Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plasmid ; 74: 39-44, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24929128

RESUMEN

Insect resistance and herbicide tolerance are the dominant traits of commercialized transgenic cotton. In this study, we constructed a general standard reference plasmid for transgenic cotton detection. Target genes, including the cowpea trypsin gene cptI, the insect resistance gene cry1Ab/1Ac, the herbicide tolerance gene cp4-epsps, the Agrobacterium tumefaciens nopaline synthase (Nos) terminator that exists in transgenic cotton and part of the endogenous cotton SadI gene were amplified from plasmids pCPT1, pBT, pCP4 and pBI121 and from DNA of the nontransgenic cotton line K312, respectively. The genes cry1Ab/1Ac and cptI, as well as cp4-epsps and the Nos terminator gene, were ligated together to form the fusion genes cptI-Bt and cp4-Nos, respectively, by overlapping PCR. We checked the validity of genes Sad1, cptI-Bt and cp4-Nos by DNA sequencing. Then, positive clones of cptI-Bt, cp4-Nos and Sad1 were digested with the corresponding restriction enzymes and ligated sequentially into vector pCamBIA2300, which contains the CAMV 35S promoter and nptII gene, to form the reference plasmid pMCS. Qualitative detection showed that pMCS is a good positive control for transgenic cotton detection. Real-time PCR detection efficiencies with pMCS as a calibrator ranged from 94.35% to 98.67% for the standard curves of the target genes (R(2)⩾0.998). The relative standard deviation of the mean value for the known sample was 11.95%. These results indicate that the strategy of using the pMCS plasmid as a reference material is feasible and reliable for the detection of transgenic cotton. Therefore, this plasmid can serve as a useful reference tool for qualitative and quantitative detection of single or stacked trait transgenic cotton, thus paving the way for the identification of various products containing components of transgenic cotton.


Asunto(s)
Genes de Plantas , Gossypium/genética , Plantas Modificadas Genéticamente/genética , Plásmidos/genética , Agrobacterium tumefaciens/genética , ADN de Plantas/genética , Genes Bacterianos , Vectores Genéticos , Herbicidas/farmacología , Resistencia a los Insecticidas , Kanamicina/farmacología , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166973, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38029943

RESUMEN

BACKGROUND: Influenza is a clinically important infectious disease with a high fatality rate, which always results in severe pneumonia. Mesenchymal stem cells (MSCs) exhibit promising therapeutic effects on severe viral pneumonia, but whether MSCs prevent virus infection and contribute to the prevention of influenza remains unknown. METHODS: ICR mice were pretreated with human umbilical cord (hUC) MSCs and then infected with the influenza H7N9 virus. Weight, survival days, and lung index of mice were recorded. Serum antibody against influenza H7N9 virus was detected according to the hemagglutination inhibition method. Before and after virus infection, T cell and B cell subtypes in the peripheral blood of mice were evaluated by flow cytometry. Cytokines in the supernatants of MSCs, innate immune cells, and mouse broncho alveolar lavage fluid (BALF) were determined by enzyme-linked immunosorbent assay (ELISA) or Luminex Assay. RESULTS: Pretreatment with MSCs protected mice against influenza H7N9 virus infection. Weight loss, survival rate, and structural and functional damage to the lungs of infected mice were significantly improved. Mechanistically, MSCs modulated T lymphocyte response in virus-infected mice and inhibited the cGAS/STING pathway. Importantly, the protective effect of MSCs was mediated by cell-to-cell communications and attenuation of cytokine storm caused by immune overactivation.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Gripe Humana , Células Madre Mesenquimatosas , Infecciones por Orthomyxoviridae , Neumonía Viral , Humanos , Animales , Ratones , Ratones Endogámicos ICR , Infecciones por Orthomyxoviridae/terapia
3.
Stem Cell Res Ther ; 15(1): 190, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956621

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) demonstrate a wide range of therapeutic capabilities in the treatment of inflammatory bowel disease (IBD). The intraperitoneal injection of MSCs has exhibited superior therapeutic efficacy on IBD than intravenous injection. Nevertheless, the precise in vivo distribution of MSCs and their biological consequences following intraperitoneal injection remain inadequately understood. Additional studies are required to explore the correlation between MSCs distribution and their biological effects. METHODS: First, the distribution of human umbilical cord MSCs (hUC-MSCs) and the numbers of Treg and Th17 cells in mesenteric lymph nodes (MLNs) were analyzed after intraperitoneal injection of hUC-MSCs. Subsequently, the investigation focused on the levels of transforming growth factor beta1 (TGF-ß1), a key cytokine to the biology of both Treg and Th17 cells, in tissues of mice with colitis, particularly in MLNs. The study also delved into the impact of hUC-MSCs therapy on Treg cell counts in MLNs, as well as the consequence of TGFB1 knockdown hUC-MSCs on the differentiation of Treg cells and the treatment of IBD. RESULTS: The therapeutic effectiveness of intraperitoneally administered hUC-MSCs in the treatment of colitis was found to be significant, which was closely related to their quick migration to MLNs and secretion of TGF-ß1. The abundance of hUC-MSCs in MLNs of colitis mice is much higher than that in other organs even the inflamed sites of colon. Intraperitoneal injection of hUC-MSCs led to a significant increase in the number of Treg cells and a decrease in Th17 cells especially in MLNs. Furthermore, the concentration of TGF-ß1, the key cytokine for Treg differentiation, were also found to be significantly elevated in MLNs after hUC-MSCs treatment. Knockdown of TGFB1 in hUC-MSCs resulted in a noticeable reduction of Treg cells in MLNs and the eventually failure of hUC-MSCs therapy in colitis. CONCLUSIONS: MLNs may be a critical site for the regulatory effect of hUC-MSCs on Treg/Th17 cells and the therapeutic effect on colitis. TGF-ß1 derived from hUC-MSCs promotes local Treg differentiation in MLNs. This study will provide new ideas for the development of MSC-based therapeutic strategies in IBD patients.


Asunto(s)
Diferenciación Celular , Colitis , Ganglios Linfáticos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Linfocitos T Reguladores , Células Th17 , Factor de Crecimiento Transformador beta1 , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Colitis/terapia , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Ganglios Linfáticos/metabolismo , Células Th17/metabolismo , Células Th17/inmunología , Cordón Umbilical/citología , Mesenterio/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C , Masculino , Enfermedades Inflamatorias del Intestino/terapia , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA