Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(17): 4546-4548, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39111311

RESUMEN

H5N1 is an avian influenza virus that causes respiratory disease in birds and several land and sea mammals. The recent outbreak in the United States, including infection of dairy workers, has increased the concern around potential transmission and spread. We asked virologists, epidemiologists, and public health experts what the most urgent questions and action points are at this stage of the outbreak.


Asunto(s)
Brotes de Enfermedades , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Humanos , Gripe Humana/epidemiología , Gripe Humana/transmisión , Gripe Humana/virología , Animales , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/genética , Estados Unidos/epidemiología , Gripe Aviar/virología , Gripe Aviar/transmisión , Gripe Aviar/epidemiología , Aves/virología
2.
Cell ; 186(9): 2040-2040.e1, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37116474

RESUMEN

Farmed mammals may act as hosts for zoonotic viruses that can cause disease outbreaks in humans. This SnapShot shows which farmed mammals, and to what extent, are of particular risk of harboring and spreading viruses from viral families that are commonly associated with zoonotic disease. It also discusses genome surveillance methods and biosafety measures. To view this SnapShot, open or download the PDF.


Asunto(s)
Virus , Zoonosis , Animales , Humanos , Mamíferos , Brotes de Enfermedades , Medición de Riesgo
3.
Cell ; 185(7): 1117-1129.e8, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35298912

RESUMEN

Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Asunto(s)
Animales Salvajes/virología , Enfermedades Transmisibles Emergentes/virología , Reservorios de Enfermedades , Mamíferos/virología , Viroma , Animales , China , Filogenia , Zoonosis
4.
Nature ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232170

RESUMEN

Animals such as raccoon dogs, mink and muskrats are farmed for fur and are sometimes used as food or medicinal products1,2, yet they are also potential reservoirs of emerging pathogens3. Here we performed single-sample metatranscriptomic sequencing of internal tissues from 461 individual fur animals that were found dead due to disease. We characterized 125 virus species, including 36 that were novel and 39 at potentially high risk of cross-species transmission, including zoonotic spillover. Notably, we identified seven species of coronaviruses, expanding their known host range, and documented the cross-species transmission of a novel canine respiratory coronavirus to raccoon dogs and of bat HKU5-like coronaviruses to mink, present at a high abundance in lung tissues. Three subtypes of influenza A virus-H1N2, H5N6 and H6N2-were detected in the lungs of guinea pig, mink and muskrat, respectively. Multiple known zoonotic viruses, such as Japanese encephalitis virus and mammalian orthoreovirus4,5, were detected in guinea pigs. Raccoon dogs and mink carried the highest number of potentially high-risk viruses, while viruses from the Coronaviridae, Paramyxoviridae and Sedoreoviridae families commonly infected multiple hosts. These data also reveal potential virus transmission between farmed animals and wild animals, and from humans to farmed animals, indicating that fur farming represents an important transmission hub for viral zoonoses.

5.
J Virol ; 97(10): e0059123, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37768084

RESUMEN

IMPORTANCE: Alphaviruses threaten public health continuously, and Getah virus (GETV) is a re-emerging alphavirus that can potentially infect humans. Approved antiviral drugs and vaccines against alphaviruses are few available, but several host antiviral factors have been reported. Here, we used GETV as a model of alphaviruses to screen for additional host factors. Tetrachlorodibenzo-p-dioxin-inducible poly(ADP ribose) polymerase was identified to inhibit GETV replication by inducing ubiquitination of the glycoprotein E2, causing its degradation by recruiting the E3 ubiquitin ligase membrane-associated RING-CH8 (MARCH8). Using GETV as a model virus, focusing on the relationship between viral structural proteins and host factors to screen antiviral host factors provides new insights for antiviral studies on alphaviruses.


Asunto(s)
Alphavirus , Interacciones Microbiota-Huesped , Proteínas de Transporte de Nucleósidos , Poli(ADP-Ribosa) Polimerasas , Transcriptoma , Humanos , Alphavirus/crecimiento & desarrollo , Alphavirus/inmunología , Glicoproteínas/metabolismo , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ubiquitinación , Proteínas Estructurales Virales/metabolismo , Replicación Viral
6.
J Virol ; 97(1): e0109122, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36475767

RESUMEN

Getah virus (GETV) mainly causes disease in livestock and may pose an epidemic risk due to its expanding host range and the potential of long-distance dispersal through animal trade. Here, we used metagenomic next-generation sequencing (mNGS) to identify GETV as the pathogen responsible for reemerging swine disease in China and subsequently estimated key epidemiological parameters using phylodynamic and spatially-explicit phylogeographic approaches. The GETV isolates were able to replicate in a variety of cell lines, including human cells, and showed high pathogenicity in a mouse model, suggesting the potential for more mammal hosts. We obtained 16 complete genomes and 79 E2 gene sequences from viral strains collected in China from 2016 to 2021 through large-scale surveillance among livestock, pets, and mosquitoes. Our phylogenetic analysis revealed that three major GETV lineages are responsible for the current epidemic in livestock in China. We identified three potential positively selected sites and mutations of interest in E2, which may impact the transmissibility and pathogenicity of the virus. Phylodynamic inference of the GETV demographic dynamics identified an association between livestock meat consumption and the evolution of viral genetic diversity. Finally, phylogeographic reconstruction of GETV dispersal indicated that the sampled lineages have preferentially circulated within areas associated with relatively higher mean annual temperature and pig population density. Our results highlight the importance of continuous surveillance of GETV among livestock in southern Chinese regions associated with relatively high temperatures. IMPORTANCE Although livestock is known to be the primary reservoir of Getah virus (GETV) in Asian countries, where identification is largely based on serology, the evolutionary history and spatial epidemiology of GETV in these regions remain largely unknown. Through our sequencing efforts, we provided robust support for lineage delineation of GETV and identified three major lineages that are responsible for the current epidemic in livestock in China. We further analyzed genomic and epidemiological data to reconstruct the recent demographic and dispersal history of GETV in domestic animals in China and to explore the impact of environmental factors on its genetic diversity and its diffusion. Notably, except for livestock meat consumption, other pig-related factors such as the evolution of live pig transport and pork production do not show a significant association with the evolution of viral genetic diversity, pointing out that further studies should investigate the potential contribution of other host species to the GETV outbreak. Our analysis of GETV demonstrates the need for wider animal species surveillance and provides a baseline for future studies of the molecular epidemiology and early warning of emerging arboviruses in China.


Asunto(s)
Arbovirus , Genoma Viral , Filogenia , Animales , Humanos , Ratones , Arbovirus/genética , China/epidemiología , Genómica , Ganado/virología
7.
Syst Biol ; 72(5): 1136-1153, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37458991

RESUMEN

Divergence time estimation is crucial to provide temporal signals for dating biologically important events from species divergence to viral transmissions in space and time. With the advent of high-throughput sequencing, recent Bayesian phylogenetic studies have analyzed hundreds to thousands of sequences. Such large-scale analyses challenge divergence time reconstruction by requiring inference on highly correlated internal node heights that often become computationally infeasible. To overcome this limitation, we explore a ratio transformation that maps the original $N-1$ internal node heights into a space of one height parameter and $N-2$ ratio parameters. To make the analyses scalable, we develop a collection of linear-time algorithms to compute the gradient and Jacobian-associated terms of the log-likelihood with respect to these ratios. We then apply Hamiltonian Monte Carlo sampling with the ratio transform in a Bayesian framework to learn the divergence times in 4 pathogenic viruses (West Nile virus, rabies virus, Lassa virus, and Ebola virus) and the coralline red algae. Our method both resolves a mixing issue in the West Nile virus example and improves inference efficiency by at least 5-fold for the Lassa and rabies virus examples as well as for the algae example. Our method now also makes it computationally feasible to incorporate mixed-effects molecular clock models for the Ebola virus example, confirms the findings from the original study, and reveals clearer multimodal distributions of the divergence times of some clades of interest.


Asunto(s)
Algoritmos , Filogenia , Teorema de Bayes , Factores de Tiempo , Método de Montecarlo
8.
Appl Microbiol Biotechnol ; 108(1): 355, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822832

RESUMEN

Getah virus (GETV) is a re-emerging mosquito-borne alphavirus that is highly pathogenic, mainly to pigs and horses. There are no vaccines or treatments available for GETV in swine in China. Therefore, the development of a simple, rapid, specific, and sensitive serological assay for GETV antibodies is essential for the prevention and control of GETV. Current antibody monitoring methods are time-consuming, expensive, and dependent on specialized instrumentation, and these features are not conducive to rapid detection in clinical samples. To address these problem, we developed immunochromatographic test strips (ICTS) using eukaryotically expressed soluble recombinant p62-E1 protein of GETV as a labelled antigen, which has good detection sensitivity and no cross-reactivity with other common porcine virus-positive sera. The ICTS is highly compatible with IFA and ELISA and can be stored for 1 month at 37 °C and for at least 3 months at room temperature. Hence, p62-E1-based ICTS is a rapid, accurate, and convenient method for rapid on-site detection of GETV antibodies. KEY POINTS: • We established a rapid antibody detection method that can monitor GETV infection • We developed colloidal gold test strips with high sensitivity and specificity • The development of colloidal gold test strips will aid in the field serologic detection of GETV.


Asunto(s)
Alphavirus , Anticuerpos Antivirales , Oro Coloide , Sensibilidad y Especificidad , Animales , Oro Coloide/química , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Alphavirus/inmunología , Porcinos , Cromatografía de Afinidad/métodos , Infecciones por Alphavirus/diagnóstico , Infecciones por Alphavirus/inmunología , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/virología , Tiras Reactivas , China , Ensayo de Inmunoadsorción Enzimática/métodos
9.
J Biol Chem ; 298(3): 101727, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35157850

RESUMEN

Assembly and budding of the influenza C virus is mediated by three membrane proteins: the hemagglutinin-esterase-fusion glycoprotein (HEF), the matrix protein (CM1), and the ion channel (CM2). Here we investigated whether the formation of the hexagonal HEF arrangement, a distinctive feature of influenza C virions is important for virus budding. We used super resolution microscopy and found 250-nm sized HEF clusters at the plasma membrane of transfected cells, which were insensitive to cholesterol extraction and cytochalasin treatment. Overexpression of either CM1, CM2, or HEF caused the release of membrane-enveloped particles. Cryo-electron microscopy of the latter revealed spherical vesicles exhibiting the hexagonal HEF clusters. We subsequently used reverse genetics to identify elements in HEF required for this clustering. We found that deletion of the short cytoplasmic tail of HEF reduced virus titer and hexagonal HEF arrays, suggesting that an interaction with CM1 stabilizes the HEF clusters. In addition, we substituted amino acids at the surface of the closed HEF conformation and identified specific mutations that prevented virus rescue, others reduced virus titers and the number of HEF clusters in virions. Finally, mutation of two regions that mediate contacts between trimers in the in-situ structure of HEF was shown to prevent rescue of infectious virus particles. Mutations at residues thought to mediate lateral interactions were revealed to promote intracellular trafficking defects. Taken together, we propose that lateral interactions between the ectodomains of HEF trimers are a driving force for virus budding, although CM2 and CM1 also play important roles in this process.


Asunto(s)
Gammainfluenzavirus , Gripe Humana , Proteínas de la Matriz Viral , Microscopía por Crioelectrón , Humanos , Gripe Humana/virología , Gammainfluenzavirus/genética , Gammainfluenzavirus/metabolismo , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Virión/metabolismo , Ensamble de Virus , Liberación del Virus
10.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34951645

RESUMEN

The ongoing SARS (severe acute respiratory syndrome)-CoV (coronavirus)-2 pandemic has exposed major gaps in our knowledge on the origin, ecology, evolution, and spread of animal coronaviruses. Porcine epidemic diarrhea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae that may have originated from bats and leads to significant hazards and widespread epidemics in the swine population. The role of local and global trade of live swine and swine-related products in disseminating PEDV remains unclear, especially in developing countries with complex swine production systems. Here, we undertake an in-depth phylogeographic analysis of PEDV sequence data (including 247 newly sequenced samples) and employ an extension of this inference framework that enables formally testing the contribution of a range of predictor variables to the geographic spread of PEDV. Within China, the provinces of Guangdong and Henan were identified as primary hubs for the spread of PEDV, for which we estimate live swine trade to play a very important role. On a global scale, the United States and China maintain the highest number of PEDV lineages. We estimate that, after an initial introduction out of China, the United States acted as an important source of PEDV introductions into Japan, Korea, China, and Mexico. Live swine trade also explains the dispersal of PEDV on a global scale. Given the increasingly global trade of live swine, our findings have important implications for designing prevention and containment measures to combat a wide range of livestock coronaviruses.


Asunto(s)
Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , China , Pandemias , Filogenia , Filogeografía , Virus de la Diarrea Epidémica Porcina/genética , Porcinos , Enfermedades de los Porcinos/epidemiología , Estados Unidos
11.
J Virol ; 96(6): e0175121, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-34986000

RESUMEN

The emergence of new epidemic variants of alphaviruses poses a public health risk. It is associated with adaptive mutations that often cause increased pathogenicity. Getah virus (GETV), a neglected and re-emerging mosquito-borne alphavirus, poses threat to many domestic animals and probably even humans. At present, the underlying mechanisms of GETV pathogenesis are not well defined. We identified a residue in the E2 glycoprotein that is critical for viral adsorption to cultured cells and pathogenesis in vivo. Viruses containing an arginine instead of a lysine at residue 253 displayed enhanced infectivity in mammalian cells and diminished virulence in a mouse model of GETV disease. Experiments in cell culture show that heparan sulfate (HS) is a new attachment factor for GETV, and the exchange Lys253Arg improves virus attachment by enhancing binding to HS. The mutation also results in more effective binding to glycosaminoglycan (GAG), linked to low virulence due to rapid virus clearance from the circulation. Localization of residue 253 in the three-dimensional structure of the spike revealed several other basic residues in E2 and E1 in close vicinity that might constitute an HS-binding site different from sites previously identified in other alphaviruses. Overall, our study reveals that HS acts as the attachment factor of GETV and provides convincing evidence for an HS-binding determinant at residue 253 in the E2 glycoprotein of GETV, which contributes to infectivity and virulence. IMPORTANCE Due to decades of inadequate monitoring and lack of vaccines and specific treatment, a large number of people have been infected with alphaviruses. GETV is a re-emerging alphavirus that has the potential to infect humans. This specificity of the GETV disease, particularly its propensity for chronic musculoskeletal manifestations, underscores the need to identify the genetic determinants that govern GETV virulence in the host. Using a mouse model, we show that a single amino acid substitution at residue 253 in the E2 glycoprotein causes attenuation of the virus. Residue 253 might be part of a binding site for HS, a ubiquitous attachment factor on the cell surface. The substitution of Lys by Arg improves cell attachment of the virus in vitro and virus clearance from the blood in vivo by enhancing binding to HS. In summary, we have identified HS as a new attachment factor for GETV and the corresponding binding site in the E2 protein for the first time. Our research potentially improved understanding of the pathogenic mechanism of GETV and provided a potential target for the development of new attenuated vaccines and antiviral drugs.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Sustitución de Aminoácidos , Proteínas del Envoltorio Viral , Alphavirus/genética , Alphavirus/patogenicidad , Infecciones por Alphavirus/virología , Animales , Sitios de Unión/genética , Células Cultivadas , Modelos Animales de Enfermedad , Heparitina Sulfato/metabolismo , Humanos , Ratones , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
12.
Appl Microbiol Biotechnol ; 107(2-3): 651-661, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36602561

RESUMEN

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that caused diarrhea and/or vomiting in neonatal piglets worldwide. Coronaviruses nucleocapsid (N) protein is the most conserved structural protein for viral replication and possesses good antigenicity. In this study, three monoclonal antibodies (mAbs), 3B4, 4D3, and 4E3 identified as subclass IgG2aκ were prepared using the lymphocytic hybridoma technology against PDCoV N protein. Furthermore, the B-cell epitope recognized by mAb 4D3 was mapped by dozens of overlapping truncated recombinant proteins based on the western blotting. The polypeptide 28QFRGNGVPLNSAIKPVE44 (EP-4D3) in the N-terminal of PDCoV N protein was identified as the minimal linear epitope for binding mAb 4D3. And the EP-4D3 epitope's amino acid sequence homology study revealed that PDCoV strains are substantially conserved, with the exception of the Alanine43 substitution Valine43 in the China lineage, the Early China lineage, and the Thailand, Vietnam, and Laos lineage. The epitope sequences shared high similarity (94.1%) with porcine coronavirus HKU15-155 (PorCoV HKU15), Asian leopard cats coronavirus (ALCCoV), sparrow coronavirus HKU17 (SpCoV HKU17), and sparrow deltacoronavirus. In contrast, the epitope sequences shared a very low homology (11.8 to 29.4%) with other porcine CoVs (PEDV, TGEV, PRCV, SADS-CoV, PHEV). Overall, the study will enrich the biological function of PDCoV N protein and provide foundational data for further development of diagnostic applications. KEY POINTS: • Three monoclonal antibodies against PDCoV N protein were prepared. • Discovery of a novel B-cell liner epitope (28QFRGNGVPLNSAIKPVE44) of PDCoV N protein. • The epitope EP-4D3 was conserved among PDCoV strains.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Enfermedades de los Porcinos , Porcinos , Animales , Deltacoronavirus/genética , Epítopos de Linfocito B/genética , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , Coronavirus/genética , Infecciones por Coronavirus/veterinaria , Anticuerpos Monoclonales
13.
Appl Microbiol Biotechnol ; 107(12): 3955-3966, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37166480

RESUMEN

Fusion tag technology is an important tool for rapid separation, purification, and characterization of proteins. Combined with monoclonal antibodies, tag epitope systems can be rapidly adapted to many assay systems. A monoclonal antibody that reacts with the matrix protein of the rabies virus CVS-11 strain was reported. The epitope (termed M) targeted by this antibody contains only six amino acids. We examine whether this specific sequence epitope can be applied as a protein tag. We show ectopic expression of M-tagged proteins has little impact on cell viability or major signaling pathways. The M tag system can be used for western blotting, immunoprecipitation, immunofluorescence staining, and flow cytometry assays. The results indicate the specificity, sensitivity, and versatility of this novel epitope tag system are comparable to the widely used FLAG tag system, providing researchers with an additional tool for molecular analysis. KEY POINTS: • A short peptide (Pro Pro Tyr Asp Asp Asp) can be applied as a new tag. • The new epitope-tagging fusion system has no effect on the main cellular signaling pathway. • The epitope-tagging fusion system can be widely used for western blotting, immunoprecipitation, immunofluorescence, flow cytometry, etc.


Asunto(s)
Virus de la Rabia , Epítopos , Virus de la Rabia/genética , Péptidos/metabolismo , Anticuerpos Monoclonales , Western Blotting
14.
Mol Biol Evol ; 37(9): 2641-2654, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32407507

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown once again that coronavirus (CoV) in animals are potential sources for epidemics in humans. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogen of swine with a worldwide distribution. Here, we implemented and described an approach to analyze the epidemiology of PDCoV following its emergence in the pig population. We performed an integrated analysis of full genome sequence data from 21 newly sequenced viruses, along with comprehensive epidemiological surveillance data collected globally over the last 15 years. We found four distinct phylogenetic lineages of PDCoV, which differ in their geographic circulation patterns. Interestingly, we identified more frequent intra- and interlineage recombination and higher virus genetic diversity in the Chinese lineages compared with the USA lineage where pigs are raised in different farming systems and ecological environments. Most recombination breakpoints are located in the ORF1ab gene rather than in genes encoding structural proteins. We also identified five amino acids under positive selection in the spike protein suggesting a role for adaptive evolution. According to structural mapping, three positively selected sites are located in the N-terminal domain of the S1 subunit, which is the most likely involved in binding to a carbohydrate receptor, whereas the other two are located in or near the fusion peptide of the S2 subunit and thus might affect membrane fusion. Finally, our phylogeographic investigations highlighted notable South-North transmission as well as frequent long-distance dispersal events in China that could implicate human-mediated transmission. Our findings provide new insights into the evolution and dispersal of PDCoV that contribute to our understanding of the critical factors involved in CoVs emergence.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Coronavirus/genética , Genoma Viral , Glicoproteína de la Espiga del Coronavirus/genética , Enfermedades de los Porcinos/epidemiología , Proteínas Virales/genética , Animales , Evolución Biológica , China/epidemiología , Coronavirus/clasificación , Coronavirus/patogenicidad , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Variación Genética , Genómica , Humanos , Modelos Moleculares , Epidemiología Molecular , Sistemas de Lectura Abierta , Filogenia , Filogeografía , Estructura Secundaria de Proteína , Recombinación Genética , Selección Genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Porcinos/virología , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/virología , Proteínas Virales/metabolismo
15.
J Virol ; 94(15)2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32404529

RESUMEN

The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in a pandemic. Here, we used X-ray structures of human ACE2 bound to the receptor-binding domain (RBD) of the spike protein (S) from SARS-CoV-2 to predict its binding to ACE2 proteins from different animals, including pets, farm animals, and putative intermediate hosts of SARS-CoV-2. Comparing the interaction sites of ACE2 proteins known to serve or not serve as receptors allows the definition of residues important for binding. From the 20 amino acids in ACE2 that contact S, up to 7 can be replaced and ACE2 can still function as the SARS-CoV-2 receptor. These variable amino acids are clustered at certain positions, mostly at the periphery of the binding site, while changes of the invariable residues prevent S binding or infection of the respective animal. Some ACE2 proteins even tolerate the loss or acquisition of N-glycosylation sites located near the S interface. Of note, pigs and dogs, which are not infected or are not effectively infected and have only a few changes in the binding site, exhibit relatively low levels of ACE2 in the respiratory tract. Comparison of the RBD of S of SARS-CoV-2 with that from bat coronavirus strain RaTG13 (Bat-CoV-RaTG13) and pangolin coronavirus (Pangolin-CoV) strain hCoV-19/pangolin/Guangdong/1/2019 revealed that the latter contains only one substitution, whereas Bat-CoV-RaTG13 exhibits five. However, ACE2 of pangolin exhibits seven changes relative to human ACE2, and a similar number of substitutions is present in ACE2 of bats, raccoon dogs, and civets, suggesting that SARS-CoV-2 may not be especially adapted to ACE2 of any of its putative intermediate hosts. These analyses provide new insight into the receptor usage and animal source/origin of SARS-CoV-2.IMPORTANCE SARS-CoV-2 is threatening people worldwide, and there are no drugs or vaccines available to mitigate its spread. The origin of the virus is still unclear, and whether pets and livestock can be infected and transmit SARS-CoV-2 are important and unknown scientific questions. Effective binding to the host receptor ACE2 is the first prerequisite for infection of cells and determines the host range. Our analysis provides a framework for the prediction of potential hosts of SARS-CoV-2. We found that ACE2 from species known to support SARS-CoV-2 infection tolerate many amino acid changes, indicating that the species barrier might be low. Exceptions are dogs and especially pigs, which revealed relatively low ACE2 expression levels in the respiratory tract. Monitoring of animals is necessary to prevent the generation of a new coronavirus reservoir. Finally, our analysis also showed that SARS-CoV-2 may not be specifically adapted to any of its putative intermediate hosts.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/virología , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Acoplamiento Viral , Enzima Convertidora de Angiotensina 2 , Animales , Animales Domésticos , Betacoronavirus/metabolismo , COVID-19 , Quirópteros/virología , Infecciones por Coronavirus/metabolismo , Perros , Glicosilación , Interacciones Huésped-Patógeno , Humanos , Modelos Animales , Pandemias , Mascotas , Neumonía Viral/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapaches/virología , SARS-CoV-2 , Alineación de Secuencia , Análisis de Secuencia de Proteína , Porcinos , Viverridae/virología
16.
Microb Pathog ; 160: 105193, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34536503

RESUMEN

As a novel member of the Orthomyxoviridae, influenza D virus (IDV) was firstly isolated from swine. However, cattle were found to serve as its primary reservoir. The study of IDV emergence can shed light into the dynamics of zoonotic infections and interspecies transmission. Although there is an increasing number of strains and sequenced IDV strains, their origin, epidemiology and evolutionary dynamics remain unclear. In this study, we reconstruct the diversity and evolutionary dynamics of IDVs. Molecular detection of swine tissue samples shows that six IDV positive samples were identified in the Eastern China. Phylogenetic analyses suggest three major IDV lineages designated as D/Japan, D/OK and D/660 as well as intermediate lineages. IDVs show strong association with geographical location indicating a high level of local transmission, which suggests IDVs tend to establish a local lineage of in situ evolution. In addition, the D/OK lineage widely circulates in swine in Eastern China, and all of the Chinese virus isolates form a distinct sub-clade (D/China sub-lineage). Furthermore, we identified important amino acids in the HEF gene under positive selection that might affect its receptor binding cavity relevant for its broader cell tropism. The combined results highlight that more attention should be paid to the potential threat of IDV to livestock and farming in China.


Asunto(s)
Enfermedades de los Bovinos , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Animales , Bovinos , Evolución Molecular , Infecciones por Orthomyxoviridae/veterinaria , Filogenia , Porcinos , Thogotovirus/genética
17.
J Pineal Res ; 71(2): e12754, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34139040

RESUMEN

The current coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights major gaps in our knowledge on the prevention control and cross-species transmission mechanisms of animal coronaviruses. Transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), and porcine delta coronavirus (PDCoV) are three common swine coronaviruses and have similar clinical features. In the absence of effective treatments, they have led to significant economic losses in the swine industry worldwide. We reported that indoles exerted potent activity against swine coronaviruses, the molecules used included melatonin, indole, tryptamine, and L-tryptophan. Herein, we did further systematic studies with melatonin, a ubiquitous and versatile molecule, and found it inhibited TGEV, PEDV, and PDCoV infection in PK-15, Vero, or LLC-PK1 cells by reducing viral entry and replication, respectively. Collectively, we provide the molecular basis for the development of new treatments based on the ability of indoles to control TGEV, PEDV, and PDCoV infection and spread.


Asunto(s)
COVID-19 , Melatonina , Enfermedades de los Porcinos , Animales , Antivirales/farmacología , Humanos , Melatonina/farmacología , SARS-CoV-2 , Porcinos
18.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207166

RESUMEN

Rabies virus (RABV) induces acute, fatal encephalitis in mammals including humans. The circRNAs are important in virus infection process, but whether circRNAs regulated RABV infection remains largely unknown. Here, mice brain with or without the RABV CVS-11 strain were subjected to RNA sequencing and a total of 30,985 circRNAs were obtained. Among these, 9021 candidates were shared in both groups, and 14,610 and 7354 circRNAs were expressed specifically to the control and experimental groups, indicating that certain circRNAs were specifically inhibited or induced on RABV infection. The circRNAs mainly derived from coding exons. In total, 636 circRNAs were differentially expressed in RABV infection, of which 426 significantly upregulated and 210 significantly downregulated (p < 0.05 and fold change ≥2). The expression of randomly selected 6 upregulated and 6 downregulated circRNAs was tested by RT-qPCR, and the expression trend of the 11 out of 12 circRNAs was consistent in RT- qPCR and RNA-seq analysis. Rnase R-resistant assay and Sanger sequencing were conducted to verify the circularity of circRNAs. GO analysis demonstrated that source genes of all differentially regulated circRNAs were mainly related to cell plasticity and synapse function. Both KEGG and GSEA analysis revealed that these source genes were engaged in the cGMP-PKG and MAPK signaling pathway, and HTLV-I infection. Also, pathways related to glucose metabolism and synaptic functions were enriched in KEGG analysis. The circRNA-miRNA-mRNA network was built with 25 of 636 differentially expressed circRNAs, 264 mRNAs involved in RABV infection, and 29 miRNAs. Several miRNAs and many mRNAs in the network were reported to be related to viral infection and the immune response, suggesting that circRNAs could regulate RABV infection via interacting with miRNAs and mRNAs. Taken together, this study first characterized the transcriptomic pattern of circRNAs, and signaling pathways and function that circRNAs are involved in, which may indicate directions for further research to understand mechanisms of RABV pathogenesis.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/virología , Biología Computacional , Perfilación de la Expresión Génica , ARN Circular , Virus de la Rabia , Rabia/genética , Rabia/virología , Animales , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Interacciones Huésped-Patógeno/genética , Ratones , MicroARNs/genética , Interferencia de ARN , ARN Mensajero/genética , Virus de la Rabia/fisiología , Transcriptoma
19.
Mol Cell Probes ; 53: 101618, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32534013

RESUMEN

Viral canine diarrhea has high morbidity and mortality and is prevalent worldwide, resulting in severe economic and spiritual losses to pet owners. However, diarrhea pathogens have similar clinical symptoms and are difficult to diagnose clinically. Thus, fast and accurate diagnostic methods are of great significance for prevention and accurate treatment. In this study, we developed a one-step multiplex TaqMan probe-based real-time PCR for the differential diagnosis of four viruses causing canine diarrhea including, CPV (Canine Parvovirus), CCoV (Canine Coronavirus), CAstV (Canine Astrovirus), and CaKoV (Canine Kobuviruses). The limit of detection was up to 102 copies/µL and performed well with high sensitivity and specificity. This assay was optimized and used to identify possible antagonistic relationships between viruses. From this, artificial pre-experiments were performed for mixed infections, and a total of 82 canine diarrhea field samples were collected from different animal hospitals in Zhejiang, China to assess the method. The virus prevalence was significantly higher than what previously reported based on RT-PCR (Reverse Transcription-Polymerase Chain Reaction). Taken together, these results suggest that the method can be used as a preferred tool for monitoring laboratory epidemics, timely prevention, and effective monitoring of disease progression.


Asunto(s)
Sondas de ADN , Diarrea/veterinaria , Enfermedades de los Perros/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Animales , Avastrovirus , Coronavirus Canino , Diarrea/diagnóstico , Diarrea/virología , Enfermedades de los Perros/diagnóstico , Perros , Kobuvirus , Parvovirus Canino , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Int J Mol Sci ; 21(19)2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32992529

RESUMEN

Novel H7N9 influenza virus transmitted from birds to human and, since March 2013, it has caused five epidemic waves in China. Although the evolution of H7N9 viruses has been investigated, the evolutionary changes associated with codon usage are still unclear. Herein, the codon usage pattern of two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA), was studied to understand the evolutionary changes in relation to host, epidemic wave, and pathogenicity. Both genes displayed a low codon usage bias, with HA higher than NA. The codon usage was driven by mutation pressure and natural selection, although the main contributing factor was natural selection. Additionally, the codon adaptation index (CAI) and deoptimization (RCDI) illustrated the strong adaptability of H7N9 to Gallus gallus. Similarity index (SiD) analysis showed that Homo sapiens posed a stronger selection pressure than Gallus gallus. Thus, we assume that this may be related to the gradual adaptability of the virus to human. In addition, the host strong selection pressure was validated based on CpG dinucleotide content. In conclusion, this study analyzed the usage of codons of two genes of H7N9 and expanded our understanding of H7N9 host specificity. This aids into the development of control measures against H7N9 influenza virus.


Asunto(s)
Uso de Codones , Genes Virales , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Adaptación al Huésped/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Gripe Aviar/genética , Gripe Humana/genética , Neuraminidasa/genética , Animales , Pollos/virología , Codón , Islas de CpG/genética , Especificidad del Huésped/genética , Humanos , Gripe Aviar/virología , Gripe Humana/virología , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA