tumoral , Células Cultivadas , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Proyección Neuronal , Plasticidad Neuronal
6.
Neurourol Urodyn ; 38(8): 2159-2169, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31541501

RESUMEN

AIM: We investigated the effects of Ba-Wei-Die-Huang-Wan (BWDHW) on ketamine-induced cystitis (KIC) in a rat model. METHODS: Female Sprague-Dawley rats were distributed into three groups: control (saline), ketamine (25 mg/kg/day for 28 days), or ketamine (25 mg/kg/day for 28 days) plus BWDHW (90 mg/kg/day, started from day 14). Functional magnetic resonance imaging (fMRI), metabolic cage study, and cystometry were evaluated. Bladder histology was evaluated. Western blots of the bladder proteins were carried out. RESULTS: Compared with controls, ketamine-treated rats showed stronger fMRI intensity in the periaqueductal gray area and bladder overactivity in the bladder functional study, but the ketamine/BWDHW-treated rats did not. Furthermore, ketamine breached the uroplakin III membrane at the apical surface of the urothelium, enhanced substance P spread over the urothelium, induced suburothelial hemorrhage and monocyte/macrophage infiltration, and caused interstitial fibrosis deposition. By contrast, the BWDHW-treated rats exhibited less substance P spread, lower suburothelial monocyte/macrophage infiltration, and lower interstitial fibrosis deposition. The ketamine group showed significant overexpression of neuroreceptors in the bladder mucosa (the transient receptor potential vanilloid 1 and M2 - and M3 -muscarinic receptors) and detrusor (M2 - and M3 -muscarinic receptors); inflammatory mediators in the detrusor (interleukin-1ß [IL-1ß], IL-6, tumor necrosis factor-α, nuclear factor-κB, cyclooxygenase-2, and intercellular adhesion molecule-1); and fibrogenesis molecules in the detrusor (transforming growth factor-ß1, collagen I, collagen III, and fibronectin). However, no significant changes were noted between the ketamine/BWDHW and control groups. CONCLUSION: BWDHW could exert therapeutic effects by inhibiting the upregulation of neuroreceptors, modulating inflammatory mediators, suppressing fibrogenesis, and ameliorating bladder overactivity in rats with KIC.


Asunto(s)
Cistitis/inducido químicamente , Medicamentos Herbarios Chinos/farmacología , Ketamina/efectos adversos , Vejiga Urinaria Hiperactiva/inducido químicamente , Vejiga Urinaria/efectos de los fármacos , Urotelio/efectos de los fármacos , Animales , Colágeno/efectos de los fármacos , Colágeno/metabolismo , Ciclooxigenasa 2/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Cistitis/metabolismo , Cistitis/patología , Cistitis/fisiopatología , Femenino , Fibronectinas/efectos de los fármacos , Fibronectinas/metabolismo , Neuroimagen Funcional , Molécula 1 de Adhesión Intercelular/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-1beta/efectos de los fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Imagen por Resonancia Magnética , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Sustancia Gris Periacueductal/diagnóstico por imagen , Ratas , Ratas Sprague-Dawley , Receptores Muscarínicos/efectos de los fármacos , Receptores Muscarínicos/metabolismo , Células Receptoras Sensoriales , Sustancia P/efectos de los fármacos , Sustancia P/metabolismo , Canales Catiónicos TRPV/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Factor de Crecimiento Transformador beta1/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Vejiga Urinaria/fisiopatología , Vejiga Urinaria Hiperactiva/metabolismo , Vejiga Urinaria Hiperactiva/patología , Vejiga Urinaria Hiperactiva/fisiopatología , Urotelio/metabolismo
7.
Nano Lett ; 16(6): 3493-9, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27148804

RESUMEN

The hypoxia region in a solid tumor has been recognized as a complex microenvironment revealing very low oxygen concentration and deficient nutrients. The hypoxic environment reduces the susceptibility of the cancer cells to anticancer drugs, low response of free radicals, and less proliferation of cancer cells in the center of the solid tumors. However, the reduced oxygen surroundings provide an appreciable habitat for anaerobic bacteria to colonize. Here, we present the bacteria-mediated targeting hypoxia to offer the expandable spectra for diagnosis and therapy in cancer diseases. Two delivery approaches involving a cargo-carrying method and an antibody-directed method were designed to deliver upconversion nanorods for imaging and Au nanorods for photothermal ablation upon near-infrared light excitation for two forms of the anaerobic Bifidobacterium breve and Clostridium difficile. The antibody-directed strategy shows the most effective treatment giving stronger imaging and longer retention period and effective therapy to completely remove tumors.


Asunto(s)
Bifidobacterium breve/fisiología , Clostridioides difficile/fisiología , Portadores de Fármacos , Nanotubos/química , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Animales , Anticuerpos/química , Bifidobacterium breve/inmunología , Línea Celular Tumoral , Clostridioides difficile/inmunología , Liberación de Fármacos , Oro/química , Xenoinjertos , Humanos , Luz , Ratones Endogámicos C57BL , Ratones Desnudos , Tamaño de la Partícula , Fotoquimioterapia , Espectrometría de Fluorescencia , Hipoxia Tumoral
8.
Biochem Biophys Res Commun ; 473(4): 1026-1032, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27067050

RESUMEN

Interstitial fibrosis and loss of parenchymal tubular cells are the common outcomes of progressive renal diseases. Pro-inflammatory cytokines have been known contributing to the damage of tubular cells and fibrosis responses after renal injury. Interleukin (IL)-33 is a tissue-derived nucleus alarmin that drives inflammatory responses. The regulation and function of IL-33 in renal injury, however, is not well understood. To investigate the involvement of cytokines in the pathogenesis of renal injury and fibrosis, we performed the mouse renal injury model induced by unilateral urinary obstruction (UUO) and analyze the differentially upregulated genes between the obstructed and the contralateral unobstructed kidneys using RNA sequencing (RNAseq). Our RNAseq data identified IL33 and its receptor ST2 were upregulated in the UUO kidney. Quantitative analysis confirmed that transcripts of IL33 and ST2 were upregulated in the obstructed kidneys. Immunofluorescent staining revealed that IL-33 was upregulated in Vimentin- and alpha-SMA-positive interstitial cells. By using genetically knockout mice, deletion of IL33 reduced UUO-induced renal fibrosis. Moreover, in combination with BrdU labeling technique, we observed that the numbers of proliferating tubular epithelial cells were increased in the UUO kidneys from IL33-or ST2-deficient mice compared to wild type mice. Collectively, our study demonstrated the upregulation of IL-33/ST2 signaling in the obstructed kidney may promote tubular cell injury and interstitial fibrosis. IL-33 may serve as a biomarker to detect renal injury and that IL-33/ST2 signaling may represent a novel target for treating renal diseases.


Asunto(s)
Interleucina-33/biosíntesis , Riñón/metabolismo , Riñón/patología , Animales , Proliferación Celular , Fibrosis , Regulación de la Expresión Génica , Proteína 1 Similar al Receptor de Interleucina-1/biosíntesis , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-33/genética , Riñón/lesiones , Túbulos Renales/citología , Túbulos Renales/metabolismo , Masculino , Ratones , Ratones Noqueados , Miofibroblastos/metabolismo , Regulación hacia Arriba , Obstrucción Ureteral/complicaciones
9.
J Nanobiotechnology ; 14(1): 75, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27884158

RESUMEN

BACKGROUND: Fingermarks are one of the most important and useful forms of physical evidence in forensic investigations. However, latent fingermarks are not directly visible, but can be visualized due to the presence of other residues (such as inorganic salts, proteins, polypeptides, enzymes and human metabolites) which can be detected or recognized through various strategies. Convenient and rapid techniques are still needed to provide obvious contrast between the background and the fingermark ridges and to then visualize latent fingermark with a high degree of selectivity and sensitivity. RESULTS: In this work, lysozyme-binding aptamer-conjugated Au nanoparticles (NPs) are used to recognize and target lysozyme in the fingermark ridges, and Au+-complex solution is used as a growth agent to reduce Au+ from Au+ to Au0 on the surface of the Au NPs. Distinct fingermark patterns were visualized on a range of professional forensic within 3 min; the resulting images could be observed by the naked eye without background interference. The entire processes from fingermark collection to visualization only entails two steps and can be completed in less than 10 min. The proposed method provides cost and time savings over current fingermark visualization methods. CONCLUSIONS: We report a simple, inexpensive, and fast method for the rapid visualization of latent fingermarks on the non-porous substrates using Au seed-mediated enhancement. Au seed-mediated enhancement is used to achieve the rapid visualization of latent fingermarks on non-porous substrates by the naked eye without the use of expensive or sophisticated instruments. The proposed approach offers faster detection and visualization of latent fingermarks than existing methods. The proposed method is expected to increase detection efficiency for latent fingermarks and reduce time requirements and costs for forensic investigations.


Asunto(s)
Aptámeros de Nucleótidos/química , Dermatoglifia , Ciencias Forenses/métodos , Oro/química , Nanopartículas del Metal/química , Humanos , Muramidasa
10.
Phys Chem Chem Phys ; 17(45): 30598-605, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26524324

RESUMEN

Hydrogen gas will play an important role in the future since it could be a replacement for gasoline, heating oil, natural gas, and other fuels. In previous reports ammonia (NH3), which has a high hydrogen content, provides a promising mode for the transferring and storing of hydrogen for its on-site generation. Therefore, the dehydrogenation of NH3 on a metal surface has been studied widely in the last few decades. In our study, we employed monolayer tungsten metal to modify the Fe(111) surface, denoted as W@Fe(111), and calculated the adsorption and dehydrogenation behaviors of NH3 on W@Fe(111) surface via first-principles calculations based on density functional theory (DFT). The three adsorption sites of the surface, top (T), 3-fold-shallow (S), and 3-fold-deep (D) were considered. The most stable structure of the NHx (x = 0-3) species on the surface of W@Fe(111) have been predicted. The calculated activation energies for NHx (x = 1-3) dehydrogenations are 19.29 kcal mol(-1) (for H2N-H bond activation), 29.17 kcal mol(-1) (for HN-H bond activation) and 27.94 kcal mol(-1) (for N-H bond activation), and the entire process is exothermic by 33.05 kcal mol(-1). To gain detailed knowledge of the catalytic processes of the NH3 molecule on the W@Fe(111) surface, the physical insights between the adsorbate/substrate interaction and interface morphology were subjected to a detailed electronic analysis.

11.
J Am Chem Soc ; 136(28): 10062-75, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-24953310

RESUMEN

A new multifunctional nanoparticle to perform a near-infrared (NIR)-responsive remote control drug release behavior was designed for applications in the biomedical field. Different from the previous studies in formation of Fe3O4-Au core-shell nanoparticles resulting in a spherical morphology, the heterostructure with polyhedral core and shell was presented with the truncated octahedral Fe3O4 nanoparticle as the core over a layer of trisoctahedral Au shell. The strategy of Fe3O4@polymer@Au was adopted using poly-l-lysine as the mediate layer, followed by the subsequent seeded growth of Au nanoparticles to form a Au trisoctahedral shell. Fe3O4@Au trisoctahedra possess high-index facets of {441}. To combine photothermal and chemotherapy in a remote-control manner, the trisoctahedral core-shell Fe3O4@Au nanoparticles were further covered with a mesoporous silica shell, yielding Fe3O4@Au@mSiO2. The bondable oligonucleotides (referred as dsDNA) were used as pore blockers of the mesoporous silica shell that allowed the controlled release, resulting in a NIR-responsive DNA-gated Fe3O4@Au@mSiO2 nanocarrier. Taking advantage of the magnetism, remotely triggered drug release was facilitated by magnetic attraction accompanied by the introduction of NIR radiation. DNA-gated Fe3O4@Au@mSiO2 serves as a drug control and release carrier that features functions of magnetic target, MRI diagnosis, and combination therapy through the manipulation of a magnet and a NIR laser. The results verified the significant therapeutic effects on tumors with the assistance of combination therapy consisting of magnetic guidance and remote NIR control.


Asunto(s)
Compuestos Férricos/química , Oro/química , Nanoestructuras/química , Oligonucleótidos/química , Dióxido de Silicio/química , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/uso terapéutico , Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Portadores de Fármacos/síntesis química , Sistemas de Liberación de Medicamentos , Células HeLa , Humanos , Magnetismo , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Tamaño de la Partícula
12.
Neurobiol Dis ; 71: 292-304, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25131447

RESUMEN

Pressor response after stroke commonly leads to early death or susceptibility to stroke recurrence, and detailed mechanisms are still lacking. We assessed the hypothesis that the renin-angiotensin system contributes to pressor response after stroke by differential modulation of the pro-inflammatory chemokine monocyte chemoattractant protein-1 (MCP-1) in the rostral ventrolateral medulla (RVLM), a key brain stem site that maintains blood pressure. We also investigated the beneficial effects of a novel renin inhibitor, aliskiren, against stroke-elicited pressor response. Experiments were performed in male adult Sprague-Dawley rats. Stroke induced by middle cerebral artery occlusion elicited significant pressor response, accompanied by activation of angiotensin II (Ang II)/type I receptor (AT1R) and AT2R signaling, depression of Ang-(1-7)/MasR and Ang IV/AT4R cascade, alongside augmentation of MCP-1/C-C chemokine receptor 2 (CCR2) signaling and neuroinflammation in the RVLM. Stroke-elicited pressor response was significantly blunted by antagonism of AT1R, AT2R or MCP-1/CCR2 signaling, and eliminated by applying Ang-(1-7) or Ang IV into the RVLM. Furthermore, stroke-activated MCP-1/CCR2 signaling was enhanced by AT1R and AT2R activation, and depressed by Ang-(1-7)/MasR and Ang IV/AT4R cascade. Aliskiren inhibited stroke-elicited pressor response via downregulating MCP-1/CCR2 activity and reduced neuroinflammation in the RVLM; these effects were potentiated by Ang-(1-7) or Ang IV. We conclude that whereas Ang II/AT1R or Ang II/AT2R signaling in the brain stem enhances, Ang-(1-7)/MasR or Ang IV/AT4R antagonizes pressor response after stroke by differential modulations of MCP-1 in the RVLM. Furthermore, combined administration of aliskiren and Ang-(1-7) or Ang IV into the brain stem provides more effective amelioration of stroked-induced pressor response.


Asunto(s)
Angiotensinas/metabolismo , Presión Sanguínea/fisiología , Tronco Encefálico/metabolismo , Quimiocina CCL2/metabolismo , Regulación de la Expresión Génica/fisiología , Accidente Cerebrovascular/patología , Análisis de Varianza , Angiotensinas/genética , Animales , Isquemia Encefálica/complicaciones , Quimiocina CCL2/genética , Modelos Animales de Enfermedad , Frecuencia Cardíaca/fisiología , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Examen Neurológico , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/metabolismo
13.
Neuroimage ; 82: 190-9, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23747290

RESUMEN

A clinical hallmark of hypertension is impairment of the cardiac vagal baroreflex, which maintains stable blood pressure and heart rate under physiological conditions. There is also evidence that oxidative stress in the brain is associated with neurogenic hypertension. We tested the hypothesis that an augmented superoxide level in the nucleus tractus solitarii (NTS), the terminal site of baroreceptor afferents, contributes to the depression of cardiac vagal baroreflex by disrupting the connectivity between the NTS and the nucleus ambiguus (NA), the origin of the vagus nerve, during neurogenic hypertension. An experimental model of neurogenic hypertension that employed intracerebroventricular infusion of angiotensin II in male adult C57BL/6 mice was used. Based on tractographic evaluations using magnetic resonance imaging/diffusion tensor imaging of the medulla oblongata in the brain stem, we found that the connectivity between the NTS and NA was disrupted in neurogenic hypertension, concurrent with impairment of the cardiac vagal baroreflex as detected by radiotelemetry. We further found that the disrupted NTS-NA connectivity was reversible, and was related to oxidative stress induced by augmented levels of NADPH oxidase-generated superoxide in the NTS. We conclude that depression of the cardiac vagal baroreflex induced by oxidative stress in the NTS in the context of neurogenic hypertension may be manifested in the form of dynamic alterations in the connectivity between the NTS and NA.


Asunto(s)
Barorreflejo/fisiología , Hipertensión/fisiopatología , Vías Nerviosas/fisiopatología , Estrés Oxidativo/fisiología , Núcleo Solitario/fisiopatología , Animales , Imagen de Difusión Tensora , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador , Inmunoprecipitación , Imagen por Resonancia Magnética , Masculino , Bulbo Raquídeo/fisiología , Ratones , Ratones Endogámicos C57BL , Nervio Vago/fisiopatología
14.
Front Bioeng Biotechnol ; 11: 1272492, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37877039

RESUMEN

Gefitinib (GEF) is an FDA-approved anti-cancer drug for the first-line treatment of patients with metastatic non-small cell lung cancer (NSCLC). However, the efficacy of anticancer drugs is limited due to their non-specificity, lower accumulation at target sites, and systemic toxicity. Herein, we successfully synthesized a modified GEF (mGEF) drug and conjugated to Iron oxide nanoparticles (Fe3O4 NPs) for the treatment of NSCLC via magnetic resonance (MR) image-guided drug delivery. A traditional EDC coupling pathway uses mGEF to directly conjugate to Fe3O4 NPs to overcom the drug leakage issues. As a result, we found in vitro drug delivery on mGEF- Fe3O4 NPs exhibits excellent anticancer effects towards the PC9 cells selectively, with an estimated IC 50 value of 2.0 µM. Additionally, in vivo MRI and PET results demonstrate that the NPs could accumulate in tumor-specific regions with localized cell growth inhibition. Results also revealed that outer tumor region exhibiting a stronger contrast than the tinner tumor region which may due necrosis in inner tumor region. In vivo biodistribution further confirms Fe3O4 NPs are more biocompatible and are excreated after the treatment. Overall, we believe that this current strategy of drug modification combined with chemical conjugation on magnetic NPs will lead to improved cancer chemotherapy as well as understanding the tumor microenvironments for better therapeutic outcomes.

15.
Biomater Sci ; 11(6): 2177-2185, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36740962

RESUMEN

Biosafety is a critical issue for the successful translocation of nanomaterial-based therapeutic/diagnostic agents from bench to bedside. For instance, after the withdrawal of clinically approved magnetic resonance (MR) imaging contrast agents (CAs) due to their biosafety issues, there is a massive demand for alternative, efficient, and biocompatible MR contrast agents for future MRI clinical applications. To this end, here we successfully demonstrate the in vivo MR contrast abilities and biocompatibilities of ligand-free FeSn2 alloy NPs for tracking in vivo lung tumors. In vitro and in vivo results reveal the FeSn2 alloy NPs acting as appreciable T2 weighted MR contrast agents to locate tumors. The construction of iron (Fe) on biocompatible tin (Sn) greatly facilitates the reduction of the intrinsic toxicities of Fe in vivo resulting in no significant abnormalities in liver and kidney functions. Therefore, we envision that constructing ligand-free alloy NPs will be a promising candidate for tracking in vivo tumors in future clinical applications.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Humanos , Medios de Contraste , Imagen por Resonancia Magnética/métodos , Hierro , Neoplasias Pulmonares/diagnóstico por imagen
16.
Nat Nanotechnol ; 18(12): 1492-1501, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37537274

RESUMEN

Dynamic therapies have potential in cancer treatments but have limitations in efficiency and penetration depth. Here a membrane-integrated liposome (MIL) is created to coat titanium dioxide (TiO2) nanoparticles to enhance electron transfer and increase radical production under low-dose X-ray irradiation. The exoelectrogenic Shewanella oneidensis MR-1 microorganism presents an innate capability for extracellular electron transfer (EET). An EET-mimicking photocatalytic system is created by coating the TiO2 nanoparticles with the MIL, which significantly enhances superoxide anions generation under low-dose (1 Gy) X-ray activation. The c-type cytochromes-constructed electron channel in the membrane mimics electron transfer to surrounding oxygen. Moreover, the hole transport in the valence band is also observed for water oxidation to produce hydroxyl radicals. The TiO2@MIL system is demonstrated against orthotopic liver tumours in vivo.


Asunto(s)
Liposomas , Shewanella , Electrones , Fusión de Membrana , Transporte de Electrón , Oxidación-Reducción
17.
Nat Commun ; 14(1): 4709, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543632

RESUMEN

Chemodynamic therapy (CDT) uses the Fenton or Fenton-like reaction to yield toxic ‧OH following H2O2 → ‧OH for tumoral therapy. Unfortunately, H2O2 is often taken from the limited endogenous supply of H2O2 in cancer cells. A water oxidation CoFe Prussian blue (CFPB) nanoframes is presented to provide sustained, external energy-free self-supply of ‧OH from H2O to process CDT and/or photothermal therapy (PTT). Unexpectedly, the as-prepared CFPB nanocubes with no near-infrared (NIR) absorption is transformed into CFPB nanoframes with NIR absorption due to the increased Fe3+-N ≡ C-Fe2+ composition through the proposed proton-induced metal replacement reactions. Surprisingly, both the CFPB nanocubes and nanoframes provide for the self-supply of O2, H2O2, and ‧OH from H2O, with the nanoframe outperforming in the production of ‧OH. Simulation analysis indicates separated active sites in catalyzation of water oxidation, oxygen reduction, and Fenton-like reactions from CFPB. The liposome-covered CFPB nanoframes prepared for controllable water-driven CDT for male tumoral mice treatments.


Asunto(s)
Nanopartículas , Neoplasias , Masculino , Animales , Ratones , Dominio Catalítico , Peróxido de Hidrógeno , Catálisis , Agua , Línea Celular Tumoral
18.
Molecules ; 17(8): 8762-72, 2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22832878

RESUMEN

A series of amido-substituted triazolopyrrolo[2,1-c][1,4]benzodiazepine (PBDT) derivatives was synthesized from isatoic anhydride, and their cytotoxicity against the MRC-5 and Mahlavu cell lines was evaluated. The results suggest that compound PBDT-7i with the meta-trifluoromethylbenzoyl substituent can selectively inhibit the growth of Mahlavu cells and has low toxicity towards MRC-5 cells.


Asunto(s)
Antineoplásicos/síntesis química , Benzodiazepinas/síntesis química , Pirroles/síntesis química , Triazoles/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Benzodiazepinas/farmacología , Benzodiazepinas/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/fisiología , Humanos , Pirroles/farmacología , Pirroles/toxicidad , Sincalida/metabolismo , Triazoles/farmacología , Triazoles/toxicidad
19.
Biomater Sci ; 10(18): 5032-5053, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35858468

RESUMEN

Magnetic resonance imaging (MRI) holds promise for the early clinical diagnosis of various diseases, but most clinical MR techniques require the use of a contrast medium. Several nanomaterial (NM) mediated contrast agents (CAs) are widely used as T1- and T2-based MR contrast agents for clinical and non-clinical applications. Unfortunately, most NM-based CAs are toxic or non-biocompatible, restricting their practical/clinical applications. Therefore, the development of nontoxic and biocompatible CAs for clinical MRI diagnosis is highly desired. To this end, several biocompatible and biomimetic strategies have been developed to offer long blood circulation time, significant biocompatibility, in vivo biodistribution and high contrast ability for efficient imaging. However, detailed review reports on biocompatible NMs, specifically for MR imaging have not yet been summarized. Thus, in the present review we summarize  various surface coating strategies (such as polymers, proteins, cell membranes, etc.) to achieve biocompatible NPs, providing a detailed discussion of advances and future prospects for safe MRI imaging.


Asunto(s)
Medios de Contraste , Nanoestructuras , Imagen por Resonancia Magnética/métodos , Polímeros , Distribución Tisular
20.
Adv Healthc Mater ; 11(20): e2201613, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35879269

RESUMEN

Photodynamic therapy (PDT) is traditionally ineffective for deeply embedded tumors due to the poor penetration depth of the excitation light. Chemiluminescence resonance energy transfer (CRET) has emerged as a promising mode of PDT without external light. To date, related research has frequently used endogenous hydrogen peroxide (H2 O2 ) and oxygen (O2 ) inside the solid tumor microenvironment to trigger CRET-mediated PDT. Unfortunately, this significantly restricts treatment efficacy and the development of further biomedical applications because of the limited amounts of endogenous H2 O2 and O2 . Herein, a nanohybrid (mSiO2 /CaO2 /CPPO/Ce6: mSCCC) nanoparticle (NP) is designed to achieve synergistic CRET-mediated PDT and calcium (Ca2+ )-overload-mediated therapy. The calcium peroxide (CaO2 ) formed inside mesoporous SiO2 (mSC) with the inclusion of the chemiluminescent agent (CPPO) and photosensitizer (Ce6) self-supplies H2 O2 , O2 , and Ca2+ allowing for the subsequent treatments. The Ce6 in mSCCC NPs is excited by chemical energy in situ following the supply of H2 O2 and O2 to produce singlet oxygen (1 O2 ). The nanohybrid NPs are coated with stearic acid to avoid decomposition during blood circulation through contact with aqueous environment. This nanohybrid shows promising performance in the generation of 1 O2 for external light-free PDT and the release of Ca2+ ions for Ca2+ -overloaded therapy against orthotopic hepatocellular carcinoma.


Asunto(s)
Neoplasias Hepáticas , Nanopartículas , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Calcio , Oxígeno Singlete , Dióxido de Silicio/química , Peróxido de Hidrógeno , Línea Celular Tumoral , Nanopartículas/química , Oxígeno , Neoplasias Hepáticas/tratamiento farmacológico , Nanotecnología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA